mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-02 13:53:07 +00:00
Merge pull request #782 from mir-protocol/cyclic_recursion
Cyclic recursion
This commit is contained in:
commit
f4941b010e
@ -55,8 +55,8 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilderGlv<F, D>
|
||||
) {
|
||||
let k1 = self.add_virtual_nonnative_target_sized::<Secp256K1Scalar>(4);
|
||||
let k2 = self.add_virtual_nonnative_target_sized::<Secp256K1Scalar>(4);
|
||||
let k1_neg = self.add_virtual_bool_target();
|
||||
let k2_neg = self.add_virtual_bool_target();
|
||||
let k1_neg = self.add_virtual_bool_target_unsafe();
|
||||
let k2_neg = self.add_virtual_bool_target_unsafe();
|
||||
|
||||
self.add_simple_generator(GLVDecompositionGenerator::<F, D> {
|
||||
k: k.clone(),
|
||||
|
||||
@ -183,7 +183,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilderNonNative<F, D>
|
||||
b: &NonNativeTarget<FF>,
|
||||
) -> NonNativeTarget<FF> {
|
||||
let sum = self.add_virtual_nonnative_target::<FF>();
|
||||
let overflow = self.add_virtual_bool_target();
|
||||
let overflow = self.add_virtual_bool_target_unsafe();
|
||||
|
||||
self.add_simple_generator(NonNativeAdditionGenerator::<F, D, FF> {
|
||||
a: a.clone(),
|
||||
@ -282,7 +282,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilderNonNative<F, D>
|
||||
b: &NonNativeTarget<FF>,
|
||||
) -> NonNativeTarget<FF> {
|
||||
let diff = self.add_virtual_nonnative_target::<FF>();
|
||||
let overflow = self.add_virtual_bool_target();
|
||||
let overflow = self.add_virtual_bool_target_unsafe();
|
||||
|
||||
self.add_simple_generator(NonNativeSubtractionGenerator::<F, D, FF> {
|
||||
a: a.clone(),
|
||||
|
||||
@ -54,7 +54,7 @@ impl FriConfig {
|
||||
|
||||
/// FRI parameters, including generated parameters which are specific to an instance size, in
|
||||
/// contrast to `FriConfig` which is user-specified and independent of instance size.
|
||||
#[derive(Debug, Eq, PartialEq)]
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub struct FriParams {
|
||||
/// User-specified FRI configuration.
|
||||
pub config: FriConfig,
|
||||
|
||||
@ -345,7 +345,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
pub fn is_equal(&mut self, x: Target, y: Target) -> BoolTarget {
|
||||
let zero = self.zero();
|
||||
|
||||
let equal = self.add_virtual_bool_target();
|
||||
let equal = self.add_virtual_bool_target_unsafe();
|
||||
let not_equal = self.not(equal);
|
||||
let inv = self.add_virtual_target();
|
||||
self.add_simple_generator(EqualityGenerator { x, y, equal, inv });
|
||||
|
||||
@ -18,4 +18,5 @@ pub mod gates;
|
||||
pub mod hash;
|
||||
pub mod iop;
|
||||
pub mod plonk;
|
||||
pub mod recursion;
|
||||
pub mod util;
|
||||
|
||||
@ -34,7 +34,7 @@ use crate::iop::target::{BoolTarget, Target};
|
||||
use crate::iop::wire::Wire;
|
||||
use crate::plonk::circuit_data::{
|
||||
CircuitConfig, CircuitData, CommonCircuitData, ProverCircuitData, ProverOnlyCircuitData,
|
||||
VerifierCircuitData, VerifierOnlyCircuitData,
|
||||
VerifierCircuitData, VerifierCircuitTarget, VerifierOnlyCircuitData,
|
||||
};
|
||||
use crate::plonk::config::{GenericConfig, Hasher};
|
||||
use crate::plonk::copy_constraint::CopyConstraint;
|
||||
@ -83,6 +83,15 @@ pub struct CircuitBuilder<F: RichField + Extendable<D>, const D: usize> {
|
||||
|
||||
/// List of constant generators used to fill the constant wires.
