Quintic extension fields (#489)

* Initial implementation of quintic extensions.

* Update to/from_biguint() methods.

* cargo fmt

* Fix call to test suite.

* Small optimisation in try_inverse().

* Replace multiplicative group generator and document requirement.
This commit is contained in:
Hamish Ivey-Law 2022-02-16 10:38:24 +11:00 committed by GitHub
parent 3f7cefbc6b
commit f4ef692aad
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 309 additions and 0 deletions

View File

@ -5,6 +5,7 @@ use crate::field_types::Field;
pub mod algebra; pub mod algebra;
pub mod quadratic; pub mod quadratic;
pub mod quartic; pub mod quartic;
pub mod quintic;
/// Optimal extension field trait. /// Optimal extension field trait.
/// A degree `d` field extension is optimal if there exists a base field element `W`, /// A degree `d` field extension is optimal if there exists a base field element `W`,
@ -67,6 +68,8 @@ pub trait Extendable<const D: usize>: Field + Sized {
const DTH_ROOT: Self; const DTH_ROOT: Self;
/// Chosen so that when raised to the power `(p^D - 1) >> F::Extension::TWO_ADICITY)`
/// we obtain F::EXT_POWER_OF_TWO_GENERATOR.
const EXT_MULTIPLICATIVE_GROUP_GENERATOR: [Self; D]; const EXT_MULTIPLICATIVE_GROUP_GENERATOR: [Self; D];
/// Chosen so that when raised to the power `1<<(Self::TWO_ADICITY-Self::BaseField::TWO_ADICITY)`, /// Chosen so that when raised to the power `1<<(Self::TWO_ADICITY-Self::BaseField::TWO_ADICITY)`,

