Implement logUp

This commit is contained in:
wborgeaud 2023-02-13 15:58:26 +01:00 committed by Linda Guiga
parent 0b5ac312c0
commit f65ad58a08
No known key found for this signature in database
21 changed files with 848 additions and 953 deletions

View File

@ -51,27 +51,15 @@ impl<F: RichField + Extendable<D>, const D: usize> Default for AllStark<F, D> {
}
impl<F: RichField + Extendable<D>, const D: usize> AllStark<F, D> {
pub(crate) fn nums_permutation_zs(&self, config: &StarkConfig) -> [usize; NUM_TABLES] {
pub(crate) fn num_lookups_helper_columns(&self, config: &StarkConfig) -> [usize; NUM_TABLES] {
[
self.arithmetic_stark.num_permutation_batches(config),
self.byte_packing_stark.num_permutation_batches(config),
self.cpu_stark.num_permutation_batches(config),
self.keccak_stark.num_permutation_batches(config),
self.keccak_sponge_stark.num_permutation_batches(config),
self.logic_stark.num_permutation_batches(config),
self.memory_stark.num_permutation_batches(config),
]
}
pub(crate) fn permutation_batch_sizes(&self) -> [usize; NUM_TABLES] {
[
self.arithmetic_stark.permutation_batch_size(),
self.byte_packing_stark.permutation_batch_size(),
self.cpu_stark.permutation_batch_size(),
self.keccak_stark.permutation_batch_size(),
self.keccak_sponge_stark.permutation_batch_size(),
self.logic_stark.permutation_batch_size(),
self.memory_stark.permutation_batch_size(),
self.arithmetic_stark.num_lookup_helper_columns(config),
self.byte_packing_stark.num_lookup_helper_columns(config),
self.cpu_stark.num_lookup_helper_columns(config),
self.keccak_stark.num_lookup_helper_columns(config),
self.keccak_sponge_stark.num_lookup_helper_columns(config),
self.logic_stark.num_lookup_helper_columns(config),
self.memory_stark.num_lookup_helper_columns(config),
]
}
}

View File

@ -12,11 +12,11 @@ use plonky2::util::transpose;
use static_assertions::const_assert;
use crate::all_stark::Table;
use crate::arithmetic::columns::{RANGE_COUNTER, RC_FREQUENCIES, SHARED_COLS};
use crate::arithmetic::{addcy, byte, columns, divmod, modular, mul, Operation};
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::cross_table_lookup::{Column, TableWithColumns};
use crate::lookup::{eval_lookups, eval_lookups_circuit, permuted_cols};
use crate::permutation::PermutationPair;
use crate::lookup::Lookup;
use crate::stark::Stark;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
@ -122,13 +122,12 @@ impl<F: RichField, const D: usize> ArithmeticStark<F, D> {
cols[columns::RANGE_COUNTER][i] = F::from_canonical_usize(RANGE_MAX - 1);
}
// For each column c in cols, generate the range-check
// permutations and put them in the corresponding range-check
// columns rc_c and rc_c+1.
for (c, rc_c) in columns::SHARED_COLS.zip(columns::RC_COLS.step_by(2)) {
let (col_perm, table_perm) = permuted_cols(&cols[c], &cols[columns::RANGE_COUNTER]);
cols[rc_c].copy_from_slice(&col_perm);
cols[rc_c + 1].copy_from_slice(&table_perm);
// Generate the frequencies column.
for col in SHARED_COLS {
for i in 0..n_rows {
let x = cols[col][i].to_canonical_u64() as usize;
cols[RC_FREQUENCIES][x] += F::ONE;
}
}
}
@ -178,11 +177,6 @@ impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for ArithmeticSta
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
// Range check all the columns
for col in columns::RC_COLS.step_by(2) {
eval_lookups(vars, yield_constr, col, col + 1);
}
let lv = vars.local_values;
let nv = vars.next_values;
@ -210,11 +204,6 @@ impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for ArithmeticSta
vars: StarkEvaluationTargets<D, { Self::COLUMNS }>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
// Range check all the columns
for col in columns::RC_COLS.step_by(2) {
eval_lookups_circuit(builder, vars, yield_constr, col, col + 1);
}
let lv = vars.local_values;
let nv = vars.next_values;
@ -240,18 +229,12 @@ impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for ArithmeticSta
3
}
fn permutation_pairs(&self) -> Vec<PermutationPair> {
const START: usize = columns::START_SHARED_COLS;
const END: usize = START + columns::NUM_SHARED_COLS;
let mut pairs = Vec::with_capacity(2 * columns::NUM_SHARED_COLS);
for (c, c_perm) in (START..END).zip_eq(columns::RC_COLS.step_by(2)) {
pairs.push(PermutationPair::singletons(c, c_perm));
pairs.push(PermutationPair::singletons(
c_perm + 1,
columns::RANGE_COUNTER,
));
}
pairs
fn lookups(&self) -> Vec<Lookup> {
vec![Lookup {
columns: SHARED_COLS.collect(),
table_column: RANGE_COUNTER,
frequencies_column: RC_FREQUENCIES,
}]
}
}

View File

@ -109,8 +109,7 @@ pub(crate) const MODULAR_DIV_DENOM_IS_ZERO: usize = AUX_REGISTER_2.end;
// of the column and the permutation of the range. The two
// permutations associated to column i will be in columns RC_COLS[2i]
// and RC_COLS[2i+1].
pub(crate) const NUM_RANGE_CHECK_COLS: usize = 1 + 2 * NUM_SHARED_COLS;
pub(crate) const RANGE_COUNTER: usize = START_SHARED_COLS + NUM_SHARED_COLS;
pub(crate) const RC_COLS: Range<usize> = RANGE_COUNTER + 1..RANGE_COUNTER + 1 + 2 * NUM_SHARED_COLS;
pub(crate) const RC_FREQUENCIES: usize = RANGE_COUNTER + 1;
pub const NUM_ARITH_COLUMNS: usize = START_SHARED_COLS + NUM_SHARED_COLS + NUM_RANGE_CHECK_COLS;
pub const NUM_ARITH_COLUMNS: usize = START_SHARED_COLS + NUM_SHARED_COLS + 2;

View File

@ -0,0 +1,97 @@
// Inspired by https://github.com/AztecProtocol/weierstrudel/blob/master/huff_modules/endomorphism.huff
// See also Sage code in evm/src/cpu/kernel/tests/ecc/bn_glv_test_data
// Given scalar `k ∈ Bn254::ScalarField`, return `u, k1, k2` with `k1,k2 < 2^127` and such that
// `k = k1 - s*k2` if `u==0` otherwise `k = k1 + s*k2`, where `s` is the scalar value representing the endomorphism.
// In the comments below, N means @BN_SCALAR
//
// Z3 proof that the resulting `k1, k2` satisfy `k1>0`, `k1 < 2^127` and `|k2| < 2^127`.
// ```python
// from z3 import Solver, Int, Or, unsat
// q = 0x30644E72E131A029B85045B68181585D2833E84879B9709143E1F593F0000001
// glv_s = 0xB3C4D79D41A917585BFC41088D8DAAA78B17EA66B99C90DD
//
// b2 = 0x89D3256894D213E3
// b1 = -0x6F4D8248EEB859FC8211BBEB7D4F1128
//
// g1 = 0x24CCEF014A773D2CF7A7BD9D4391EB18D
// g2 = 0x2D91D232EC7E0B3D7
// k = Int("k")
// c1 = Int("c1")
// c2 = Int("c2")
// s = Solver()
//
// c2p = -c2
// s.add(k < q)
// s.add(0 < k)
// s.add(c1 * (2**256) <= g2 * k)
// s.add((c1 + 1) * (2**256) > g2 * k)
// s.add(c2p * (2**256) <= g1 * k)
// s.add((c2p + 1) * (2**256) > g1 * k)
//
// q1 = c1 * b1
// q2 = c2 * b2
//
// k2 = q2 - q1
// k2L = (glv_s * k2) % q
// k1 = k - k2L
// k2 = -k2
//
// s.add(Or((k2 >= 2**127), (-k2 >= 2**127), (k1 >= 2**127), (k1 < 0)))
//
// assert s.check() == unsat
// ```
global bn_glv_decompose:
// stack: k, retdest
PUSH @BN_SCALAR DUP1 DUP1
// Compute c2 which is the top 256 bits of k*g1. Use asm from https://medium.com/wicketh/mathemagic-full-multiply-27650fec525d.
PUSH @U256_MAX
// stack: -1, N, N, N, k, retdest
PUSH @BN_GLV_MINUS_G1 DUP6
// stack: k, g1, -1, N, N, N, k, retdest
MULMOD
// stack: (k * g1 % -1), N, N, N, k, retdest
PUSH @BN_GLV_MINUS_G1 DUP6
// stack: k, g1, (k * g1 % -1), N, N, N, k, retdest
MUL
// stack: bottom = (k * g1), (k * g1 % -1), N, N, N, k, retdest
DUP1 DUP3
// stack: (k * g1 % -1), bottom, bottom, (k * g1 % -1), N, N, N, k, retdest
LT SWAP2 SUB SUB
// stack: c2, N, N, N, k, retdest
PUSH @BN_GLV_B2 MULMOD
// stack: q2=c2*b2, N, N, k, retdest
// Use the same trick to compute c1 = top 256 bits of g2*k.
PUSH @BN_SCALAR PUSH @U256_MAX
PUSH @BN_GLV_G2 DUP7 MULMOD
PUSH @BN_GLV_G2 DUP7 MUL
DUP1 DUP3 LT
SWAP2 SUB SUB
// stack: c1, N, q2, N, N, k, retdest
PUSH @BN_GLV_B1 MULMOD
// stack: q1, q2, N, N, k, retdest
// We compute k2 = q1 + q2 - N, but we check for underflow and return N-q1-q2 instead if there is one,
// along with a flag `underflow` set to 1 if there is an underflow, 0 otherwise.
ADD %sub_check_underflow
// stack: k2, underflow, N, k, retdest
SWAP3 PUSH @BN_SCALAR DUP5 PUSH @BN_GLV_S
// stack: s, k2, N, k, underflow, N, k2, retdest
MULMOD
// stack: s*k2, k, underflow, N, k2, retdest
// Need to return `k + s*k2` if no underflow occur, otherwise return `k - s*k2` which is done in the `underflowed` fn.
SWAP2 DUP1 %jumpi(underflowed)
%stack (underflow, k, x, N, k2) -> (k, x, N, k2, underflow)
ADDMOD
%stack (k1, k2, underflow, retdest) -> (retdest, underflow, k1, k2)
JUMP
underflowed:
// stack: underflow, k, s*k2, N, k2
// Compute (k-s*k2)%N. TODO: Use SUBMOD here when ready
%stack (u, k, x, N, k2) -> (N, x, k, N, k2, u)
SUB ADDMOD
%stack (k1, k2, underflow, retdest) -> (retdest, underflow, k1, k2)
JUMP

View File

@ -0,0 +1,73 @@
// Computes the multiplication `a*G` using a standard MSM with the GLV decomposition of `a`.
// see there for a detailed description.
global bn_msm:
// stack: retdest
PUSH 0 PUSH 0 PUSH 0
global bn_msm_loop:
// stack: accx, accy, i, retdest
DUP3 %bn_mload_wnaf_a
// stack: w, accx, accy, i, retdest
DUP1 %jumpi(bn_msm_loop_add_a_nonzero)
POP
msm_loop_add_b:
//stack: accx, accy, i, retdest
DUP3 %bn_mload_wnaf_b
// stack: w, accx, accy, i, retdest
DUP1 %jumpi(bn_msm_loop_add_b_nonzero)
POP
msm_loop_contd:
%stack (accx, accy, i, retdest) -> (i, i, accx, accy, retdest)
// TODO: the GLV scalars for the BN curve are 127-bit, so could use 127 here. But this would require modifying `wnaf.asm`. Not sure it's worth it...
%eq_const(129) %jumpi(msm_end)
%increment
//stack: i+1, accx, accy, retdest
%stack (i, accx, accy, retdest) -> (accx, accy, bn_msm_loop, i, retdest)
%jump(bn_double)
msm_end:
%stack (i, accx, accy, retdest) -> (retdest, accx, accy)
JUMP
bn_msm_loop_add_a_nonzero:
%stack (w, accx, accy, i, retdest) -> (w, accx, accy, msm_loop_add_b, i, retdest)
%bn_mload_point_a
// stack: px, py, accx, accy, msm_loop_add_b, i, retdest
%jump(bn_add_valid_points)
bn_msm_loop_add_b_nonzero:
%stack (w, accx, accy, i, retdest) -> (w, accx, accy, msm_loop_contd, i, retdest)
%bn_mload_point_b
// stack: px, py, accx, accy, msm_loop_contd, i, retdest
%jump(bn_add_valid_points)
%macro bn_mload_wnaf_a
// stack: i
%mload_kernel(@SEGMENT_KERNEL_BN_WNAF_A)
%endmacro
%macro bn_mload_wnaf_b
// stack: i
%mload_kernel(@SEGMENT_KERNEL_BN_WNAF_B)
%endmacro
%macro bn_mload_point_a
// stack: w
DUP1
%mload_kernel(@SEGMENT_KERNEL_BN_TABLE_Q)
//stack: Gy, w
SWAP1 %decrement %mload_kernel(@SEGMENT_KERNEL_BN_TABLE_Q)
//stack: Gx, Gy
%endmacro
%macro bn_mload_point_b
// stack: w
DUP1
%mload_kernel(@SEGMENT_KERNEL_BN_TABLE_Q)
PUSH @BN_BNEG_LOC %mload_kernel(@SEGMENT_KERNEL_BN_TABLE_Q)
%stack (bneg, Gy, w) -> (@BN_BASE, Gy, bneg, bneg, Gy, w)
SUB SWAP1 ISZERO MUL SWAP2 MUL ADD
SWAP1 %decrement %mload_kernel(@SEGMENT_KERNEL_BN_TABLE_Q)
//stack: Gx, Gy
PUSH @BN_GLV_BETA
MULFP254
%endmacro