|
||||
constant_generators: Vec<ConstantGenerator<F>>,
|
||||
|
||||
/// Optional common data. When it is `Some(goal_data)`, the `build` function panics if the resulting
|
||||
/// common data doesn't equal `goal_data`.
|
||||
/// This is used in cyclic recursion.
|
||||
pub(crate) goal_common_data: Option<CommonCircuitData<F, D>>,
|
||||
|
||||
/// Optional verifier data that is registered as public inputs.
|
||||
/// This is used in cyclic recursion to hold the circuit's own verifier key.
|
||||
pub(crate) verifier_data_public_input: Option<VerifierCircuitTarget>,
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
@ -102,6 +111,8 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
arithmetic_results: HashMap::new(),
|
||||
current_slots: HashMap::new(),
|
||||
constant_generators: Vec::new(),
|
||||
goal_common_data: None,
|
||||
verifier_data_public_input: None,
|
||||
};
|
||||
builder.check_config();
|
||||
builder
|
||||
@ -144,6 +155,10 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
targets.iter().for_each(|&t| self.register_public_input(t));
|
||||
}
|
||||
|
||||
pub fn num_public_inputs(&self) -> usize {
|
||||
self.public_inputs.len()
|
||||
}
|
||||
|
||||
/// Adds a new "virtual" target. This is not an actual wire in the witness, but just a target
|
||||
/// that help facilitate witness generation. In particular, a generator can assign a values to a
|
||||
/// virtual target, which can then be copied to other (virtual or concrete) targets. When we
|
||||
@ -198,8 +213,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
PolynomialCoeffsExtTarget(coeffs)
|
||||
}
|
||||
|
||||
// TODO: Unsafe
|
||||
pub fn add_virtual_bool_target(&mut self) -> BoolTarget {
|
||||
pub fn add_virtual_bool_target_unsafe(&mut self) -> BoolTarget {
|
||||
BoolTarget::new_unsafe(self.add_virtual_target())
|
||||
}
|
||||
|
||||
@ -215,6 +229,21 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
self.register_public_input(t);
|
||||
t
|
||||
}
|
||||
/// Add a virtual verifier data, register it as a public input and set it to `self.verifier_data_public_input`.
|
||||
/// WARNING: Do not register any public input after calling this! TODO: relax this
|
||||
pub(crate) fn add_verifier_data_public_input(&mut self) {
|
||||
let verifier_data = VerifierCircuitTarget {
|
||||
constants_sigmas_cap: self.add_virtual_cap(self.config.fri_config.cap_height),
|
||||
circuit_digest: self.add_virtual_hash(),
|
||||
};
|
||||
// The verifier data are public inputs.
|
||||
self.register_public_inputs(&verifier_data.circuit_digest.elements);
|
||||
for i in 0..self.config.fri_config.num_cap_elements() {
|
||||
self.register_public_inputs(&verifier_data.constants_sigmas_cap.0[i].elements);
|
||||
}
|
||||
|
||||
self.verifier_data_public_input = Some(verifier_data);
|
||||
}
|
||||
|
||||
/// Adds a gate to the circuit, and returns its index.
|
||||
pub fn add_gate<G: Gate<F, D>>(&mut self, gate_type: G, mut constants: Vec<F>) -> usize {
|
||||
@ -827,6 +856,9 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
k_is,
|
||||
num_partial_products,
|
||||
};
|
||||
if let Some(goal_data) = self.goal_common_data {
|
||||
assert_eq!(goal_data, common);
|
||||
}
|
||||
|
||||
let prover_only = ProverOnlyCircuitData {
|
||||
generators: self.generators,
|
||||
|
||||
@ -276,7 +276,7 @@ pub struct ProverOnlyCircuitData<
|
||||
}
|
||||
|
||||
/// Circuit data required by the verifier, but not the prover.
|
||||
#[derive(Debug)]
|
||||
#[derive(Debug, Eq, PartialEq)]
|
||||
pub struct VerifierOnlyCircuitData<C: GenericConfig<D>, const D: usize> {
|
||||
/// A commitment to each constant polynomial and each permutation polynomial.