View File

@ -0,0 +1,278 @@
use std::fmt::{Debug, Display, Formatter};
use std::iter::{Product, Sum};
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use num::bigint::BigUint;
use num::traits::Pow;
use rand::Rng;
use serde::{Deserialize, Serialize};
use crate::extension_field::{Extendable, FieldExtension, Frobenius, OEF};
use crate::field_types::Field;
use crate::ops::Square;
#[derive(Copy, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct QuinticExtension<F: Extendable<5>>(pub [F; 5]);
impl<F: Extendable<5>> Default for QuinticExtension<F> {
fn default() -> Self {
Self::ZERO
}
}
impl<F: Extendable<5>> OEF<5> for QuinticExtension<F> {
const W: F = F::W;
const DTH_ROOT: F = F::DTH_ROOT;
}
impl<F: Extendable<5>> Frobenius<5> for QuinticExtension<F> {}
impl<F: Extendable<5>> FieldExtension<5> for QuinticExtension<F> {
type BaseField = F;
fn to_basefield_array(&self) -> [F; 5] {
self.0
}
fn from_basefield_array(arr: [F; 5]) -> Self {
Self(arr)
}
fn from_basefield(x: F) -> Self {
x.into()
}
}
impl<F: Extendable<5>> From<F> for QuinticExtension<F> {
fn from(x: F) -> Self {
Self([x, F::ZERO, F::ZERO, F::ZERO, F::ZERO])
}
}
impl<F: Extendable<5>> Field for QuinticExtension<F> {
const ZERO: Self = Self([F::ZERO; 5]);
const ONE: Self = Self([F::ONE, F::ZERO, F::ZERO, F::ZERO, F::ZERO]);
const TWO: Self = Self([F::TWO, F::ZERO, F::ZERO, F::ZERO, F::ZERO]);
const NEG_ONE: Self = Self([F::NEG_ONE, F::ZERO, F::ZERO, F::ZERO, F::ZERO]);
// `p^5 - 1 = (p - 1)(p^4 + p^3 + p^2 + p + 1)`. The `p - 1` term
// has a two-adicity of `F::TWO_ADICITY` and the term `p^4 + p^3 +
// p^2 + p + 1` is odd since it is the sum of an odd number of odd
// terms. Hence the two-adicity of `p^5 - 1` is the same as for
// `p - 1`.
const TWO_ADICITY: usize = F::TWO_ADICITY;
const CHARACTERISTIC_TWO_ADICITY: usize = F::CHARACTERISTIC_TWO_ADICITY;
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self(F::EXT_MULTIPLICATIVE_GROUP_GENERATOR);
const POWER_OF_TWO_GENERATOR: Self = Self(F::EXT_POWER_OF_TWO_GENERATOR);
const BITS: usize = F::BITS * 5;
fn order() -> BigUint {
F::order().pow(5u32)
}
fn characteristic() -> BigUint {
F::characteristic()
}
// Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.
fn try_inverse(&self) -> Option<Self> {
if self.is_zero() {
return None;
}
// Writing 'a' for self:
let d = self.frobenius(); // d = a^p
let e = d * d.frobenius(); // e = a^(p + p^2)
let f = e * e.repeated_frobenius(2); // f = a^(p + p^2 + p^3 + p^4)
// f contains a^(r-1) and a^r is in the base field.
debug_assert!(FieldExtension::<5>::is_in_basefield(&(*self * f)));
// g = a^r is in the base field, so only compute that
// coefficient rather than the full product. The equation is
// extracted from Mul::mul(...) below.
let Self([a0, a1, a2, a3, a4]) = *self;
let Self([b0, b1, b2, b3, b4]) = f;
let g = a0 * b0 + <Self as OEF<5>>::W * (a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1);
Some(FieldExtension::<5>::scalar_mul(&f, g.inverse()))
}
fn from_biguint(n: BigUint) -> Self {
Self([F::from_biguint(n), F::ZERO, F::ZERO, F::ZERO, F::ZERO])
}
fn from_canonical_u64(n: u64) -> Self {
F::from_canonical_u64(n).into()
}
fn from_noncanonical_u128(n: u128) -> Self {
F::from_noncanonical_u128(n).into()
}
fn rand_from_rng<R: Rng>(rng: &mut R) -> Self {
Self::from_basefield_array([
F::rand_from_rng(rng),
F::rand_from_rng(rng),
F::rand_from_rng(rng),
F::rand_from_rng(rng),
F::rand_from_rng(rng),
])
}
}
impl<F: Extendable<5>> Display for QuinticExtension<F> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(
f,
"{} + {}*a + {}*a^2 + {}*a^3 + {}*a^4",
self.0[0], self.0[1], self.0[2], self.0[3], self.0[4]
)
}
}
impl<F: Extendable<5>> Debug for QuinticExtension<F> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
Display::fmt(self, f)
}
}
impl<F: Extendable<5>> Neg for QuinticExtension<F> {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self([-self.0[0], -self.0[1], -self.0[2], -self.0[3], -self.0[4]])
}
}
impl<F: Extendable<5>> Add for QuinticExtension<F> {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self([
self.0[0] + rhs.0[0],
self.0[1] + rhs.0[1],
self.0[2] + rhs.0[2],
self.0[3] + rhs.0[3],
self.0[4] + rhs.0[4],
])
}
}
impl<F: Extendable<5>> AddAssign for QuinticExtension<F> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<F: Extendable<5>> Sum for QuinticExtension<F> {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ZERO, |acc, x| acc + x)
}
}
impl<F: Extendable<5>> Sub for QuinticExtension<F> {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self([
self.0[0] - rhs.0[0],
self.0[1] - rhs.0[1],
self.0[2] - rhs.0[2],
self.0[3] - rhs.0[3],
self.0[4] - rhs.0[4],
])
}
}
impl<F: Extendable<5>> SubAssign for QuinticExtension<F> {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<F: Extendable<5>> Mul for QuinticExtension<F> {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
let Self([a0, a1, a2, a3, a4]) = self;
let Self([b0, b1, b2, b3, b4]) = rhs;
let w = <Self as OEF<5>>::W;
let c0 = a0 * b0 + w * (a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1);
let c1 = a0 * b1 + a1 * b0 + w * (a2 * b4 + a3 * b3 + a4 * b2);
let c2 = a0 * b2 + a1 * b1 + a2 * b0 + w * (a3 * b4 + a4 * b3);
let c3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 + w * a4 * b4;
let c4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0;
Self([c0, c1, c2, c3, c4])
}
}
impl<F: Extendable<5>> MulAssign for QuinticExtension<F> {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<F: Extendable<5>> Square for QuinticExtension<F> {
#[inline(always)]
fn square(&self) -> Self {
let Self([a0, a1, a2, a3, a4]) = *self;
let w = <Self as OEF<5>>::W;
let double_w = <Self as OEF<5>>::W.double();
let c0 = a0.square() + double_w * (a1 * a4 + a2 * a3);
let double_a0 = a0.double();
let c1 = double_a0 * a1 + double_w * a2 * a4 + w * a3 * a3;
let c2 = double_a0 * a2 + a1 * a1 + double_w * a4 * a3;
let double_a1 = a1.double();
let c3 = double_a0 * a3 + double_a1 * a2 + w * a4 * a4;
let c4 = double_a0 * a4 + double_a1 * a3 + a2 * a2;
Self([c0, c1, c2, c3, c4])
}
}
impl<F: Extendable<5>> Product for QuinticExtension<F> {
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ONE, |acc, x| acc * x)
}
}
impl<F: Extendable<5>> Div for QuinticExtension<F> {
type Output = Self;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inverse()
}
}
impl<F: Extendable<5>> DivAssign for QuinticExtension<F> {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
#[cfg(test)]
mod tests {
mod goldilocks {
use crate::{test_field_arithmetic, test_field_extension};
test_field_extension!(crate::goldilocks_field::GoldilocksField, 5);
test_field_arithmetic!(
crate::extension_field::quintic::QuinticExtension<
crate::goldilocks_field::GoldilocksField,
>
);
}
}

