better comments

This commit is contained in:
Dmitry Vagner 2023-01-25 15:31:32 +07:00
parent f0a6ec9535
commit f70243e70c
2 changed files with 164 additions and 148 deletions

View File

@ -176,7 +176,7 @@ impl Fp2 {
}
/// Return the complex conjugate z' of z: Fp2
/// This also happens to be the frobenius map
/// This also happens to be the frobenius map
/// z -> z^p
/// since p == 3 mod 4 and hence
/// i^p = i^3 = -i
@ -301,9 +301,9 @@ impl Fp6 {
/// x to x^(p^n)
/// which sends a + bt + ct^2: Fp6 to
/// a^(p^n) + b^(p^n) * t^(p^n) + c^(p^n) * t^(2p^n)
/// The Fp2 coefficients are determined by the comment in the conj method,
/// while the values of
/// t^(p^n) and t^(2p^n)
/// The Fp2 coefficients are determined by the comment in the conj method,
/// while the values of
/// t^(p^n) and t^(2p^n)
/// are precomputed in the constant arrays FROB_T1 and FROB_T2
fn frob(self, n: usize) -> Fp6 {
let n = n % 6;
@ -336,7 +336,7 @@ impl Fp6 {
/// (x_1 * x_3) * x_5 * (x_1 * x_3)_1
/// By Galois theory, the following are in Fp2 and are complex conjugates
/// x_1 * x_3 * x_5, x_0 * x_2 * x_4
/// and therefore
/// and therefore
/// phi = ||x_1 * x_3 * x_5||^2
/// and hence the inverse is given by
/// ([x_1 * x_3] * x_5) * [x_1 * x_3]_1 / ||[x_1 * x_3] * x_5||^2