View File

@ -0,0 +1,35 @@
// Precompute a table of multiples of the BN254 point `Q = (Qx, Qy)`.
// Let `(Qxi, Qyi) = i * Q`, then store in the `SEGMENT_KERNEL_BN_TABLE_Q` segment of memory the values
// `i-1 => Qxi`, `i => Qyi if i < 16 else -Qy(32-i)` for `i in range(1, 32, 2)`.
global bn_precompute_table:
// stack: Qx, Qy, retdest
PUSH precompute_table_contd DUP3 DUP3
%jump(bn_double)
precompute_table_contd:
// stack: Qx2, Qy2, Qx, Qy, retdest
PUSH 1
bn_precompute_table_loop:
// stack i, Qx2, Qy2, Qx, Qy, retdest
PUSH 1 DUP2 SUB
%stack (im, i, Qx2, Qy2, Qx, Qy, retdest) -> (i, Qy, im, Qx, i, Qx2, Qy2, Qx, Qy, retdest)
%mstore_kernel(@SEGMENT_KERNEL_BN_TABLE_Q) %mstore_kernel(@SEGMENT_KERNEL_BN_TABLE_Q)
// stack: i, Qx2, Qy2, Qx, Qy, retdest
DUP1 PUSH 32 SUB PUSH 1 DUP2 SUB
// stack: 31-i, 32-i, i, Qx2, Qy2, Qx, Qy, retdest
DUP7 PUSH @BN_BASE SUB
// TODO: Could maybe avoid storing Qx a second time here, not sure if it would be more efficient.
%stack (Qyy, iii, ii, i, Qx2, Qy2, Qx, Qy, retdest) -> (iii, Qx, ii, Qyy, i, Qx2, Qy2, Qx, Qy, retdest)
%mstore_kernel(@SEGMENT_KERNEL_BN_TABLE_Q) %mstore_kernel(@SEGMENT_KERNEL_BN_TABLE_Q)
// stack: i, Qx2, Qy2, Qx, Qy, retdest
PUSH 2 ADD
// stack: i+2, Qx2, Qy2, Qx, Qy, retdest
DUP1 PUSH 16 LT %jumpi(precompute_table_end)
%stack (i, Qx2, Qy2, Qx, Qy, retdest) -> (Qx, Qy, Qx2, Qy2, precompute_table_loop_contd, i, Qx2, Qy2, retdest)
%jump(bn_add_valid_points)
precompute_table_loop_contd:
%stack (Qx, Qy, i, Qx2, Qy2, retdest) -> (i, Qx2, Qy2, Qx, Qy, retdest)
%jump(bn_precompute_table_loop)
precompute_table_end:
// stack: i, Qx2, Qy2, Qx, Qy, retdest
%pop5 JUMP

View File

@ -1,4 +1,5 @@
use std::borrow::Borrow;
use std::fmt::Debug;
use std::iter::repeat;
use anyhow::{ensure, Result};
@ -8,15 +9,19 @@ use plonky2::field::packed::PackedField;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::challenger::{Challenger, RecursiveChallenger};
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::iop::target::Target;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::config::GenericConfig;
use plonky2::plonk::config::{AlgebraicHasher, GenericConfig, Hasher};
use plonky2::plonk::plonk_common::{
reduce_with_powers, reduce_with_powers_circuit, reduce_with_powers_ext_circuit,
};
use plonky2::util::serialization::{Buffer, IoResult, Read, Write};
use crate::all_stark::{Table, NUM_TABLES};
use crate::config::StarkConfig;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::permutation::{GrandProductChallenge, GrandProductChallengeSet};
use crate::proof::{StarkProofTarget, StarkProofWithMetadata};
use crate::stark::Stark;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
@ -217,6 +222,128 @@ impl<F: Field> CtlData<F> {
}
}
/// Randomness for a single instance of a permutation check protocol.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub(crate) struct GrandProductChallenge<T: Copy + Eq + PartialEq + Debug> {
/// Randomness used to combine multiple columns into one.
pub(crate) beta: T,
/// Random offset that's added to the beta-reduced column values.
pub(crate) gamma: T,
}
impl<F: Field> GrandProductChallenge<F> {
pub(crate) fn combine<'a, FE, P, T: IntoIterator<Item = &'a P>, const D2: usize>(
&self,
terms: T,
) -> P
where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
T::IntoIter: DoubleEndedIterator,
{
reduce_with_powers(terms, FE::from_basefield(self.beta)) + FE::from_basefield(self.gamma)
}
}
impl GrandProductChallenge<Target> {
pub(crate) fn combine_circuit<F: RichField + Extendable<D>, const D: usize>(
&self,
builder: &mut CircuitBuilder<F, D>,
terms: &[ExtensionTarget<D>],
) -> ExtensionTarget<D> {
let reduced = reduce_with_powers_ext_circuit(builder, terms, self.beta);
let gamma = builder.convert_to_ext(self.gamma);
builder.add_extension(reduced, gamma)
}
}
impl GrandProductChallenge<Target> {
pub(crate) fn combine_base_circuit<F: RichField + Extendable<D>, const D: usize>(
&self,
builder: &mut CircuitBuilder<F, D>,
terms: &[Target],
) -> Target {
let reduced = reduce_with_powers_circuit(builder, terms, self.beta);
builder.add(reduced, self.gamma)
}
}
/// Like `PermutationChallenge`, but with `num_challenges` copies to boost soundness.
#[derive(Clone, Eq, PartialEq, Debug)]
pub(crate) struct GrandProductChallengeSet<T: Copy + Eq + PartialEq + Debug> {
pub(crate) challenges: Vec<GrandProductChallenge<T>>,
}
impl GrandProductChallengeSet<Target> {
pub fn to_buffer(&self, buffer: &mut Vec<u8>) -> IoResult<()> {
buffer.write_usize(self.challenges.len())?;
for challenge in &self.challenges {
buffer.write_target(challenge.beta)?;
buffer.write_target(challenge.gamma)?;
}
Ok(())
}
pub fn from_buffer(buffer: &mut Buffer) -> IoResult<Self> {
let length = buffer.read_usize()?;
let mut challenges = Vec::with_capacity(length);
for _ in 0..length {
challenges.push(GrandProductChallenge {
beta: buffer.read_target()?,
gamma: buffer.read_target()?,
});
}
Ok(GrandProductChallengeSet { challenges })
}
}
fn get_grand_product_challenge<F: RichField, H: Hasher<F>>(
challenger: &mut Challenger<F, H>,
) -> GrandProductChallenge<F> {
let beta = challenger.get_challenge();
let gamma = challenger.get_challenge();
GrandProductChallenge { beta, gamma }
}
pub(crate) fn get_grand_product_challenge_set<F: RichField, H: Hasher<F>>(
challenger: &mut Challenger<F, H>,
num_challenges: usize,
) -> GrandProductChallengeSet<F> {
let challenges = (0..num_challenges)
.map(|_| get_grand_product_challenge(challenger))
.collect();
GrandProductChallengeSet { challenges }
}
fn get_grand_product_challenge_target<
F: RichField + Extendable<D>,
H: AlgebraicHasher<F>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
challenger: &mut RecursiveChallenger<F, H, D>,
) -> GrandProductChallenge<Target> {
let beta = challenger.get_challenge(builder);
let gamma = challenger.get_challenge(builder);
GrandProductChallenge { beta, gamma }
}
pub(crate) fn get_grand_product_challenge_set_target<
F: RichField + Extendable<D>,
H: AlgebraicHasher<F>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
challenger: &mut RecursiveChallenger<F, H, D>,
num_challenges: usize,
) -> GrandProductChallengeSet<Target> {
let challenges = (0..num_challenges)
.map(|_| get_grand_product_challenge_target(builder, challenger))
.collect();
GrandProductChallengeSet { challenges }
}
pub(crate) fn cross_table_lookup_data<F: RichField, const D: usize>(
trace_poly_values: &[Vec<PolynomialValues<F>>; NUM_TABLES],
cross_table_lookups: &[CrossTableLookup<F>],
@ -317,15 +444,15 @@ impl<'a, F: RichField + Extendable<D>, const D: usize>
proofs: &[StarkProofWithMetadata<F, C, D>; NUM_TABLES],
cross_table_lookups: &'a [CrossTableLookup<F>],
ctl_challenges: &'a GrandProductChallengeSet<F>,
num_permutation_zs: &[usize; NUM_TABLES],
num_lookup_columns: &[usize; NUM_TABLES],
) -> [Vec<Self>; NUM_TABLES] {
let mut ctl_zs = proofs
.iter()
.zip(num_permutation_zs)
.map(|(p, &num_perms)| {
.zip(num_lookup_columns)
.map(|(p, &num_lookup)| {
let openings = &p.proof.openings;
let ctl_zs = openings.permutation_ctl_zs.iter().skip(num_perms);
let ctl_zs_next = openings.permutation_ctl_zs_next.iter().skip(num_perms);
let ctl_zs = openings.auxiliary_polys.iter().skip(num_lookup);
let ctl_zs_next = openings.auxiliary_polys_next.iter().skip(num_lookup);
ctl_zs.zip(ctl_zs_next)
})
.collect::<Vec<_>>();
@ -419,15 +546,15 @@ impl<'a, F: Field, const D: usize> CtlCheckVarsTarget<'a, F, D> {
proof: &StarkProofTarget<D>,
cross_table_lookups: &'a [CrossTableLookup<F>],
ctl_challenges: &'a GrandProductChallengeSet<Target>,
num_permutation_zs: usize,
num_lookup_columns: usize,
) -> Vec<Self> {
let mut ctl_zs = {
let openings = &proof.openings;
let ctl_zs = openings.permutation_ctl_zs.iter().skip(num_permutation_zs);
let ctl_zs = openings.auxiliary_polys.iter().skip(num_lookup_columns);
let ctl_zs_next = openings
.permutation_ctl_zs_next
.auxiliary_polys_next
.iter()
.skip(num_permutation_zs);
.skip(num_lookup_columns);
ctl_zs.zip(ctl_zs_next)
};

View File

@ -32,14 +32,16 @@ use crate::arithmetic::arithmetic_stark::ArithmeticStark;
use crate::byte_packing::byte_packing_stark::BytePackingStark;
use crate::config::StarkConfig;
use crate::cpu::cpu_stark::CpuStark;
use crate::cross_table_lookup::{verify_cross_table_lookups_circuit, CrossTableLookup};
use crate::cross_table_lookup::{
get_grand_product_challenge_set_target, verify_cross_table_lookups_circuit, CrossTableLookup,
GrandProductChallengeSet,
};
use crate::generation::GenerationInputs;
use crate::get_challenges::observe_public_values_target;
use crate::keccak::keccak_stark::KeccakStark;
use crate::keccak_sponge::keccak_sponge_stark::KeccakSpongeStark;
use crate::logic::LogicStark;
use crate::memory::memory_stark::MemoryStark;
use crate::permutation::{get_grand_product_challenge_set_target, GrandProductChallengeSet};
use crate::proof::{
BlockHashesTarget, BlockMetadataTarget, ExtraBlockDataTarget, PublicValues, PublicValuesTarget,
StarkProofWithMetadata, TrieRootsTarget,