|
||||
pub constants_sigmas_cap: MerkleCap<C::F, C::Hasher>,
|
||||
@ -286,7 +286,7 @@ pub struct VerifierOnlyCircuitData<C: GenericConfig<D>, const D: usize> {
|
||||
}
|
||||
|
||||
/// Circuit data required by both the prover and the verifier.
|
||||
#[derive(Debug, Eq, PartialEq)]
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub struct CommonCircuitData<F: RichField + Extendable<D>, const D: usize> {
|
||||
pub config: CircuitConfig,
|
||||
|
||||
@ -488,6 +488,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CommonCircuitData<F, D> {
|
||||
/// is intentionally missing certain fields, such as `CircuitConfig`, because we support only a
|
||||
/// limited form of dynamic inner circuits. We can't practically make things like the wire count
|
||||
/// dynamic, at least not without setting a maximum wire count and paying for the worst case.
|
||||
#[derive(Clone)]
|
||||
pub struct VerifierCircuitTarget {
|
||||
/// A commitment to each constant polynomial and each permutation polynomial.
|
||||
pub constants_sigmas_cap: MerkleCapTarget,
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
pub mod circuit_builder;
|
||||
pub mod circuit_data;
|
||||
pub mod conditional_recursive_verifier;
|
||||
pub mod config;
|
||||
pub(crate) mod copy_constraint;
|
||||
mod get_challenges;
|
||||
@ -8,7 +7,6 @@ pub(crate) mod permutation_argument;
|
||||
pub mod plonk_common;
|
||||
pub mod proof;
|
||||
pub mod prover;
|
||||
pub mod recursive_verifier;
|
||||
mod validate_shape;
|
||||
pub(crate) mod vanishing_poly;
|
||||
pub mod vars;
|
||||
|
||||
@ -24,7 +24,6 @@ use crate::plonk::proof::{
|
||||
use crate::with_context;
|
||||
|
||||
/// Generate a proof having a given `CommonCircuitData`.
|
||||
#[allow(unused)] // TODO: should be used soon.
|
||||
pub(crate) fn dummy_proof<
|
||||
F: RichField + Extendable<D>,
|
||||
C: GenericConfig<D, F = F>,
|
||||
@ -183,7 +182,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn select_hash(
|
||||
pub(crate) fn select_hash(
|
||||
&mut self,
|
||||
b: BoolTarget,
|
||||
h0: HashOutTarget,
|
||||
437
plonky2/src/recursion/cyclic_recursion.rs
Normal file
437
plonky2/src/recursion/cyclic_recursion.rs
Normal file
@ -0,0 +1,437 @@
|
||||
#![allow(clippy::int_plus_one)] // Makes more sense for some inequalities below.
|
||||
use anyhow::{ensure, Result};
|
||||
use itertools::Itertools;
|
||||
use plonky2_field::extension::Extendable;
|
||||
|
||||
use crate::gates::noop::NoopGate;
|
||||
use crate::hash::hash_types::{HashOut, HashOutTarget, MerkleCapTarget, RichField};
|
||||
use crate::hash::merkle_tree::MerkleCap;
|
||||
use crate::iop::target::{BoolTarget, Target};
|
||||
use crate::iop::witness::{PartialWitness, Witness};
|
||||
use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
use crate::plonk::circuit_data::{
|
||||
CommonCircuitData, VerifierCircuitTarget, VerifierOnlyCircuitData,
|
||||
};
|
||||
use crate::plonk::config::Hasher;
|
||||
use crate::plonk::config::{AlgebraicHasher, GenericConfig};
|
||||
use crate::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
|
||||
use crate::recursion::conditional_recursive_verifier::dummy_proof;
|
||||
|
||||
pub struct CyclicRecursionData<
|
||||
'a,
|
||||
F: RichField + Extendable<D>,
|
||||
C: GenericConfig<D, F = F>,
|
||||
const D: usize,
|
||||
> {
|
||||
proof: &'a Option<ProofWithPublicInputs<F, C, D>>,
|
||||
verifier_data: &'a VerifierOnlyCircuitData<C, D>,
|
||||
common_data: &'a CommonCircuitData<F, D>,
|
||||
}
|
||||
|
||||
pub struct CyclicRecursionTarget<const D: usize> {
|
||||
pub proof: ProofWithPublicInputsTarget<D>,
|
||||
pub verifier_data: VerifierCircuitTarget,
|
||||
pub dummy_proof: ProofWithPublicInputsTarget<D>,
|
||||
pub dummy_verifier_data: VerifierCircuitTarget,
|
||||
pub base_case: BoolTarget,
|
||||
}
|
||||
|
||||
impl<C: GenericConfig<D>, const D: usize> VerifierOnlyCircuitData<C, D> {
|
||||
fn from_slice(slice: &[C::F], common_data: &CommonCircuitData<C::F, D>) -> Result<Self>
|
||||
where
|
||||
C::Hasher: AlgebraicHasher<C::F>,
|
||||
{
|
||||
// The structure of the public inputs is `[..., circuit_digest, constants_sigmas_cap]`.