View File

@ -129,158 +129,26 @@ pub fn invariance_inducing_power(f: Fp12) -> Fp12 {
y.frob(3) * y_a2.frob(2) * y_a1.frob(1) * y_a0
}
/// Given an f: Fp12, this function computes
/// y^a2, y^(-a1), y^(-a0)
/// by first computing
/// We first together (so as to avoid repeated steps) compute
/// y^a4, y^a2, y^a0
/// where a1 is given by
/// a1 = a4 + 2a2 - a0
/// thus what remains is inverting y^a0 and returning
/// y^a2, y^a4 * y^a2 * y^a2 * y^(-a0), y^(-a0)
/// we then invert y^a0 and return
/// y^a2, y^a1 = y^a4 * y^a2 * y^a2 * y^(-a0), y^(-a0)
///
/// Represent a4, a2, a0 in *little endian* binary, define
/// EXPS4 = [(a4[i], a2[i], a0[i]) for i in 0..len(a4)]
/// EXPS2 = [ (a2[i], a0[i]) for i in len(a4)..len(a2)]
/// EXPS0 = [ a0[i] for i in len(a2)..len(a0)]
fn get_custom_powers(f: Fp12) -> (Fp12, Fp12, Fp12) {
const EXPS4: [(usize, usize, usize); 64] = [
(1, 1, 0),
(1, 1, 1),
(1, 1, 1),
(0, 0, 0),
(0, 0, 1),
(1, 0, 1),
(0, 1, 0),
(1, 0, 1),
(1, 1, 0),
(1, 0, 1),
(0, 1, 0),
(1, 1, 0),
(1, 1, 0),
(1, 1, 0),
(0, 1, 0),
(0, 1, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 0),
(0, 1, 0),
(1, 1, 0),
(1, 1, 0),
(1, 1, 0),
(0, 0, 1),
(0, 0, 1),
(1, 0, 1),
(1, 0, 1),
(1, 1, 0),
(1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(1, 1, 0),
(1, 0, 0),
(0, 1, 0),
(0, 0, 0),
(1, 0, 0),
(1, 0, 0),
(1, 0, 1),
(0, 0, 1),
(0, 1, 1),
(0, 0, 1),
(0, 1, 1),
(0, 1, 1),
(0, 0, 0),
(1, 1, 1),
(1, 0, 1),
(1, 0, 1),
(0, 1, 1),
(1, 0, 1),
(0, 1, 1),
(0, 1, 1),
(1, 1, 0),
(1, 1, 0),
(1, 1, 0),
(1, 0, 0),
(0, 0, 1),
(1, 0, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 0),
(1, 1, 1),
(0, 1, 1),
(0, 1, 0),
(1, 1, 1),
];
const EXPS2: [(usize, usize); 62] = [
(1, 0),
(1, 1),
(0, 0),
(1, 0),
(1, 0),
(1, 1),
(1, 0),
(1, 1),
(1, 0),
(0, 1),
(0, 1),
(1, 1),
(1, 1),
(0, 0),
(1, 1),
(0, 0),
(0, 0),
(0, 1),
(0, 1),
(1, 1),
(1, 1),
(1, 1),
(0, 1),
(1, 1),
(0, 0),
(1, 1),
(1, 0),
(1, 1),
(0, 0),
(1, 1),
(1, 1),
(1, 0),
(0, 0),
(0, 1),
(0, 0),
(1, 1),
(0, 1),
(0, 0),
(1, 0),
(0, 1),
(0, 1),
(1, 0),
(0, 1),
(0, 0),
(0, 0),
(0, 0),
(0, 1),
(1, 0),
(1, 1),
(0, 1),
(1, 1),
(1, 0),
(0, 1),
(0, 0),
(1, 0),
(0, 1),
(1, 0),
(1, 1),
(1, 0),
(1, 1),
(0, 1),
(1, 1),
];
const EXPS0: [usize; 65] = [
0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0,
0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1,
0, 0, 1, 1, 0,
];
let mut sq: Fp12 = f;
let mut y0: Fp12 = UNIT_FP12;
let mut y2: Fp12 = UNIT_FP12;
let mut y4: Fp12 = UNIT_FP12;
// proceed via standard squaring algorithm for exponentiation
// must keep multiplying all three values: a4, a2, a0
for (a, b, c) in EXPS4 {
if a != 0 {
y4 = y4 * sq;
@ -293,8 +161,10 @@ fn get_custom_powers(f: Fp12) -> (Fp12, Fp12, Fp12) {
}
sq = sq * sq;
}
// leading term of a4 is always 1
y4 = y4 * sq;
// must keep multiplying remaining two values: a2, a0
for (a, b) in EXPS2 {
if a != 0 {
y2 = y2 * sq;
@ -304,17 +174,23 @@ fn get_custom_powers(f: Fp12) -> (Fp12, Fp12, Fp12) {
}
sq = sq * sq;
}
// leading term of a2 is always 1
y2 = y2 * sq;
// must keep multiplying remaining value: a0
for a in EXPS0 {
if a != 0 {
y0 = y0 * sq;
}
sq = sq * sq;
}
// leading term of a0 is always 1
y0 = y0 * sq;
// invert y0 to compute y^(-a0)
let y0_inv = y0.inv();
// return y2, y1 = y4 * y2^2 * y^(-a0), y^(-a0)
(y2, y4 * y2 * y2 * y0_inv, y0_inv)
}
@ -369,3 +245,143 @@ pub const TWISTED_GENERATOR: TwistedCurve = {
},
}
};
/// The folowing constants are defined above get_custom_powers
const EXPS4: [(usize, usize, usize); 64] = [
(1, 1, 0),
(1, 1, 1),
(1, 1, 1),
(0, 0, 0),
(0, 0, 1),
(1, 0, 1),
(0, 1, 0),
(1, 0, 1),
(1, 1, 0),
(1, 0, 1),
(0, 1, 0),
(1, 1, 0),
(1, 1, 0),
(1, 1, 0),
(0, 1, 0),
(0, 1, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 0),
(0, 1, 0),
(1, 1, 0),
(1, 1, 0),
(1, 1, 0),
(0, 0, 1),
(0, 0, 1),
(1, 0, 1),
(1, 0, 1),
(1, 1, 0),
(1, 0, 0),
(1, 1, 0),
(0, 1, 0),
(1, 1, 0),
(1, 0, 0),
(0, 1, 0),
(0, 0, 0),
(1, 0, 0),
(1, 0, 0),
(1, 0, 1),
(0, 0, 1),
(0, 1, 1),
(0, 0, 1),
(0, 1, 1),
(0, 1, 1),
(0, 0, 0),
(1, 1, 1),
(1, 0, 1),
(1, 0, 1),
(0, 1, 1),
(1, 0, 1),
(0, 1, 1),
(0, 1, 1),
(1, 1, 0),
(1, 1, 0),
(1, 1, 0),
(1, 0, 0),
(0, 0, 1),
(1, 0, 0),
(0, 0, 1),
(1, 0, 1),
(1, 1, 0),
(1, 1, 1),
(0, 1, 1),
(0, 1, 0),
(1, 1, 1),
];
const EXPS2: [(usize, usize); 62] = [
(1, 0),
(1, 1),
(0, 0),
(1, 0),
(1, 0),
(1, 1),
(1, 0),
(1, 1),
(1, 0),
(0, 1),
(0, 1),
(1, 1),
(1, 1),
(0, 0),
(1, 1),
(0, 0),
(0, 0),
(0, 1),
(0, 1),
(1, 1),
(1, 1),
(1, 1),
(0, 1),
(1, 1),
(0, 0),
(1, 1),
(1, 0),
(1, 1),
(0, 0),
(1, 1),
(1, 1),
(1, 0),
(0, 0),
(0, 1),
(0, 0),
(1, 1),
(0, 1),
(0, 0),
(1, 0),
(0, 1),
(0, 1),
(1, 0),
(0, 1),
(0, 0),
(0, 0),
(0, 0),
(0, 1),
(1, 0),
(1, 1),
(0, 1),
(1, 1),
(1, 0),
(0, 1),
(0, 0),
(1, 0),
(0, 1),
(1, 0),
(1, 1),
(1, 0),
(1, 1),
(0, 1),
(1, 1),
];
const EXPS0: [usize; 65] = [
0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0,
1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1,
0,
];