View File

@ -8,10 +8,7 @@ use plonky2::plonk::config::{AlgebraicHasher, GenericConfig};
use crate::all_stark::{AllStark, NUM_TABLES};
use crate::config::StarkConfig;
use crate::permutation::{
get_grand_product_challenge_set, get_n_grand_product_challenge_sets,
get_n_grand_product_challenge_sets_target,
};
use crate::cross_table_lookup::get_grand_product_challenge_set;
use crate::proof::*;
use crate::util::{h256_limbs, u256_limbs};
@ -224,18 +221,14 @@ impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize> A
let ctl_challenges =
get_grand_product_challenge_set(&mut challenger, config.num_challenges);
let num_permutation_zs = all_stark.nums_permutation_zs(config);
let num_permutation_batch_sizes = all_stark.permutation_batch_sizes();
let lookups = all_stark.num_lookups_helper_columns(config);
AllProofChallenges {
stark_challenges: core::array::from_fn(|i| {
challenger.compact();
self.stark_proofs[i].proof.get_challenges(
&mut challenger,
num_permutation_zs[i] > 0,
num_permutation_batch_sizes[i],
config,
)
self.stark_proofs[i]
.proof
.get_challenges(&mut challenger, lookups[i] > 0, config)
}),
ctl_challenges,
}
@ -258,17 +251,13 @@ impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize> A
let ctl_challenges =
get_grand_product_challenge_set(&mut challenger, config.num_challenges);
let num_permutation_zs = all_stark.nums_permutation_zs(config);
let num_permutation_batch_sizes = all_stark.permutation_batch_sizes();
let lookups = all_stark.num_lookups_helper_columns(config);
let mut challenger_states = vec![challenger.compact()];
for i in 0..NUM_TABLES {
self.stark_proofs[i].proof.get_challenges(
&mut challenger,
num_permutation_zs[i] > 0,
num_permutation_batch_sizes[i],
config,
);
self.stark_proofs[i]
.proof
.get_challenges(&mut challenger, lookups[i] > 0, config);
challenger_states.push(challenger.compact());
}
@ -288,14 +277,13 @@ where
pub(crate) fn get_challenges(
&self,
challenger: &mut Challenger<F, C::Hasher>,
stark_use_permutation: bool,
stark_permutation_batch_size: usize,
stark_use_lookup: bool,
config: &StarkConfig,
) -> StarkProofChallenges<F, D> {
let degree_bits = self.recover_degree_bits(config);
let StarkProof {
permutation_ctl_zs_cap,
auxiliary_polys_cap,
quotient_polys_cap,
openings,
opening_proof:
@ -310,15 +298,10 @@ where
let num_challenges = config.num_challenges;
let permutation_challenge_sets = stark_use_permutation.then(|| {
get_n_grand_product_challenge_sets(
challenger,
num_challenges,
stark_permutation_batch_size,
)
});
let lookup_challenges =
stark_use_lookup.then(|| challenger.get_n_challenges(config.num_challenges));
challenger.observe_cap(permutation_ctl_zs_cap);
challenger.observe_cap(auxiliary_polys_cap);
let stark_alphas = challenger.get_n_challenges(num_challenges);
@ -328,7 +311,7 @@ where
challenger.observe_openings(&openings.to_fri_openings());
StarkProofChallenges {
permutation_challenge_sets,
lookup_challenges,
stark_alphas,
stark_zeta,
fri_challenges: challenger.fri_challenges::<C, D>(
@ -347,15 +330,14 @@ impl<const D: usize> StarkProofTarget<D> {
&self,
builder: &mut CircuitBuilder<F, D>,
challenger: &mut RecursiveChallenger<F, C::Hasher, D>,
stark_use_permutation: bool,
stark_permutation_batch_size: usize,
stark_use_lookup: bool,
config: &StarkConfig,
) -> StarkProofChallengesTarget<D>
where
C::Hasher: AlgebraicHasher<F>,
{
let StarkProofTarget {
permutation_ctl_zs_cap,
auxiliary_polys_cap: auxiliary_polys,
quotient_polys_cap,
openings,
opening_proof:
@ -370,16 +352,10 @@ impl<const D: usize> StarkProofTarget<D> {
let num_challenges = config.num_challenges;
let permutation_challenge_sets = stark_use_permutation.then(|| {
get_n_grand_product_challenge_sets_target(
builder,
challenger,
num_challenges,
stark_permutation_batch_size,
)
});
let lookup_challenges =
stark_use_lookup.then(|| challenger.get_n_challenges(builder, num_challenges));
challenger.observe_cap(permutation_ctl_zs_cap);
challenger.observe_cap(auxiliary_polys);
let stark_alphas = challenger.get_n_challenges(builder, num_challenges);
@ -389,7 +365,7 @@ impl<const D: usize> StarkProofTarget<D> {
challenger.observe_openings(&openings.to_fri_openings(builder.zero()));
StarkProofChallengesTarget {
permutation_challenge_sets,
lookup_challenges,
stark_alphas,
stark_zeta,
fri_challenges: challenger.fri_challenges(

View File

@ -650,10 +650,9 @@ mod tests {
use tiny_keccak::keccakf;
use crate::config::StarkConfig;
use crate::cross_table_lookup::{CtlData, CtlZData};
use crate::cross_table_lookup::{CtlData, CtlZData, GrandProductChallenge};
use crate::keccak::columns::reg_output_limb;
use crate::keccak::keccak_stark::{KeccakStark, NUM_INPUTS, NUM_ROUNDS};
use crate::permutation::GrandProductChallenge;
use crate::prover::prove_single_table;
use crate::stark_testing::{test_stark_circuit_constraints, test_stark_low_degree};

View File

@ -23,7 +23,6 @@ pub mod keccak_sponge;
pub mod logic;
pub mod lookup;
pub mod memory;
pub mod permutation;
pub mod proof;
pub mod prover;
pub mod recursive_verifier;

View File

@ -1,127 +1,248 @@
use std::cmp::Ordering;
use itertools::Itertools;
use plonky2::field::extension::Extendable;
use plonky2::field::batch_util::batch_add_inplace;
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::field::types::{Field, PrimeField64};
use plonky2::field::polynomial::PolynomialValues;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::iop::target::Target;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2_util::ceil_div_usize;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::stark::Stark;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
pub(crate) fn eval_lookups<F: Field, P: PackedField<Scalar = F>, const COLS: usize>(
vars: StarkEvaluationVars<F, P, COLS>,
pub struct Lookup {
/// Columns whose values should be contained in the lookup table.
/// These are the f_i(x) polynomials in the logUp paper.
pub(crate) columns: Vec<usize>,
/// Column containing the lookup table.
/// This is the t(x) polynomial in the paper.
pub(crate) table_column: usize,
/// Column containing the frequencies of `columns` in `table_column`.
/// This is the m(x) polynomial in the paper.
pub(crate) frequencies_column: usize,
}
impl Lookup {
pub(crate) fn num_helper_columns(&self, constraint_degree: usize) -> usize {
// One helper column for each column batch of size `constraint_degree-1`,
// then one column for the inverse of `table + challenge` and one for the `Z` polynomial.
ceil_div_usize(self.columns.len(), constraint_degree - 1) + 2
}
}
/// logUp protocol from https://ia.cr/2022/1530 (TODO link to newer version?)
/// Compute the helper columns for the lookup argument.
/// Given columns `f0,...,fk` and a column `t`, such that `fi ⊆ t`, and challenges `x`,
/// this computes the helper columns `h_i = 1/(x+f_2i) + 1/(x+f_2i+1)`, `g = 1/(x+t)`,
/// and `Z(gx) = Z(x) + sum h_i(x) - m(x)g(x)` where `m` is the frequencies column.
pub(crate) fn lookup_helper_columns<F: Field>(
lookup: &Lookup,
trace_poly_values: &[PolynomialValues<F>],
challenge: F,
constraint_degree: usize,
) -> Vec<PolynomialValues<F>> {
assert_eq!(
constraint_degree, 3,
"TODO: Allow other constraint degrees."
);
let num_helper_columns = lookup.num_helper_columns(constraint_degree);
let mut helper_columns: Vec<PolynomialValues<F>> = Vec::with_capacity(num_helper_columns);
// For each batch of `constraint_degree-1` columns `fi`, compute `sum 1/(f_i+challenge)` and
// add it to the helper columns.
// TODO: This does one batch inversion per column. It would also be possible to do one batch inversion
// for every column, but that would require building a big vector of all the columns concatenated.
// Not sure which approach is better.
// Note: these are the h_k(x) polynomials in the paper, with a few differences:
// * Here, the first ratio m_0(x)/phi_0(x) is not included with the columns batched up to create the
// h_k polynomials; instead there's a separate helper column for it (see below).
// * Here, we use 1 instead of -1 as the numerator (and subtract later).
// * Here, for now, the batch size (l) is always constraint_degree - 1 = 2.
for mut col_inds in &lookup.columns.iter().chunks(constraint_degree - 1) {
let first = *col_inds.next().unwrap();
// TODO: The clone could probably be avoided by using a modified version of `batch_multiplicative_inverse`
// taking `challenge` as an additional argument.
let mut column = trace_poly_values[first].values.clone();
for x in column.iter_mut() {
*x = challenge + *x;
}
let mut acc = F::batch_multiplicative_inverse(&column);
for &ind in col_inds {
let mut column = trace_poly_values[ind].values.clone();
for x in column.iter_mut() {
*x = challenge + *x;
}
column = F::batch_multiplicative_inverse(&column);
batch_add_inplace(&mut acc, &column);
}
helper_columns.push(acc.into());
}
// Add `1/(table+challenge)` to the helper columns.
// This is 1/phi_0(x) = 1/(x + t(x)) from the paper.
// Here, we don't include m(x) in the numerator, instead multiplying it with this column later.
let mut table = trace_poly_values[lookup.table_column].values.clone();
for x in table.iter_mut() {
*x = challenge + *x;
}
helper_columns.push(F::batch_multiplicative_inverse(&table).into());
// Compute the `Z` polynomial with `Z(1)=0` and `Z(gx) = Z(x) + sum h_i(x) - frequencies(x)g(x)`.
// This enforces the check from the paper, that the sum of the h_k(x) polynomials is 0 over H.
// In the paper, that sum includes m(x)/(x + t(x)) = frequencies(x)/g(x), because that was bundled
// into the h_k(x) polynomials.
let frequencies = &trace_poly_values[lookup.frequencies_column].values;
let mut z = Vec::with_capacity(frequencies.len());
z.push(F::ZERO);
for i in 0..frequencies.len() - 1 {
let x = helper_columns[..num_helper_columns - 2]
.iter()
.map(|col| col.values[i])
.sum::<F>()
- frequencies[i] * helper_columns[num_helper_columns - 2].values[i];
z.push(z[i] + x);
}
helper_columns.push(z.into());
helper_columns
}
pub struct LookupCheckVars<F, FE, P, const D2: usize>
where
F: Field,
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
pub(crate) local_values: Vec<P>,
pub(crate) next_values: Vec<P>,
pub(crate) challenges: Vec<F>,
}
/// Constraints for the logUp lookup argument.
pub(crate) fn eval_lookups_checks<F, FE, P, S, const D: usize, const D2: usize>(
stark: &S,
lookups: &[Lookup],
vars: StarkEvaluationVars<FE, P, { S::COLUMNS }>,
lookup_vars: LookupCheckVars<F, FE, P, D2>,
yield_constr: &mut ConstraintConsumer<P>,
col_permuted_input: usize,
col_permuted_table: usize,
) {
let local_perm_input = vars.local_values[col_permuted_input];
let next_perm_table = vars.next_values[col_permuted_table];
let next_perm_input = vars.next_values[col_permuted_input];
// A "vertical" diff between the local and next permuted inputs.
let diff_input_prev = next_perm_input - local_perm_input;
// A "horizontal" diff between the next permuted input and permuted table value.
let diff_input_table = next_perm_input - next_perm_table;
yield_constr.constraint(diff_input_prev * diff_input_table);
// This is actually constraining the first row, as per the spec, since `diff_input_table`
// is a diff of the next row's values. In the context of `constraint_last_row`, the next
// row is the first row.
yield_constr.constraint_last_row(diff_input_table);
}
pub(crate) fn eval_lookups_circuit<
) where
F: RichField + Extendable<D>,
const D: usize,
const COLS: usize,
>(
builder: &mut CircuitBuilder<F, D>,
vars: StarkEvaluationTargets<D, COLS>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
col_permuted_input: usize,
col_permuted_table: usize,
) {
let local_perm_input = vars.local_values[col_permuted_input];
let next_perm_table = vars.next_values[col_permuted_table];
let next_perm_input = vars.next_values[col_permuted_input];
// A "vertical" diff between the local and next permuted inputs.
let diff_input_prev = builder.sub_extension(next_perm_input, local_perm_input);
// A "horizontal" diff between the next permuted input and permuted table value.
let diff_input_table = builder.sub_extension(next_perm_input, next_perm_table);
let diff_product = builder.mul_extension(diff_input_prev, diff_input_table);
yield_constr.constraint(builder, diff_product);
// This is actually constraining the first row, as per the spec, since `diff_input_table`
// is a diff of the next row's values. In the context of `constraint_last_row`, the next
// row is the first row.
yield_constr.constraint_last_row(builder, diff_input_table);
}
/// Given an input column and a table column, generate the permuted input and permuted table columns
/// used in the Halo2 permutation argument.
pub fn permuted_cols<F: PrimeField64>(inputs: &[F], table: &[F]) -> (Vec<F>, Vec<F>) {
let n = inputs.len();
// The permuted inputs do not have to be ordered, but we found that sorting was faster than
// hash-based grouping. We also sort the table, as this helps us identify "unused" table
// elements efficiently.
// To compare elements, e.g. for sorting, we first need them in canonical form. It would be
// wasteful to canonicalize in each comparison, as a single element may be involved in many
// comparisons. So we will canonicalize once upfront, then use `to_noncanonical_u64` when
// comparing elements.
let sorted_inputs = inputs
.iter()
.map(|x| x.to_canonical())
.sorted_unstable_by_key(|x| x.to_noncanonical_u64())
.collect_vec();
let sorted_table = table
.iter()
.map(|x| x.to_canonical())
.sorted_unstable_by_key(|x| x.to_noncanonical_u64())
.collect_vec();
let mut unused_table_inds = Vec::with_capacity(n);
let mut unused_table_vals = Vec::with_capacity(n);
let mut permuted_table = vec![F::ZERO; n];
let mut i = 0;
let mut j = 0;
while (j < n) && (i < n) {
let input_val = sorted_inputs[i].to_noncanonical_u64();
let table_val = sorted_table[j].to_noncanonical_u64();
match input_val.cmp(&table_val) {
Ordering::Greater => {
unused_table_vals.push(sorted_table[j]);
j += 1;
}
Ordering::Less => {
if let Some(x) = unused_table_vals.pop() {
permuted_table[i] = x;
} else {
unused_table_inds.push(i);
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
S: Stark<F, D>,
{
let degree = stark.constraint_degree();
assert_eq!(degree, 3, "TODO: Allow other constraint degrees.");
let mut start = 0;
for lookup in lookups {
let num_helper_columns = lookup.num_helper_columns(degree);
for &challenge in &lookup_vars.challenges {
let challenge = FE::from_basefield(challenge);
// For each chunk, check that `h_i (x+f_2i) (x+f_2i+1) = (x+f_2i) + (x+f_2i+1)` if the chunk has length 2
// or if it has length 1, check that `h_i * (x+f_2i) = 1`, where x is the challenge
for (j, chunk) in lookup.columns.chunks(degree - 1).enumerate() {
let mut x = lookup_vars.local_values[start + j];
let mut y = P::ZEROS;
let fs = chunk.iter().map(|&k| vars.local_values[k]);
for f in fs {
x *= f + challenge;
y += f + challenge;
}
match chunk.len() {
2 => yield_constr.constraint(x - y),
1 => yield_constr.constraint(x - P::ONES),
_ => todo!("Allow other constraint degrees."),
}
i += 1;
}
Ordering::Equal => {
permuted_table[i] = sorted_table[j];
i += 1;
j += 1;
}
// Check that the penultimate helper column contains `1/(table+challenge)`.
let x = lookup_vars.local_values[start + num_helper_columns - 2];
let x = x * (vars.local_values[lookup.table_column] + challenge);
yield_constr.constraint(x - P::ONES);
// Check the `Z` polynomial.
let z = lookup_vars.local_values[start + num_helper_columns - 1];
let next_z = lookup_vars.next_values[start + num_helper_columns - 1];
let y = lookup_vars.local_values[start..start + num_helper_columns - 2]
.iter()
.fold(P::ZEROS, |acc, x| acc + *x)
- vars.local_values[lookup.frequencies_column]
* lookup_vars.local_values[start + num_helper_columns - 2];
yield_constr.constraint(next_z - z - y);
start += num_helper_columns;
}
}
}
pub struct LookupCheckVarsTarget<const D: usize> {
pub(crate) local_values: Vec<ExtensionTarget<D>>,
pub(crate) next_values: Vec<ExtensionTarget<D>>,
pub(crate) challenges: Vec<Target>,
}
pub(crate) fn eval_lookups_checks_circuit<
F: RichField + Extendable<D>,
S: Stark<F, D>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
stark: &S,
vars: StarkEvaluationTargets<D, { S::COLUMNS }>,
lookup_vars: LookupCheckVarsTarget<D>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let one = builder.one_extension();
let degree = stark.constraint_degree();
let lookups = stark.lookups();
assert_eq!(degree, 3, "TODO: Allow other constraint degrees.");
let mut start = 0;
for lookup in lookups {
let num_helper_columns = lookup.num_helper_columns(degree);
for &challenge in &lookup_vars.challenges {
let challenge = builder.convert_to_ext(challenge);
for (j, chunk) in lookup.columns.chunks(degree - 1).enumerate() {
let mut x = lookup_vars.local_values[start + j];
let mut y = builder.zero_extension();
let fs = chunk.iter().map(|&k| vars.local_values[k]);
for f in fs {
let tmp = builder.add_extension(f, challenge);
x = builder.mul_extension(x, tmp);
y = builder.add_extension(y, tmp);
}
match chunk.len() {
2 => {
let tmp = builder.sub_extension(x, y);
yield_constr.constraint(builder, tmp)
}
1 => {
let tmp = builder.sub_extension(x, one);
yield_constr.constraint(builder, tmp)
}
_ => todo!("Allow other constraint degrees."),
}
}
let x = lookup_vars.local_values[start + num_helper_columns - 2];
let tmp = builder.add_extension(vars.local_values[lookup.table_column], challenge);
let x = builder.mul_sub_extension(x, tmp, one);
yield_constr.constraint(builder, x);
let z = lookup_vars.local_values[start + num_helper_columns - 1];
let next_z = lookup_vars.next_values[start + num_helper_columns - 1];
let y = builder.add_many_extension(
&lookup_vars.local_values[start..start + num_helper_columns - 2],
);
let tmp = builder.mul_extension(
vars.local_values[lookup.frequencies_column],
lookup_vars.local_values[start + num_helper_columns - 2],
);
let y = builder.sub_extension(y, tmp);
let constraint = builder.sub_extension(next_z, z);
let constraint = builder.sub_extension(constraint, y);
yield_constr.constraint(builder, constraint);
start += num_helper_columns;
}
}
unused_table_vals.extend_from_slice(&sorted_table[j..n]);
unused_table_inds.extend(i..n);
for (ind, val) in unused_table_inds.into_iter().zip_eq(unused_table_vals) {
permuted_table[ind] = val;
}
(sorted_inputs, permuted_table)
}