View File

@ -11,6 +11,7 @@ use serde::{Deserialize, Serialize};
use crate::extension_field::quadratic::QuadraticExtension; use crate::extension_field::quadratic::QuadraticExtension;
use crate::extension_field::quartic::QuarticExtension; use crate::extension_field::quartic::QuarticExtension;
use crate::extension_field::quintic::QuinticExtension;
use crate::extension_field::{Extendable, Frobenius}; use crate::extension_field::{Extendable, Frobenius};
use crate::field_types::{Field, Field64, PrimeField, PrimeField64}; use crate::field_types::{Field, Field64, PrimeField, PrimeField64};
use crate::inversion::try_inverse_u64; use crate::inversion::try_inverse_u64;
@ -317,6 +318,31 @@ impl Extendable<4> for GoldilocksField {
[Self(0), Self(0), Self(0), Self(12587610116473453104)]; [Self(0), Self(0), Self(0), Self(12587610116473453104)];
} }
impl Extendable<5> for GoldilocksField {
type Extension = QuinticExtension<Self>;
const W: Self = Self(3);
// DTH_ROOT = W^((ORDER - 1)/5)
const DTH_ROOT: Self = Self(1041288259238279555);
const EXT_MULTIPLICATIVE_GROUP_GENERATOR: [Self; 5] = [
Self(2899034827742553394),
Self(13012057356839176729),
Self(14593811582388663055),
Self(7722900811313895436),
Self(4557222484695340057),
];
const EXT_POWER_OF_TWO_GENERATOR: [Self; 5] = [
Self::POWER_OF_TWO_GENERATOR,
Self(0),
Self(0),
Self(0),
Self(0),
];
}
/// Fast addition modulo ORDER for x86-64. /// Fast addition modulo ORDER for x86-64.
/// This function is marked unsafe for the following reasons: /// This function is marked unsafe for the following reasons:
/// - It is only correct if x + y < 2**64 + ORDER = 0x1ffffffff00000001. /// - It is only correct if x + y < 2**64 + ORDER = 0x1ffffffff00000001.

View File

@ -1,5 +1,6 @@
use criterion::{criterion_group, criterion_main, BatchSize, Criterion}; use criterion::{criterion_group, criterion_main, BatchSize, Criterion};
use plonky2::field::extension_field::quartic::QuarticExtension; use plonky2::field::extension_field::quartic::QuarticExtension;
use plonky2::field::extension_field::quintic::QuinticExtension;
use plonky2::field::field_types::Field; use plonky2::field::field_types::Field;
use plonky2::field::goldilocks_field::GoldilocksField; use plonky2::field::goldilocks_field::GoldilocksField;
use tynm::type_name; use tynm::type_name;
@ -175,6 +176,7 @@ pub(crate) fn bench_field<F: Field>(c: &mut Criterion) {
fn criterion_benchmark(c: &mut Criterion) { fn criterion_benchmark(c: &mut Criterion) {
bench_field::<GoldilocksField>(c); bench_field::<GoldilocksField>(c);
bench_field::<QuarticExtension<GoldilocksField>>(c); bench_field::<QuarticExtension<GoldilocksField>>(c);
bench_field::<QuinticExtension<GoldilocksField>>(c);
} }
criterion_group!(benches, criterion_benchmark); criterion_group!(benches, criterion_benchmark);