|
||||
let cap_len = common_data.config.fri_config.num_cap_elements();
|
||||
let len = slice.len();
|
||||
ensure!(len >= 4 + 4 * cap_len, "Not enough public inputs");
|
||||
let constants_sigmas_cap = MerkleCap(
|
||||
(0..cap_len)
|
||||
.map(|i| HashOut {
|
||||
elements: std::array::from_fn(|j| slice[len - 4 * (cap_len - i) + j]),
|
||||
})
|
||||
.collect(),
|
||||
);
|
||||
let circuit_digest =
|
||||
HashOut::from_partial(&slice[len - 4 - 4 * cap_len..len - 4 * cap_len]);
|
||||
|
||||
Ok(Self {
|
||||
circuit_digest,
|
||||
constants_sigmas_cap,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl VerifierCircuitTarget {
|
||||
fn from_slice<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize>(
|
||||
slice: &[Target],
|
||||
common_data: &CommonCircuitData<F, D>,
|
||||
) -> Result<Self> {
|
||||
let cap_len = common_data.config.fri_config.num_cap_elements();
|
||||
let len = slice.len();
|
||||
ensure!(len >= 4 + 4 * cap_len, "Not enough public inputs");
|
||||
let constants_sigmas_cap = MerkleCapTarget(
|
||||
(0..cap_len)
|
||||
.map(|i| HashOutTarget {
|
||||
elements: std::array::from_fn(|j| slice[len - 4 * (cap_len - i) + j]),
|
||||
})
|
||||
.collect(),
|
||||
);
|
||||
let circuit_digest = HashOutTarget {
|
||||
elements: std::array::from_fn(|i| slice[len - 4 - 4 * cap_len + i]),
|
||||
};
|
||||
|
||||
Ok(Self {
|
||||
circuit_digest,
|
||||
constants_sigmas_cap,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
/// Cyclic recursion gadget.
|
||||
/// WARNING: Do not register any public input after calling this! TODO: relax this
|
||||
pub fn cyclic_recursion<C: GenericConfig<D, F = F>>(
|
||||
&mut self,
|
||||
// Flag set to true for the base case of the cycle where we verify a dummy proof to bootstrap the cycle. Set to false otherwise.
|
||||
base_case: BoolTarget,
|
||||
previous_virtual_public_inputs: &[Target],
|
||||
common_data: &mut CommonCircuitData<F, D>,
|
||||
) -> Result<CyclicRecursionTarget<D>>
|
||||
where
|
||||
C::Hasher: AlgebraicHasher<F>,
|
||||
[(); C::Hasher::HASH_SIZE]:,
|
||||
{
|
||||
if self.verifier_data_public_input.is_none() {
|
||||
self.add_verifier_data_public_input();
|
||||
}
|
||||
let verifier_data = self.verifier_data_public_input.clone().unwrap();
|
||||
common_data.num_public_inputs = self.num_public_inputs();
|
||||
self.goal_common_data = Some(common_data.clone());
|
||||
|
||||
let dummy_verifier_data = VerifierCircuitTarget {
|
||||
constants_sigmas_cap: self.add_virtual_cap(self.config.fri_config.cap_height),
|
||||
circuit_digest: self.add_virtual_hash(),
|
||||
};
|
||||
|
||||
let proof = self.add_virtual_proof_with_pis::<C>(common_data);
|
||||
let dummy_proof = self.add_virtual_proof_with_pis::<C>(common_data);
|
||||
|
||||
let pis = VerifierCircuitTarget::from_slice::<F, C, D>(&proof.public_inputs, common_data)?;
|
||||
// Connect previous verifier data to current one. This guarantees that every proof in the cycle uses the same verifier data.