View File

@ -31,8 +31,7 @@ pub(crate) const VIRTUAL_FIRST_CHANGE: usize = SEGMENT_FIRST_CHANGE + 1;
pub(crate) const RANGE_CHECK: usize = VIRTUAL_FIRST_CHANGE + 1;
// The counter column (used for the range check) starts from 0 and increments.
pub(crate) const COUNTER: usize = RANGE_CHECK + 1;
// Helper columns for the permutation argument used to enforce the range check.
pub(crate) const RANGE_CHECK_PERMUTED: usize = COUNTER + 1;
pub(crate) const COUNTER_PERMUTED: usize = RANGE_CHECK_PERMUTED + 1;
// The frequencies column used in logUp.
pub(crate) const FREQUENCIES: usize = COUNTER + 1;
pub(crate) const NUM_COLUMNS: usize = COUNTER_PERMUTED + 1;
pub(crate) const NUM_COLUMNS: usize = FREQUENCIES + 1;

View File

@ -14,14 +14,13 @@ use plonky2_maybe_rayon::*;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::cross_table_lookup::Column;
use crate::lookup::{eval_lookups, eval_lookups_circuit, permuted_cols};
use crate::lookup::Lookup;
use crate::memory::columns::{
value_limb, ADDR_CONTEXT, ADDR_SEGMENT, ADDR_VIRTUAL, CONTEXT_FIRST_CHANGE, COUNTER,
COUNTER_PERMUTED, FILTER, IS_READ, NUM_COLUMNS, RANGE_CHECK, RANGE_CHECK_PERMUTED,
SEGMENT_FIRST_CHANGE, TIMESTAMP, VIRTUAL_FIRST_CHANGE,
value_limb, ADDR_CONTEXT, ADDR_SEGMENT, ADDR_VIRTUAL, CONTEXT_FIRST_CHANGE, COUNTER, FILTER,
FREQUENCIES, IS_READ, NUM_COLUMNS, RANGE_CHECK, SEGMENT_FIRST_CHANGE, TIMESTAMP,
VIRTUAL_FIRST_CHANGE,
};
use crate::memory::VALUE_LIMBS;
use crate::permutation::PermutationPair;
use crate::stark::Stark;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
use crate::witness::memory::MemoryOpKind::Read;
@ -144,10 +143,10 @@ impl<F: RichField + Extendable<D>, const D: usize> MemoryStark<F, D> {
let height = trace_col_vecs[0].len();
trace_col_vecs[COUNTER] = (0..height).map(|i| F::from_canonical_usize(i)).collect();
let (permuted_inputs, permuted_table) =
permuted_cols(&trace_col_vecs[RANGE_CHECK], &trace_col_vecs[COUNTER]);
trace_col_vecs[RANGE_CHECK_PERMUTED] = permuted_inputs;
trace_col_vecs[COUNTER_PERMUTED] = permuted_table;
for i in 0..height {
let x = trace_col_vecs[RANGE_CHECK][i].to_canonical_u64() as usize;
trace_col_vecs[FREQUENCIES][x] += F::ONE;
}
}
/// This memory STARK orders rows by `(context, segment, virt, timestamp)`. To enforce the
@ -316,8 +315,6 @@ impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for MemoryStark<F
next_is_read * address_unchanged * (next_values[i] - values[i]),
);
}
eval_lookups(vars, yield_constr, RANGE_CHECK_PERMUTED, COUNTER_PERMUTED)
}
fn eval_ext_circuit(
@ -438,25 +435,18 @@ impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for MemoryStark<F
let read_constraint = builder.mul_extension(next_is_read, zero_if_read);
yield_constr.constraint_transition(builder, read_constraint);
}
eval_lookups_circuit(
builder,
vars,
yield_constr,
RANGE_CHECK_PERMUTED,
COUNTER_PERMUTED,
)
}
fn constraint_degree(&self) -> usize {
3
}
fn permutation_pairs(&self) -> Vec<PermutationPair> {
vec![
PermutationPair::singletons(RANGE_CHECK, RANGE_CHECK_PERMUTED),
PermutationPair::singletons(COUNTER, COUNTER_PERMUTED),
]
fn lookups(&self) -> Vec<Lookup> {
vec![Lookup {
columns: vec![RANGE_CHECK],
table_column: COUNTER,
frequencies_column: FREQUENCIES,
}]
}
}

View File

@ -1,459 +0,0 @@
//! Permutation arguments.
use std::fmt::Debug;
use itertools::Itertools;
use plonky2::field::batch_util::batch_multiply_inplace;
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::field::polynomial::PolynomialValues;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::challenger::{Challenger, RecursiveChallenger};
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::iop::target::Target;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::config::{AlgebraicHasher, Hasher};
use plonky2::plonk::plonk_common::{
reduce_with_powers, reduce_with_powers_circuit, reduce_with_powers_ext_circuit,
};
use plonky2::util::reducing::{ReducingFactor, ReducingFactorTarget};
use plonky2::util::serialization::{Buffer, IoResult, Read, Write};
use plonky2_maybe_rayon::*;
use crate::config::StarkConfig;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::stark::Stark;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
/// A pair of lists of columns, `lhs` and `rhs`, that should be permutations of one another.
/// In particular, there should exist some permutation `pi` such that for any `i`,
/// `trace[lhs[i]] = pi(trace[rhs[i]])`. Here `trace` denotes the trace in column-major form, so
/// `trace[col]` is a column vector.
pub struct PermutationPair {
/// Each entry contains two column indices, representing two columns which should be
/// permutations of one another.
pub column_pairs: Vec<(usize, usize)>,
}
impl PermutationPair {
pub fn singletons(lhs: usize, rhs: usize) -> Self {
Self {
column_pairs: vec![(lhs, rhs)],
}
}
}
/// A single instance of a permutation check protocol.
pub(crate) struct PermutationInstance<'a, T: Copy + Eq + PartialEq + Debug> {
pub(crate) pair: &'a PermutationPair,
pub(crate) challenge: GrandProductChallenge<T>,
}
/// Randomness for a single instance of a permutation check protocol.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub(crate) struct GrandProductChallenge<T: Copy + Eq + PartialEq + Debug> {
/// Randomness used to combine multiple columns into one.
pub(crate) beta: T,
/// Random offset that's added to the beta-reduced column values.
pub(crate) gamma: T,
}
impl<F: Field> GrandProductChallenge<F> {
pub(crate) fn combine<'a, FE, P, T: IntoIterator<Item = &'a P>, const D2: usize>(
&self,
terms: T,
) -> P
where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
T::IntoIter: DoubleEndedIterator,
{
reduce_with_powers(terms, FE::from_basefield(self.beta)) + FE::from_basefield(self.gamma)
}
}
impl GrandProductChallenge<Target> {
pub(crate) fn combine_circuit<F: RichField + Extendable<D>, const D: usize>(
&self,
builder: &mut CircuitBuilder<F, D>,
terms: &[ExtensionTarget<D>],
) -> ExtensionTarget<D> {
let reduced = reduce_with_powers_ext_circuit(builder, terms, self.beta);
let gamma = builder.convert_to_ext(self.gamma);
builder.add_extension(reduced, gamma)
}
}
impl GrandProductChallenge<Target> {
pub(crate) fn combine_base_circuit<F: RichField + Extendable<D>, const D: usize>(
&self,
builder: &mut CircuitBuilder<F, D>,
terms: &[Target],
) -> Target {
let reduced = reduce_with_powers_circuit(builder, terms, self.beta);
builder.add(reduced, self.gamma)
}
}
/// Like `PermutationChallenge`, but with `num_challenges` copies to boost soundness.
#[derive(Clone, Eq, PartialEq, Debug)]
pub(crate) struct GrandProductChallengeSet<T: Copy + Eq + PartialEq + Debug> {
pub(crate) challenges: Vec<GrandProductChallenge<T>>,
}
impl GrandProductChallengeSet<Target> {
pub fn to_buffer(&self, buffer: &mut Vec<u8>) -> IoResult<()> {
buffer.write_usize(self.challenges.len())?;
for challenge in &self.challenges {
buffer.write_target(challenge.beta)?;
buffer.write_target(challenge.gamma)?;
}
Ok(())
}
pub fn from_buffer(buffer: &mut Buffer) -> IoResult<Self> {
let length = buffer.read_usize()?;
let mut challenges = Vec::with_capacity(length);
for _ in 0..length {
challenges.push(GrandProductChallenge {
beta: buffer.read_target()?,
gamma: buffer.read_target()?,
});
}
Ok(GrandProductChallengeSet { challenges })
}
}
/// Compute all Z polynomials (for permutation arguments).
pub(crate) fn compute_permutation_z_polys<F, S, const D: usize>(
stark: &S,
config: &StarkConfig,
trace_poly_values: &[PolynomialValues<F>],
permutation_challenge_sets: &[GrandProductChallengeSet<F>],
) -> Vec<PolynomialValues<F>>
where
F: RichField + Extendable<D>,
S: Stark<F, D>,
{
let permutation_pairs = stark.permutation_pairs();
let permutation_batches = get_permutation_batches(
&permutation_pairs,
permutation_challenge_sets,
config.num_challenges,
stark.permutation_batch_size(),
);
permutation_batches
.into_par_iter()
.map(|instances| compute_permutation_z_poly(&instances, trace_poly_values))
.collect()
}
/// Compute a single Z polynomial.
fn compute_permutation_z_poly<F: Field>(
instances: &[PermutationInstance<F>],
trace_poly_values: &[PolynomialValues<F>],
) -> PolynomialValues<F> {
let degree = trace_poly_values[0].len();
let (reduced_lhs_polys, reduced_rhs_polys): (Vec<_>, Vec<_>) = instances
.iter()
.map(|instance| permutation_reduced_polys(instance, trace_poly_values, degree))
.unzip();
let numerator = poly_product_elementwise(reduced_lhs_polys.into_iter());
let denominator = poly_product_elementwise(reduced_rhs_polys.into_iter());
// Compute the quotients.
let denominator_inverses = F::batch_multiplicative_inverse(&denominator.values);
let mut quotients = numerator.values;
batch_multiply_inplace(&mut quotients, &denominator_inverses);
// Compute Z, which contains partial products of the quotients.
let mut partial_products = Vec::with_capacity(degree);
let mut acc = F::ONE;
for q in quotients {
partial_products.push(acc);
acc *= q;
}
PolynomialValues::new(partial_products)
}
/// Computes the reduced polynomial, `\sum beta^i f_i(x) + gamma`, for both the "left" and "right"
/// sides of a given `PermutationPair`.
fn permutation_reduced_polys<F: Field>(
instance: &PermutationInstance<F>,
trace_poly_values: &[PolynomialValues<F>],
degree: usize,
) -> (PolynomialValues<F>, PolynomialValues<F>) {
let PermutationInstance {
pair: PermutationPair { column_pairs },
challenge: GrandProductChallenge { beta, gamma },
} = instance;
let mut reduced_lhs = PolynomialValues::constant(*gamma, degree);
let mut reduced_rhs = PolynomialValues::constant(*gamma, degree);
for ((lhs, rhs), weight) in column_pairs.iter().zip(beta.powers()) {
reduced_lhs.add_assign_scaled(&trace_poly_values[*lhs], weight);
reduced_rhs.add_assign_scaled(&trace_poly_values[*rhs], weight);
}
(reduced_lhs, reduced_rhs)
}
/// Computes the elementwise product of a set of polynomials. Assumes that the set is non-empty and
/// that each polynomial has the same length.
fn poly_product_elementwise<F: Field>(
mut polys: impl Iterator<Item = PolynomialValues<F>>,
) -> PolynomialValues<F> {
let mut product = polys.next().expect("Expected at least one polynomial");
for poly in polys {
batch_multiply_inplace(&mut product.values, &poly.values)
}
product
}
fn get_grand_product_challenge<F: RichField, H: Hasher<F>>(
challenger: &mut Challenger<F, H>,
) -> GrandProductChallenge<F> {
let beta = challenger.get_challenge();
let gamma = challenger.get_challenge();
GrandProductChallenge { beta, gamma }
}
pub(crate) fn get_grand_product_challenge_set<F: RichField, H: Hasher<F>>(
challenger: &mut Challenger<F, H>,
num_challenges: usize,
) -> GrandProductChallengeSet<F> {
let challenges = (0..num_challenges)
.map(|_| get_grand_product_challenge(challenger))
.collect();
GrandProductChallengeSet { challenges }
}
pub(crate) fn get_n_grand_product_challenge_sets<F: RichField, H: Hasher<F>>(
challenger: &mut Challenger<F, H>,
num_challenges: usize,
num_sets: usize,
) -> Vec<GrandProductChallengeSet<F>> {
(0..num_sets)
.map(|_| get_grand_product_challenge_set(challenger, num_challenges))
.collect()
}
fn get_grand_product_challenge_target<
F: RichField + Extendable<D>,
H: AlgebraicHasher<F>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
challenger: &mut RecursiveChallenger<F, H, D>,
) -> GrandProductChallenge<Target> {
let beta = challenger.get_challenge(builder);
let gamma = challenger.get_challenge(builder);
GrandProductChallenge { beta, gamma }
}
pub(crate) fn get_grand_product_challenge_set_target<
F: RichField + Extendable<D>,
H: AlgebraicHasher<F>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
challenger: &mut RecursiveChallenger<F, H, D>,
num_challenges: usize,
) -> GrandProductChallengeSet<Target> {
let challenges = (0..num_challenges)
.map(|_| get_grand_product_challenge_target(builder, challenger))
.collect();
GrandProductChallengeSet { challenges }
}
pub(crate) fn get_n_grand_product_challenge_sets_target<
F: RichField + Extendable<D>,
H: AlgebraicHasher<F>,
const D: usize,
>(
builder: &mut CircuitBuilder<F, D>,
challenger: &mut RecursiveChallenger<F, H, D>,
num_challenges: usize,
num_sets: usize,
) -> Vec<GrandProductChallengeSet<Target>> {
(0..num_sets)
.map(|_| get_grand_product_challenge_set_target(builder, challenger, num_challenges))
.collect()
}
/// Get a list of instances of our batch-permutation argument. These are permutation arguments
/// where the same `Z(x)` polynomial is used to check more than one permutation.
/// Before batching, each permutation pair leads to `num_challenges` permutation arguments, so we
/// start with the cartesian product of `permutation_pairs` and `0..num_challenges`. Then we
/// chunk these arguments based on our batch size.
pub(crate) fn get_permutation_batches<'a, T: Copy + Eq + PartialEq + Debug>(
permutation_pairs: &'a [PermutationPair],
permutation_challenge_sets: &[GrandProductChallengeSet<T>],
num_challenges: usize,
batch_size: usize,
) -> Vec<Vec<PermutationInstance<'a, T>>> {
permutation_pairs
.iter()
.cartesian_product(0..num_challenges)
.chunks(batch_size)
.into_iter()
.map(|batch| {
batch
.enumerate()
.map(|(i, (pair, chal))| {
let challenge = permutation_challenge_sets[i].challenges[chal];
PermutationInstance { pair, challenge }
})
.collect_vec()
})
.collect()
}
pub struct PermutationCheckVars<F, FE, P, const D2: usize>
where
F: Field,
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
pub(crate) local_zs: Vec<P>,
pub(crate) next_zs: Vec<P>,
pub(crate) permutation_challenge_sets: Vec<GrandProductChallengeSet<F>>,
}
pub(crate) fn eval_permutation_checks<F, FE, P, S, const D: usize, const D2: usize>(
stark: &S,
config: &StarkConfig,
vars: StarkEvaluationVars<FE, P, { S::COLUMNS }>,
permutation_vars: PermutationCheckVars<F, FE, P, D2>,
consumer: &mut ConstraintConsumer<P>,
) where
F: RichField + Extendable<D>,
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
S: Stark<F, D>,
{
let PermutationCheckVars {
local_zs,
next_zs,
permutation_challenge_sets,
} = permutation_vars;
// Check that Z(1) = 1;
for &z in &local_zs {
consumer.constraint_first_row(z - FE::ONE);
}
let permutation_pairs = stark.permutation_pairs();
let permutation_batches = get_permutation_batches(
&permutation_pairs,
&permutation_challenge_sets,
config.num_challenges,
stark.permutation_batch_size(),
);
// Each zs value corresponds to a permutation batch.
for (i, instances) in permutation_batches.iter().enumerate() {
// Z(gx) * down = Z x * up
let (reduced_lhs, reduced_rhs): (Vec<P>, Vec<P>) = instances
.iter()
.map(|instance| {
let PermutationInstance {
pair: PermutationPair { column_pairs },
challenge: GrandProductChallenge { beta, gamma },
} = instance;
let mut factor = ReducingFactor::new(*beta);
let (lhs, rhs): (Vec<_>, Vec<_>) = column_pairs
.iter()
.map(|&(i, j)| (vars.local_values[i], vars.local_values[j]))
.unzip();
(
factor.reduce_ext(lhs.into_iter()) + FE::from_basefield(*gamma),
factor.reduce_ext(rhs.into_iter()) + FE::from_basefield(*gamma),
)
})
.unzip();
let constraint = next_zs[i] * reduced_rhs.into_iter().product::<P>()
- local_zs[i] * reduced_lhs.into_iter().product::<P>();
consumer.constraint(constraint);
}
}
pub struct PermutationCheckDataTarget<const D: usize> {
pub(crate) local_zs: Vec<ExtensionTarget<D>>,
pub(crate) next_zs: Vec<ExtensionTarget<D>>,
pub(crate) permutation_challenge_sets: Vec<GrandProductChallengeSet<Target>>,
}
pub(crate) fn eval_permutation_checks_circuit<F, S, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
stark: &S,
config: &StarkConfig,
vars: StarkEvaluationTargets<D, { S::COLUMNS }>,
permutation_data: PermutationCheckDataTarget<D>,
consumer: &mut RecursiveConstraintConsumer<F, D>,
) where
F: RichField + Extendable<D>,
S: Stark<F, D>,
[(); S::COLUMNS]:,
{
let PermutationCheckDataTarget {
local_zs,
next_zs,
permutation_challenge_sets,
} = permutation_data;
let one = builder.one_extension();
// Check that Z(1) = 1;
for &z in &local_zs {
let z_1 = builder.sub_extension(z, one);
consumer.constraint_first_row(builder, z_1);
}
let permutation_pairs = stark.permutation_pairs();
let permutation_batches = get_permutation_batches(
&permutation_pairs,
&permutation_challenge_sets,
config.num_challenges,
stark.permutation_batch_size(),
);
// Each zs value corresponds to a permutation batch.
for (i, instances) in permutation_batches.iter().enumerate() {
let (reduced_lhs, reduced_rhs): (Vec<ExtensionTarget<D>>, Vec<ExtensionTarget<D>>) =
instances
.iter()
.map(|instance| {
let PermutationInstance {
pair: PermutationPair { column_pairs },
challenge: GrandProductChallenge { beta, gamma },
} = instance;
let beta_ext = builder.convert_to_ext(*beta);
let gamma_ext = builder.convert_to_ext(*gamma);
let mut factor = ReducingFactorTarget::new(beta_ext);
let (lhs, rhs): (Vec<_>, Vec<_>) = column_pairs
.iter()
.map(|&(i, j)| (vars.local_values[i], vars.local_values[j]))
.unzip();
let reduced_lhs = factor.reduce(&lhs, builder);
let reduced_rhs = factor.reduce(&rhs, builder);
(
builder.add_extension(reduced_lhs, gamma_ext),
builder.add_extension(reduced_rhs, gamma_ext),
)
})
.unzip();
let reduced_lhs_product = builder.mul_many_extension(reduced_lhs);
let reduced_rhs_product = builder.mul_many_extension(reduced_rhs);
// constraint = next_zs[i] * reduced_rhs_product - local_zs[i] * reduced_lhs_product
let constraint = {
let tmp = builder.mul_extension(local_zs[i], reduced_lhs_product);
builder.mul_sub_extension(next_zs[i], reduced_rhs_product, tmp)
};
consumer.constraint(builder, constraint)
}
}