|
||||
self.connect_hashes(pis.circuit_digest, verifier_data.circuit_digest);
|
||||
for (h0, h1) in pis
|
||||
.constants_sigmas_cap
|
||||
.0
|
||||
.iter()
|
||||
.zip_eq(&verifier_data.constants_sigmas_cap.0)
|
||||
{
|
||||
self.connect_hashes(*h0, *h1);
|
||||
}
|
||||
|
||||
for (x, y) in previous_virtual_public_inputs
|
||||
.iter()
|
||||
.zip(&proof.public_inputs)
|
||||
{
|
||||
self.connect(*x, *y);
|
||||
}
|
||||
|
||||
// Verify the dummy proof if `base_case` is set to true, otherwise verify the "real" proof.
|
||||
self.conditionally_verify_proof::<C>(
|
||||
base_case,
|
||||
&dummy_proof,
|
||||
&dummy_verifier_data,
|
||||
&proof,
|
||||
&verifier_data,
|
||||
common_data,
|
||||
);
|
||||
|
||||
// Make sure we have enough gates to match `common_data`.
|
||||
while self.num_gates() < (common_data.degree() / 2) {
|
||||
self.add_gate(NoopGate, vec![]);
|
||||
}
|
||||
// Make sure we have every gate to match `common_data`.
|
||||
for g in &common_data.gates {
|
||||
self.add_gate_to_gate_set(g.clone());
|
||||
}
|
||||
|
||||
Ok(CyclicRecursionTarget {
|
||||
proof,
|
||||
verifier_data: verifier_data.clone(),
|
||||
dummy_proof,
|
||||
dummy_verifier_data,
|
||||
base_case,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Set the targets in a `CyclicRecursionTarget` to their corresponding values in a `CyclicRecursionData`.
|
||||
pub fn set_cyclic_recursion_data_target<
|
||||
F: RichField + Extendable<D>,
|
||||
C: GenericConfig<D, F = F>,
|
||||
const D: usize,
|
||||
>(
|
||||
pw: &mut PartialWitness<F>,
|
||||
cyclic_recursion_data_target: &CyclicRecursionTarget<D>,
|
||||
cyclic_recursion_data: &CyclicRecursionData<F, C, D>,
|
||||
// Public inputs to set in the base case to seed some initial data.
|
||||
public_inputs: &[F],
|
||||
) -> Result<()>
|
||||
where
|
||||
C::Hasher: AlgebraicHasher<F>,
|
||||
[(); C::Hasher::HASH_SIZE]:,
|
||||
{
|
||||
if let Some(proof) = cyclic_recursion_data.proof {
|
||||
pw.set_bool_target(cyclic_recursion_data_target.base_case, false);
|
||||
pw.set_proof_with_pis_target(&cyclic_recursion_data_target.proof, proof);
|
||||
pw.set_verifier_data_target(
|
||||
&cyclic_recursion_data_target.verifier_data,
|
||||
cyclic_recursion_data.verifier_data,
|
||||
);
|
||||
pw.set_proof_with_pis_target(&cyclic_recursion_data_target.dummy_proof, proof);
|
||||
pw.set_verifier_data_target(
|
||||
&cyclic_recursion_data_target.dummy_verifier_data,
|
||||
cyclic_recursion_data.verifier_data,
|
||||
);
|
||||
} else {
|
||||
let (dummy_proof, dummy_data) = dummy_proof::<F, C, D>(cyclic_recursion_data.common_data)?;
|
||||
pw.set_bool_target(cyclic_recursion_data_target.base_case, true);
|
||||
let mut proof = dummy_proof.clone();
|
||||
proof.public_inputs[0..public_inputs.len()].copy_from_slice(public_inputs);
|
||||
let pis_len = proof.public_inputs.len();
|
||||
// The circuit checks that the verifier data is the same throughout the cycle, so
|
||||
// we set the verifier data to the "real" verifier data even though it's unused in the base case.