View File

@ -18,7 +18,7 @@ use serde::{Deserialize, Serialize};
use crate::all_stark::NUM_TABLES;
use crate::config::StarkConfig;
use crate::permutation::GrandProductChallengeSet;
use crate::cross_table_lookup::GrandProductChallengeSet;
/// A STARK proof for each table, plus some metadata used to create recursive wrapper proofs.
#[derive(Debug, Clone)]
@ -588,8 +588,8 @@ impl ExtraBlockDataTarget {
pub struct StarkProof<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize> {
/// Merkle cap of LDEs of trace values.
pub trace_cap: MerkleCap<F, C::Hasher>,
/// Merkle cap of LDEs of permutation Z values.
pub permutation_ctl_zs_cap: MerkleCap<F, C::Hasher>,
/// Merkle cap of LDEs of lookup helper and CTL columns.
pub auxiliary_polys_cap: MerkleCap<F, C::Hasher>,
/// Merkle cap of LDEs of quotient polynomial evaluations.
pub quotient_polys_cap: MerkleCap<F, C::Hasher>,
/// Purported values of each polynomial at the challenge point.
@ -630,7 +630,7 @@ impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize> S
#[derive(Eq, PartialEq, Debug)]
pub struct StarkProofTarget<const D: usize> {
pub trace_cap: MerkleCapTarget,
pub permutation_ctl_zs_cap: MerkleCapTarget,
pub auxiliary_polys_cap: MerkleCapTarget,
pub quotient_polys_cap: MerkleCapTarget,
pub openings: StarkOpeningSetTarget<D>,
pub opening_proof: FriProofTarget<D>,
@ -639,7 +639,7 @@ pub struct StarkProofTarget<const D: usize> {
impl<const D: usize> StarkProofTarget<D> {
pub fn to_buffer(&self, buffer: &mut Vec<u8>) -> IoResult<()> {
buffer.write_target_merkle_cap(&self.trace_cap)?;
buffer.write_target_merkle_cap(&self.permutation_ctl_zs_cap)?;
buffer.write_target_merkle_cap(&self.auxiliary_polys_cap)?;
buffer.write_target_merkle_cap(&self.quotient_polys_cap)?;
buffer.write_target_fri_proof(&self.opening_proof)?;
self.openings.to_buffer(buffer)?;
@ -648,14 +648,14 @@ impl<const D: usize> StarkProofTarget<D> {
pub fn from_buffer(buffer: &mut Buffer) -> IoResult<Self> {
let trace_cap = buffer.read_target_merkle_cap()?;
let permutation_ctl_zs_cap = buffer.read_target_merkle_cap()?;
let auxiliary_polys_cap = buffer.read_target_merkle_cap()?;
let quotient_polys_cap = buffer.read_target_merkle_cap()?;
let opening_proof = buffer.read_target_fri_proof()?;
let openings = StarkOpeningSetTarget::from_buffer(buffer)?;
Ok(Self {
trace_cap,
permutation_ctl_zs_cap,
auxiliary_polys_cap,
quotient_polys_cap,
openings,
opening_proof,
@ -674,8 +674,8 @@ impl<const D: usize> StarkProofTarget<D> {
}
pub(crate) struct StarkProofChallenges<F: RichField + Extendable<D>, const D: usize> {
/// Randomness used in any permutation arguments.
pub permutation_challenge_sets: Option<Vec<GrandProductChallengeSet<F>>>,
/// Randomness used in lookup arguments.
pub lookup_challenges: Option<Vec<F>>,
/// Random values used to combine STARK constraints.
pub stark_alphas: Vec<F>,
@ -687,7 +687,7 @@ pub(crate) struct StarkProofChallenges<F: RichField + Extendable<D>, const D: us
}
pub(crate) struct StarkProofChallengesTarget<const D: usize> {
pub permutation_challenge_sets: Option<Vec<GrandProductChallengeSet<Target>>>,
pub lookup_challenges: Option<Vec<Target>>,
pub stark_alphas: Vec<Target>,
pub stark_zeta: ExtensionTarget<D>,
pub fri_challenges: FriChallengesTarget<D>,
@ -700,10 +700,10 @@ pub struct StarkOpeningSet<F: RichField + Extendable<D>, const D: usize> {
pub local_values: Vec<F::Extension>,
/// Openings of trace polynomials at `g * zeta`.
pub next_values: Vec<F::Extension>,
/// Openings of permutations and cross-table lookups `Z` polynomials at `zeta`.
pub permutation_ctl_zs: Vec<F::Extension>,
/// Openings of permutations and cross-table lookups `Z` polynomials at `g * zeta`.
pub permutation_ctl_zs_next: Vec<F::Extension>,
/// Openings of lookups and cross-table lookups `Z` polynomials at `zeta`.
pub auxiliary_polys: Vec<F::Extension>,
/// Openings of lookups and cross-table lookups `Z` polynomials at `g * zeta`.
pub auxiliary_polys_next: Vec<F::Extension>,
/// Openings of cross-table lookups `Z` polynomials at `g^-1`.
pub ctl_zs_last: Vec<F>,
/// Openings of quotient polynomials at `zeta`.
@ -715,10 +715,10 @@ impl<F: RichField + Extendable<D>, const D: usize> StarkOpeningSet<F, D> {
zeta: F::Extension,
g: F,
trace_commitment: &PolynomialBatch<F, C, D>,
permutation_ctl_zs_commitment: &PolynomialBatch<F, C, D>,
auxiliary_polys_commitment: &PolynomialBatch<F, C, D>,
quotient_commitment: &PolynomialBatch<F, C, D>,
degree_bits: usize,
num_permutation_zs: usize,
num_lookup_columns: usize,
) -> Self {
let eval_commitment = |z: F::Extension, c: &PolynomialBatch<F, C, D>| {
c.polynomials
@ -736,12 +736,12 @@ impl<F: RichField + Extendable<D>, const D: usize> StarkOpeningSet<F, D> {
Self {
local_values: eval_commitment(zeta, trace_commitment),
next_values: eval_commitment(zeta_next, trace_commitment),
permutation_ctl_zs: eval_commitment(zeta, permutation_ctl_zs_commitment),
permutation_ctl_zs_next: eval_commitment(zeta_next, permutation_ctl_zs_commitment),
auxiliary_polys: eval_commitment(zeta, auxiliary_polys_commitment),
auxiliary_polys_next: eval_commitment(zeta_next, auxiliary_polys_commitment),
ctl_zs_last: eval_commitment_base(
F::primitive_root_of_unity(degree_bits).inverse(),
permutation_ctl_zs_commitment,
)[num_permutation_zs..]
auxiliary_polys_commitment,
)[num_lookup_columns..]
.to_vec(),
quotient_polys: eval_commitment(zeta, quotient_commitment),
}
@ -752,7 +752,7 @@ impl<F: RichField + Extendable<D>, const D: usize> StarkOpeningSet<F, D> {
values: self
.local_values
.iter()
.chain(&self.permutation_ctl_zs)
.chain(&self.auxiliary_polys)
.chain(&self.quotient_polys)
.copied()
.collect_vec(),
@ -761,7 +761,7 @@ impl<F: RichField + Extendable<D>, const D: usize> StarkOpeningSet<F, D> {
values: self
.next_values
.iter()
.chain(&self.permutation_ctl_zs_next)
.chain(&self.auxiliary_polys_next)
.copied()
.collect_vec(),
};
@ -785,8 +785,8 @@ impl<F: RichField + Extendable<D>, const D: usize> StarkOpeningSet<F, D> {
pub struct StarkOpeningSetTarget<const D: usize> {
pub local_values: Vec<ExtensionTarget<D>>,
pub next_values: Vec<ExtensionTarget<D>>,
pub permutation_ctl_zs: Vec<ExtensionTarget<D>>,
pub permutation_ctl_zs_next: Vec<ExtensionTarget<D>>,
pub auxiliary_polys: Vec<ExtensionTarget<D>>,
pub auxiliary_polys_next: Vec<ExtensionTarget<D>>,
pub ctl_zs_last: Vec<Target>,
pub quotient_polys: Vec<ExtensionTarget<D>>,
}
@ -795,8 +795,8 @@ impl<const D: usize> StarkOpeningSetTarget<D> {
pub fn to_buffer(&self, buffer: &mut Vec<u8>) -> IoResult<()> {
buffer.write_target_ext_vec(&self.local_values)?;
buffer.write_target_ext_vec(&self.next_values)?;
buffer.write_target_ext_vec(&self.permutation_ctl_zs)?;
buffer.write_target_ext_vec(&self.permutation_ctl_zs_next)?;
buffer.write_target_ext_vec(&self.auxiliary_polys)?;
buffer.write_target_ext_vec(&self.auxiliary_polys_next)?;
buffer.write_target_vec(&self.ctl_zs_last)?;
buffer.write_target_ext_vec(&self.quotient_polys)?;
Ok(())
@ -805,16 +805,16 @@ impl<const D: usize> StarkOpeningSetTarget<D> {
pub fn from_buffer(buffer: &mut Buffer) -> IoResult<Self> {
let local_values = buffer.read_target_ext_vec::<D>()?;
let next_values = buffer.read_target_ext_vec::<D>()?;
let permutation_ctl_zs = buffer.read_target_ext_vec::<D>()?;
let permutation_ctl_zs_next = buffer.read_target_ext_vec::<D>()?;
let auxiliary_polys = buffer.read_target_ext_vec::<D>()?;
let auxiliary_polys_next = buffer.read_target_ext_vec::<D>()?;
let ctl_zs_last = buffer.read_target_vec()?;
let quotient_polys = buffer.read_target_ext_vec::<D>()?;
Ok(Self {
local_values,
next_values,
permutation_ctl_zs,
permutation_ctl_zs_next,
auxiliary_polys,
auxiliary_polys_next,
ctl_zs_last,
quotient_polys,
})
@ -825,7 +825,7 @@ impl<const D: usize> StarkOpeningSetTarget<D> {
values: self
.local_values
.iter()
.chain(&self.permutation_ctl_zs)
.chain(&self.auxiliary_polys)
.chain(&self.quotient_polys)
.copied()
.collect_vec(),
@ -834,7 +834,7 @@ impl<const D: usize> StarkOpeningSetTarget<D> {
values: self
.next_values
.iter()
.chain(&self.permutation_ctl_zs_next)
.chain(&self.auxiliary_polys_next)
.copied()
.collect_vec(),
};

View File

@ -26,18 +26,17 @@ use crate::config::StarkConfig;
use crate::constraint_consumer::ConstraintConsumer;
use crate::cpu::cpu_stark::CpuStark;
use crate::cpu::kernel::aggregator::KERNEL;
use crate::cross_table_lookup::{cross_table_lookup_data, CtlCheckVars, CtlData};
use crate::cross_table_lookup::{
cross_table_lookup_data, get_grand_product_challenge_set, CtlCheckVars, CtlData,
};
use crate::generation::outputs::GenerationOutputs;
use crate::generation::{generate_traces, GenerationInputs};
use crate::get_challenges::observe_public_values;
use crate::keccak::keccak_stark::KeccakStark;
use crate::keccak_sponge::keccak_sponge_stark::KeccakSpongeStark;
use crate::logic::LogicStark;
use crate::lookup::{lookup_helper_columns, Lookup, LookupCheckVars};
use crate::memory::memory_stark::MemoryStark;
use crate::permutation::{
compute_permutation_z_polys, get_grand_product_challenge_set,
get_n_grand_product_challenge_sets, GrandProductChallengeSet, PermutationCheckVars,
};
use crate::proof::{AllProof, PublicValues, StarkOpeningSet, StarkProof, StarkProofWithMetadata};
use crate::stark::Stark;
use crate::vanishing_poly::eval_vanishing_poly;
@ -335,37 +334,45 @@ where
let init_challenger_state = challenger.compact();
// Permutation arguments.
let permutation_challenges = stark.uses_permutation_args().then(|| {
get_n_grand_product_challenge_sets(
challenger,
config.num_challenges,
stark.permutation_batch_size(),
)
});
let permutation_zs = permutation_challenges.as_ref().map(|challenges| {
timed!(
timing,
"compute permutation Z(x) polys",
compute_permutation_z_polys::<F, S, D>(stark, config, trace_poly_values, challenges)
)
});
let num_permutation_zs = permutation_zs.as_ref().map(|v| v.len()).unwrap_or(0);
let constraint_degree = stark.constraint_degree();
let lookup_challenges = stark
.uses_lookups()
.then(|| challenger.get_n_challenges(config.num_challenges));
let lookups = stark.lookups();
let lookup_helper_columns = timed!(
timing,
"compute lookup helper columns",
lookup_challenges.as_ref().map(|challenges| {
let mut columns = Vec::new();
for lookup in &lookups {
for &challenge in challenges {
columns.extend(lookup_helper_columns(
lookup,
trace_poly_values,
challenge,
constraint_degree,
));
}
}
columns
})
);
let num_lookup_columns = lookup_helper_columns.as_ref().map(|v| v.len()).unwrap_or(0);
let z_polys = match permutation_zs {
let auxiliary_polys = match lookup_helper_columns {
None => ctl_data.z_polys(),
Some(mut permutation_zs) => {
permutation_zs.extend(ctl_data.z_polys());
permutation_zs
Some(mut lookup_columns) => {
lookup_columns.extend(ctl_data.z_polys());
lookup_columns
}
};
assert!(!z_polys.is_empty(), "No CTL?");
assert!(!auxiliary_polys.is_empty(), "No CTL?");
let permutation_ctl_zs_commitment = timed!(
let auxiliary_polys_commitment = timed!(
timing,
"compute Zs commitment",
"compute auxiliary polynomials commitment",
PolynomialBatch::from_values(
z_polys,
auxiliary_polys,
rate_bits,
false,
config.fri_config.cap_height,
@ -374,21 +381,21 @@ where
)
);
let permutation_ctl_zs_cap = permutation_ctl_zs_commitment.merkle_tree.cap.clone();
challenger.observe_cap(&permutation_ctl_zs_cap);
let auxiliary_polys_cap = auxiliary_polys_commitment.merkle_tree.cap.clone();
challenger.observe_cap(&auxiliary_polys_cap);
let alphas = challenger.get_n_challenges(config.num_challenges);
if cfg!(test) {
check_constraints(
stark,
trace_commitment,
&permutation_ctl_zs_commitment,
permutation_challenges.as_ref(),
&auxiliary_polys_commitment,
lookup_challenges.as_ref(),
&lookups,
ctl_data,
alphas.clone(),
degree_bits,
num_permutation_zs,
config,
num_lookup_columns,
);
}
let quotient_polys = timed!(
@ -397,12 +404,13 @@ where
compute_quotient_polys::<F, <F as Packable>::Packing, C, S, D>(
stark,
trace_commitment,
&permutation_ctl_zs_commitment,
permutation_challenges.as_ref(),
&auxiliary_polys_commitment,
lookup_challenges.as_ref(),
&lookups,
ctl_data,
alphas,
degree_bits,
num_permutation_zs,
num_lookup_columns,
config,
)
);
@ -451,16 +459,16 @@ where
zeta,
g,
trace_commitment,
&permutation_ctl_zs_commitment,
&auxiliary_polys_commitment,
&quotient_commitment,
degree_bits,
stark.num_permutation_batches(config),
stark.num_lookup_helper_columns(config),
);
challenger.observe_openings(&openings.to_fri_openings());
let initial_merkle_trees = vec![
trace_commitment,
&permutation_ctl_zs_commitment,
&auxiliary_polys_commitment,
&quotient_commitment,
];
@ -478,7 +486,7 @@ where
let proof = StarkProof {
trace_cap: trace_commitment.merkle_tree.cap.clone(),
permutation_ctl_zs_cap,
auxiliary_polys_cap,
quotient_polys_cap,
openings,
opening_proof,
@ -494,12 +502,13 @@ where
fn compute_quotient_polys<'a, F, P, C, S, const D: usize>(
stark: &S,
trace_commitment: &'a PolynomialBatch<F, C, D>,
permutation_ctl_zs_commitment: &'a PolynomialBatch<F, C, D>,
permutation_challenges: Option<&'a Vec<GrandProductChallengeSet<F>>>,
auxiliary_polys_commitment: &'a PolynomialBatch<F, C, D>,
lookup_challenges: Option<&'a Vec<F>>,
lookups: &[Lookup],
ctl_data: &CtlData<F>,
alphas: Vec<F>,
degree_bits: usize,
num_permutation_zs: usize,
num_lookup_columns: usize,
config: &StarkConfig,
) -> Vec<PolynomialCoeffs<F>>
where
@ -570,25 +579,22 @@ where
local_values: &get_trace_values_packed(i_start),
next_values: &get_trace_values_packed(i_next_start),
};
let permutation_check_vars =
permutation_challenges.map(|permutation_challenge_sets| PermutationCheckVars {
local_zs: permutation_ctl_zs_commitment.get_lde_values_packed(i_start, step)
[..num_permutation_zs]
.to_vec(),
next_zs: permutation_ctl_zs_commitment
.get_lde_values_packed(i_next_start, step)[..num_permutation_zs]
.to_vec(),
permutation_challenge_sets: permutation_challenge_sets.to_vec(),
});
let lookup_vars = lookup_challenges.map(|challenges| LookupCheckVars {
local_values: auxiliary_polys_commitment.get_lde_values_packed(i_start, step)
[..num_lookup_columns]
.to_vec(),
next_values: auxiliary_polys_commitment.get_lde_values_packed(i_next_start, step),
challenges: challenges.to_vec(),
});
let ctl_vars = ctl_data
.zs_columns
.iter()
.enumerate()
.map(|(i, zs_columns)| CtlCheckVars::<F, F, P, 1> {
local_z: permutation_ctl_zs_commitment.get_lde_values_packed(i_start, step)
[num_permutation_zs + i],
next_z: permutation_ctl_zs_commitment.get_lde_values_packed(i_next_start, step)
[num_permutation_zs + i],
local_z: auxiliary_polys_commitment.get_lde_values_packed(i_start, step)
[num_lookup_columns + i],
next_z: auxiliary_polys_commitment.get_lde_values_packed(i_next_start, step)
[num_lookup_columns + i],
challenges: zs_columns.challenge,
columns: &zs_columns.columns,
filter_column: &zs_columns.filter_column,
@ -596,9 +602,9 @@ where
.collect::<Vec<_>>();
eval_vanishing_poly::<F, F, P, S, D, 1>(
stark,
config,
vars,
permutation_check_vars,
lookups,
lookup_vars,
&ctl_vars,
&mut consumer,
);
@ -631,13 +637,13 @@ where
fn check_constraints<'a, F, C, S, const D: usize>(
stark: &S,
trace_commitment: &'a PolynomialBatch<F, C, D>,
permutation_ctl_zs_commitment: &'a PolynomialBatch<F, C, D>,
permutation_challenges: Option<&'a Vec<GrandProductChallengeSet<F>>>,
auxiliary_commitment: &'a PolynomialBatch<F, C, D>,
lookup_challenges: Option<&'a Vec<F>>,
lookups: &[Lookup],
ctl_data: &CtlData<F>,
alphas: Vec<F>,
degree_bits: usize,
num_permutation_zs: usize,
config: &StarkConfig,
num_lookup_columns: usize,
) where
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
@ -668,7 +674,7 @@ fn check_constraints<'a, F, C, S, const D: usize>(
};
let trace_subgroup_evals = get_subgroup_evals(trace_commitment);
let permutation_ctl_zs_subgroup_evals = get_subgroup_evals(permutation_ctl_zs_commitment);
let auxiliary_subgroup_evals = get_subgroup_evals(auxiliary_commitment);
// Last element of the subgroup.
let last = F::primitive_root_of_unity(degree_bits).inverse();
@ -692,21 +698,19 @@ fn check_constraints<'a, F, C, S, const D: usize>(
local_values: trace_subgroup_evals[i].as_slice().try_into().unwrap(),
next_values: trace_subgroup_evals[i_next].as_slice().try_into().unwrap(),
};
let permutation_check_vars =
permutation_challenges.map(|permutation_challenge_sets| PermutationCheckVars {
local_zs: permutation_ctl_zs_subgroup_evals[i][..num_permutation_zs].to_vec(),
next_zs: permutation_ctl_zs_subgroup_evals[i_next][..num_permutation_zs]
.to_vec(),
permutation_challenge_sets: permutation_challenge_sets.to_vec(),
});
let lookup_vars = lookup_challenges.map(|challenges| LookupCheckVars {
local_values: auxiliary_subgroup_evals[i][..num_lookup_columns].to_vec(),
next_values: auxiliary_subgroup_evals[i_next][..num_lookup_columns].to_vec(),
challenges: challenges.to_vec(),
});
let ctl_vars = ctl_data
.zs_columns
.iter()
.enumerate()
.map(|(iii, zs_columns)| CtlCheckVars::<F, F, F, 1> {
local_z: permutation_ctl_zs_subgroup_evals[i][num_permutation_zs + iii],
next_z: permutation_ctl_zs_subgroup_evals[i_next][num_permutation_zs + iii],
local_z: auxiliary_subgroup_evals[i][num_lookup_columns + iii],
next_z: auxiliary_subgroup_evals[i_next][num_lookup_columns + iii],
challenges: zs_columns.challenge,
columns: &zs_columns.columns,
filter_column: &zs_columns.filter_column,
@ -714,9 +718,9 @@ fn check_constraints<'a, F, C, S, const D: usize>(
.collect::<Vec<_>>();
eval_vanishing_poly::<F, F, F, S, D, 1>(
stark,
config,
vars,
permutation_check_vars,
lookups,
lookup_vars,
&ctl_vars,
&mut consumer,
);

View File

@ -29,13 +29,13 @@ use crate::all_stark::{Table, NUM_TABLES};
use crate::config::StarkConfig;
use crate::constraint_consumer::RecursiveConstraintConsumer;
use crate::cpu::kernel::constants::global_metadata::GlobalMetadata;
use crate::cross_table_lookup::{verify_cross_table_lookups, CrossTableLookup, CtlCheckVarsTarget};
use crate::cross_table_lookup::{
get_grand_product_challenge_set, verify_cross_table_lookups, CrossTableLookup,
CtlCheckVarsTarget, GrandProductChallenge, GrandProductChallengeSet,
};
use crate::lookup::LookupCheckVarsTarget;
use crate::memory::segments::Segment;
use crate::memory::VALUE_LIMBS;
use crate::permutation::{
get_grand_product_challenge_set, GrandProductChallenge, GrandProductChallengeSet,
PermutationCheckDataTarget,
};
use crate::proof::{
BlockHashes, BlockHashesTarget, BlockMetadata, BlockMetadataTarget, ExtraBlockData,
ExtraBlockDataTarget, PublicValues, PublicValuesTarget, StarkOpeningSetTarget, StarkProof,
@ -302,8 +302,7 @@ where
let mut builder = CircuitBuilder::<F, D>::new(circuit_config.clone());
let zero_target = builder.zero();
let num_permutation_zs = stark.num_permutation_batches(inner_config);
let num_permutation_batch_size = stark.permutation_batch_size();
let num_lookup_columns = stark.num_lookup_helper_columns(inner_config);
let num_ctl_zs =
CrossTableLookup::num_ctl_zs(cross_table_lookups, table, inner_config.num_challenges);
let proof_target =
@ -331,7 +330,7 @@ where
&proof_target,
cross_table_lookups,
&ctl_challenges_target,
num_permutation_zs,
num_lookup_columns,
);
let init_challenger_state_target =
@ -343,8 +342,7 @@ where
let challenges = proof_target.get_challenges::<F, C>(
&mut builder,
&mut challenger,
num_permutation_zs > 0,
num_permutation_batch_size,
num_lookup_columns > 0,
inner_config,
);
let challenger_state = challenger.compact(&mut builder);
@ -412,8 +410,8 @@ fn verify_stark_proof_with_challenges_circuit<
let StarkOpeningSetTarget {
local_values,
next_values,
permutation_ctl_zs,
permutation_ctl_zs_next,
auxiliary_polys,
auxiliary_polys_next,
ctl_zs_last,
quotient_polys,
} = &proof.openings;
@ -439,14 +437,12 @@ fn verify_stark_proof_with_challenges_circuit<
l_last,
);
let num_permutation_zs = stark.num_permutation_batches(inner_config);
let permutation_data = stark
.uses_permutation_args()
.then(|| PermutationCheckDataTarget {
local_zs: permutation_ctl_zs[..num_permutation_zs].to_vec(),
next_zs: permutation_ctl_zs_next[..num_permutation_zs].to_vec(),
permutation_challenge_sets: challenges.permutation_challenge_sets.clone().unwrap(),
});
let num_lookup_columns = stark.num_lookup_helper_columns(inner_config);
let lookup_vars = stark.uses_lookups().then(|| LookupCheckVarsTarget {
local_values: auxiliary_polys[..num_lookup_columns].to_vec(),
next_values: auxiliary_polys_next[..num_lookup_columns].to_vec(),
challenges: challenges.lookup_challenges.clone().unwrap(),
});
with_context!(
builder,
@ -454,9 +450,8 @@ fn verify_stark_proof_with_challenges_circuit<
eval_vanishing_poly_circuit::<F, S, D>(
builder,
stark,
inner_config,
vars,
permutation_data,
lookup_vars,
ctl_vars,
&mut consumer,
)
@ -476,7 +471,7 @@ fn verify_stark_proof_with_challenges_circuit<
let merkle_caps = vec![
proof.trace_cap.clone(),
proof.permutation_ctl_zs_cap.clone(),
proof.auxiliary_polys_cap.clone(),
proof.quotient_polys_cap.clone(),
];
@ -840,15 +835,15 @@ pub(crate) fn add_virtual_stark_proof<
let num_leaves_per_oracle = vec![
S::COLUMNS,
stark.num_permutation_batches(config) + num_ctl_zs,
stark.num_lookup_helper_columns(config) + num_ctl_zs,
stark.quotient_degree_factor() * config.num_challenges,
];
let permutation_zs_cap = builder.add_virtual_cap(cap_height);
let auxiliary_polys_cap = builder.add_virtual_cap(cap_height);
StarkProofTarget {
trace_cap: builder.add_virtual_cap(cap_height),
permutation_ctl_zs_cap: permutation_zs_cap,
auxiliary_polys_cap,
quotient_polys_cap: builder.add_virtual_cap(cap_height),
openings: add_virtual_stark_opening_set::<F, S, D>(builder, stark, num_ctl_zs, config),
opening_proof: builder.add_virtual_fri_proof(&num_leaves_per_oracle, &fri_params),
@ -865,10 +860,10 @@ fn add_virtual_stark_opening_set<F: RichField + Extendable<D>, S: Stark<F, D>, c
StarkOpeningSetTarget {
local_values: builder.add_virtual_extension_targets(S::COLUMNS),
next_values: builder.add_virtual_extension_targets(S::COLUMNS),
permutation_ctl_zs: builder
.add_virtual_extension_targets(stark.num_permutation_batches(config) + num_ctl_zs),
permutation_ctl_zs_next: builder
.add_virtual_extension_targets(stark.num_permutation_batches(config) + num_ctl_zs),
auxiliary_polys: builder
.add_virtual_extension_targets(stark.num_lookup_helper_columns(config) + num_ctl_zs),
auxiliary_polys_next: builder
.add_virtual_extension_targets(stark.num_lookup_helper_columns(config) + num_ctl_zs),
ctl_zs_last: builder.add_virtual_targets(num_ctl_zs),
quotient_polys: builder
.add_virtual_extension_targets(stark.quotient_degree_factor() * num_challenges),
@ -894,8 +889,8 @@ pub(crate) fn set_stark_proof_target<F, C: GenericConfig<D, F = F>, W, const D:
);
witness.set_cap_target(
&proof_target.permutation_ctl_zs_cap,
&proof.permutation_ctl_zs_cap,
&proof_target.auxiliary_polys_cap,
&proof.auxiliary_polys_cap,
);
set_fri_proof_target(witness, &proof_target.opening_proof, &proof.opening_proof);

View File

@ -8,15 +8,14 @@ use plonky2::fri::structure::{
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2_util::ceil_div_usize;
use crate::config::StarkConfig;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::permutation::PermutationPair;
use crate::lookup::Lookup;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
const TRACE_ORACLE_INDEX: usize = 0;
const PERMUTATION_CTL_ORACLE_INDEX: usize = 1;
const AUXILIARY_ORACLE_INDEX: usize = 1;
const QUOTIENT_ORACLE_INDEX: usize = 2;
/// Represents a STARK system.
@ -94,20 +93,18 @@ pub trait Stark<F: RichField + Extendable<D>, const D: usize>: Sync {
};
let trace_info = FriPolynomialInfo::from_range(TRACE_ORACLE_INDEX, 0..Self::COLUMNS);
let num_permutation_batches = self.num_permutation_batches(config);
let num_perutation_ctl_polys = num_permutation_batches + num_ctl_zs;
let permutation_ctl_oracle = FriOracleInfo {
num_polys: num_perutation_ctl_polys,
let num_lookup_columns = self.num_lookup_helper_columns(config);
let num_auxiliary_polys = num_lookup_columns + num_ctl_zs;
let auxiliary_oracle = FriOracleInfo {
num_polys: num_auxiliary_polys,
blinding: false,
};
let permutation_ctl_zs_info = FriPolynomialInfo::from_range(
PERMUTATION_CTL_ORACLE_INDEX,
0..num_perutation_ctl_polys,
);
let auxiliary_polys_info =
FriPolynomialInfo::from_range(AUXILIARY_ORACLE_INDEX, 0..num_auxiliary_polys);
let ctl_zs_info = FriPolynomialInfo::from_range(
PERMUTATION_CTL_ORACLE_INDEX,
num_permutation_batches..num_permutation_batches + num_ctl_zs,
AUXILIARY_ORACLE_INDEX,
num_lookup_columns..num_lookup_columns + num_ctl_zs,
);
let num_quotient_polys = self.num_quotient_polys(config);
@ -122,21 +119,21 @@ pub trait Stark<F: RichField + Extendable<D>, const D: usize>: Sync {
point: zeta,
polynomials: [
trace_info.clone(),
permutation_ctl_zs_info.clone(),
auxiliary_polys_info.clone(),
quotient_info,
]
.concat(),
};
let zeta_next_batch = FriBatchInfo {
point: zeta.scalar_mul(g),
polynomials: [trace_info, permutation_ctl_zs_info].concat(),
polynomials: [trace_info, auxiliary_polys_info].concat(),
};
let ctl_last_batch = FriBatchInfo {
point: F::Extension::primitive_root_of_unity(degree_bits).inverse(),
polynomials: ctl_zs_info,
};
FriInstanceInfo {
oracles: vec![trace_oracle, permutation_ctl_oracle, quotient_oracle],
oracles: vec![trace_oracle, auxiliary_oracle, quotient_oracle],
batches: vec![zeta_batch, zeta_next_batch, ctl_last_batch],
}
}
@ -157,20 +154,18 @@ pub trait Stark<F: RichField + Extendable<D>, const D: usize>: Sync {
};
let trace_info = FriPolynomialInfo::from_range(TRACE_ORACLE_INDEX, 0..Self::COLUMNS);
let num_permutation_batches = self.num_permutation_batches(inner_config);
let num_perutation_ctl_polys = num_permutation_batches + num_ctl_zs;
let permutation_ctl_oracle = FriOracleInfo {
num_polys: num_perutation_ctl_polys,
let num_lookup_columns = self.num_lookup_helper_columns(inner_config);
let num_auxiliary_polys = num_lookup_columns + num_ctl_zs;
let auxiliary_oracle = FriOracleInfo {
num_polys: num_auxiliary_polys,
blinding: false,
};
let permutation_ctl_zs_info = FriPolynomialInfo::from_range(
PERMUTATION_CTL_ORACLE_INDEX,
0..num_perutation_ctl_polys,
);
let auxiliary_polys_info =
FriPolynomialInfo::from_range(AUXILIARY_ORACLE_INDEX, 0..num_auxiliary_polys);
let ctl_zs_info = FriPolynomialInfo::from_range(
PERMUTATION_CTL_ORACLE_INDEX,
num_permutation_batches..num_permutation_batches + num_ctl_zs,
AUXILIARY_ORACLE_INDEX,
num_lookup_columns..num_lookup_columns + num_ctl_zs,
);
let num_quotient_polys = self.num_quotient_polys(inner_config);
@ -185,7 +180,7 @@ pub trait Stark<F: RichField + Extendable<D>, const D: usize>: Sync {
point: zeta,
polynomials: [
trace_info.clone(),
permutation_ctl_zs_info.clone(),
auxiliary_polys_info.clone(),
quotient_info,
]
.concat(),
@ -193,7 +188,7 @@ pub trait Stark<F: RichField + Extendable<D>, const D: usize>: Sync {
let zeta_next = builder.mul_const_extension(g, zeta);
let zeta_next_batch = FriBatchInfoTarget {
point: zeta_next,
polynomials: [trace_info, permutation_ctl_zs_info].concat(),
polynomials: [trace_info, auxiliary_polys_info].concat(),
};
let ctl_last_batch = FriBatchInfoTarget {
point: builder
@ -201,38 +196,24 @@ pub trait Stark<F: RichField + Extendable<D>, const D: usize>: Sync {
polynomials: ctl_zs_info,
};
FriInstanceInfoTarget {
oracles: vec![trace_oracle, permutation_ctl_oracle, quotient_oracle],
oracles: vec![trace_oracle, auxiliary_oracle, quotient_oracle],
batches: vec![zeta_batch, zeta_next_batch, ctl_last_batch],
}
}
/// Pairs of lists of columns that should be permutations of one another. A permutation argument
/// will be used for each such pair. Empty by default.
fn permutation_pairs(&self) -> Vec<PermutationPair> {
fn lookups(&self) -> Vec<Lookup> {
vec![]
}
fn uses_permutation_args(&self) -> bool {
!self.permutation_pairs().is_empty()
fn num_lookup_helper_columns(&self, config: &StarkConfig) -> usize {
self.lookups()
.iter()
.map(|lookup| lookup.num_helper_columns(self.constraint_degree()))
.sum::<usize>()
* config.num_challenges
}
/// The number of permutation argument instances that can be combined into a single constraint.
fn permutation_batch_size(&self) -> usize {
// The permutation argument constraints look like
// Z(x) \prod(...) = Z(g x) \prod(...)
// where each product has a number of terms equal to the batch size. So our batch size
// should be one less than our constraint degree, which happens to be our quotient degree.
self.quotient_degree_factor()
}
fn num_permutation_instances(&self, config: &StarkConfig) -> usize {
self.permutation_pairs().len() * config.num_challenges
}
fn num_permutation_batches(&self, config: &StarkConfig) -> usize {
ceil_div_usize(
self.num_permutation_instances(config),
self.permutation_batch_size(),
)
fn uses_lookups(&self) -> bool {
!self.lookups().is_empty()
}
}

View File

@ -3,24 +3,23 @@ use plonky2::field::packed::PackedField;
use plonky2::hash::hash_types::RichField;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use crate::config::StarkConfig;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::cross_table_lookup::{
eval_cross_table_lookup_checks, eval_cross_table_lookup_checks_circuit, CtlCheckVars,
CtlCheckVarsTarget,
};
use crate::permutation::{
eval_permutation_checks, eval_permutation_checks_circuit, PermutationCheckDataTarget,
PermutationCheckVars,
use crate::lookup::{
eval_lookups_checks, eval_lookups_checks_circuit, Lookup, LookupCheckVars,
LookupCheckVarsTarget,
};
use crate::stark::Stark;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
pub(crate) fn eval_vanishing_poly<F, FE, P, S, const D: usize, const D2: usize>(
stark: &S,
config: &StarkConfig,
vars: StarkEvaluationVars<FE, P, { S::COLUMNS }>,
permutation_vars: Option<PermutationCheckVars<F, FE, P, D2>>,
lookups: &[Lookup],
lookup_vars: Option<LookupCheckVars<F, FE, P, D2>>,
ctl_vars: &[CtlCheckVars<F, FE, P, D2>],
consumer: &mut ConstraintConsumer<P>,
) where
@ -30,14 +29,8 @@ pub(crate) fn eval_vanishing_poly<F, FE, P, S, const D: usize, const D2: usize>(
S: Stark<F, D>,
{
stark.eval_packed_generic(vars, consumer);
if let Some(permutation_vars) = permutation_vars {
eval_permutation_checks::<F, FE, P, S, D, D2>(
stark,
config,
vars,
permutation_vars,
consumer,
);
if let Some(lookup_vars) = lookup_vars {
eval_lookups_checks::<F, FE, P, S, D, D2>(stark, lookups, vars, lookup_vars, consumer);
}
eval_cross_table_lookup_checks::<F, FE, P, S, D, D2>(vars, ctl_vars, consumer);
}
@ -45,9 +38,8 @@ pub(crate) fn eval_vanishing_poly<F, FE, P, S, const D: usize, const D2: usize>(
pub(crate) fn eval_vanishing_poly_circuit<F, S, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
stark: &S,
config: &StarkConfig,
vars: StarkEvaluationTargets<D, { S::COLUMNS }>,
permutation_data: Option<PermutationCheckDataTarget<D>>,
lookup_vars: Option<LookupCheckVarsTarget<D>>,
ctl_vars: &[CtlCheckVarsTarget<F, D>],
consumer: &mut RecursiveConstraintConsumer<F, D>,
) where
@ -56,15 +48,8 @@ pub(crate) fn eval_vanishing_poly_circuit<F, S, const D: usize>(
[(); S::COLUMNS]:,
{
stark.eval_ext_circuit(builder, vars, consumer);
if let Some(permutation_data) = permutation_data {
eval_permutation_checks_circuit::<F, S, D>(
builder,
stark,
config,
vars,
permutation_data,
consumer,
);
if let Some(lookup_vars) = lookup_vars {
eval_lookups_checks_circuit::<F, S, D>(builder, stark, vars, lookup_vars, consumer);
}
eval_cross_table_lookup_checks_circuit::<S, F, D>(builder, vars, ctl_vars, consumer);
}

View File

@ -17,14 +17,14 @@ use crate::config::StarkConfig;
use crate::constraint_consumer::ConstraintConsumer;
use crate::cpu::cpu_stark::CpuStark;
use crate::cpu::kernel::constants::global_metadata::GlobalMetadata;
use crate::cross_table_lookup::{verify_cross_table_lookups, CtlCheckVars};
use crate::cross_table_lookup::{verify_cross_table_lookups, CtlCheckVars, GrandProductChallenge};
use crate::keccak::keccak_stark::KeccakStark;
use crate::keccak_sponge::keccak_sponge_stark::KeccakSpongeStark;
use crate::logic::LogicStark;
use crate::lookup::LookupCheckVars;
use crate::memory::memory_stark::MemoryStark;
use crate::memory::segments::Segment;
use crate::memory::VALUE_LIMBS;
use crate::permutation::{GrandProductChallenge, PermutationCheckVars};
use crate::proof::{
AllProof, AllProofChallenges, PublicValues, StarkOpeningSet, StarkProof, StarkProofChallenges,
};
@ -52,7 +52,7 @@ where
ctl_challenges,
} = all_proof.get_challenges(all_stark, config);
let nums_permutation_zs = all_stark.nums_permutation_zs(config);
let num_lookup_columns = all_stark.num_lookups_helper_columns(config);
let AllStark {
arithmetic_stark,
@ -69,7 +69,7 @@ where
&all_proof.stark_proofs,
cross_table_lookups,
&ctl_challenges,
&nums_permutation_zs,
&num_lookup_columns,
);
verify_stark_proof_with_challenges(
@ -306,8 +306,8 @@ where
let StarkOpeningSet {
local_values,
next_values,
permutation_ctl_zs,
permutation_ctl_zs_next,
auxiliary_polys,
auxiliary_polys_next,
ctl_zs_last,
quotient_polys,
} = &proof.openings;
@ -330,17 +330,18 @@ where
l_0,
l_last,
);
let num_permutation_zs = stark.num_permutation_batches(config);
let permutation_data = stark.uses_permutation_args().then(|| PermutationCheckVars {
local_zs: permutation_ctl_zs[..num_permutation_zs].to_vec(),
next_zs: permutation_ctl_zs_next[..num_permutation_zs].to_vec(),
permutation_challenge_sets: challenges.permutation_challenge_sets.clone().unwrap(),
let num_lookup_columns = stark.num_lookup_helper_columns(config);
let lookup_vars = stark.uses_lookups().then(|| LookupCheckVars {
local_values: auxiliary_polys[..num_lookup_columns].to_vec(),
next_values: auxiliary_polys_next[..num_lookup_columns].to_vec(),
challenges: challenges.lookup_challenges.clone().unwrap(),
});
let lookups = stark.lookups();
eval_vanishing_poly::<F, F::Extension, F::Extension, S, D, D>(
stark,
config,
vars,
permutation_data,
&lookups,
lookup_vars,
ctl_vars,
&mut consumer,
);
@ -366,7 +367,7 @@ where
let merkle_caps = vec![
proof.trace_cap.clone(),
proof.permutation_ctl_zs_cap.clone(),
proof.auxiliary_polys_cap.clone(),
proof.quotient_polys_cap.clone(),
];
@ -402,7 +403,7 @@ where
{
let StarkProof {
trace_cap,
permutation_ctl_zs_cap,
auxiliary_polys_cap,
quotient_polys_cap,
openings,
// The shape of the opening proof will be checked in the FRI verifier (see
@ -413,8 +414,8 @@ where
let StarkOpeningSet {
local_values,
next_values,
permutation_ctl_zs,
permutation_ctl_zs_next,
auxiliary_polys,
auxiliary_polys_next,
ctl_zs_last,
quotient_polys,
} = openings;
@ -422,16 +423,16 @@ where
let degree_bits = proof.recover_degree_bits(config);
let fri_params = config.fri_params(degree_bits);
let cap_height = fri_params.config.cap_height;
let num_zs = num_ctl_zs + stark.num_permutation_batches(config);
let num_auxiliary = num_ctl_zs + stark.num_lookup_helper_columns(config);
ensure!(trace_cap.height() == cap_height);
ensure!(permutation_ctl_zs_cap.height() == cap_height);
ensure!(auxiliary_polys_cap.height() == cap_height);
ensure!(quotient_polys_cap.height() == cap_height);
ensure!(local_values.len() == S::COLUMNS);
ensure!(next_values.len() == S::COLUMNS);
ensure!(permutation_ctl_zs.len() == num_zs);
ensure!(permutation_ctl_zs_next.len() == num_zs);
ensure!(auxiliary_polys.len() == num_auxiliary);
ensure!(auxiliary_polys_next.len() == num_auxiliary);
ensure!(ctl_zs_last.len() == num_ctl_zs);
ensure!(quotient_polys.len() == stark.num_quotient_polys(config));