|
||||
let num_cap = cyclic_recursion_data
|
||||
.common_data
|
||||
.config
|
||||
.fri_config
|
||||
.num_cap_elements();
|
||||
let s = pis_len - 4 - 4 * num_cap;
|
||||
proof.public_inputs[s..s + 4]
|
||||
.copy_from_slice(&cyclic_recursion_data.verifier_data.circuit_digest.elements);
|
||||
for i in 0..num_cap {
|
||||
proof.public_inputs[s + 4 * (1 + i)..s + 4 * (2 + i)].copy_from_slice(
|
||||
&cyclic_recursion_data.verifier_data.constants_sigmas_cap.0[i].elements,
|
||||
);
|
||||
}
|
||||
|
||||
pw.set_proof_with_pis_target(&cyclic_recursion_data_target.proof, &proof);
|
||||
pw.set_verifier_data_target(
|
||||
&cyclic_recursion_data_target.verifier_data,
|
||||
cyclic_recursion_data.verifier_data,
|
||||
);
|
||||
pw.set_proof_with_pis_target(&cyclic_recursion_data_target.dummy_proof, &dummy_proof);
|
||||
pw.set_verifier_data_target(
|
||||
&cyclic_recursion_data_target.dummy_verifier_data,
|
||||
&dummy_data,
|
||||
);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Additional checks to be performed on a cyclic recursive proof in addition to verifying the proof.
|
||||
/// Checks that the `base_case` flag is boolean and that the purported verifier data in the public inputs
|
||||
/// match the real verifier data.
|
||||
pub fn check_cyclic_proof_verifier_data<
|
||||
F: RichField + Extendable<D>,
|
||||
C: GenericConfig<D, F = F>,
|
||||
const D: usize,
|
||||
>(
|
||||
proof: &ProofWithPublicInputs<F, C, D>,
|
||||
verifier_data: &VerifierOnlyCircuitData<C, D>,
|
||||
common_data: &CommonCircuitData<F, D>,
|
||||
) -> Result<()>
|
||||
where
|
||||
C::Hasher: AlgebraicHasher<F>,
|
||||
{
|
||||
let pis = VerifierOnlyCircuitData::<C, D>::from_slice(&proof.public_inputs, common_data)?;
|
||||
ensure!(verifier_data.constants_sigmas_cap == pis.constants_sigmas_cap);
|
||||
ensure!(verifier_data.circuit_digest == pis.circuit_digest);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use anyhow::Result;
|
||||
use plonky2_field::extension::Extendable;
|
||||
use plonky2_field::types::PrimeField64;
|
||||
|
||||
use crate::field::types::Field;
|
||||
use crate::gates::noop::NoopGate;
|
||||
use crate::hash::hash_types::RichField;
|
||||
use crate::hash::hashing::hash_n_to_hash_no_pad;
|
||||
use crate::hash::poseidon::{PoseidonHash, PoseidonPermutation};
|
||||
use crate::iop::witness::PartialWitness;
|
||||
use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
use crate::plonk::circuit_data::{CircuitConfig, CommonCircuitData, VerifierCircuitTarget};
|
||||
use crate::plonk::config::{AlgebraicHasher, GenericConfig, Hasher, PoseidonGoldilocksConfig};
|
||||
use crate::recursion::cyclic_recursion::{
|
||||
check_cyclic_proof_verifier_data, set_cyclic_recursion_data_target, CyclicRecursionData,
|
||||
};
|
||||
|
||||
// Generates `CommonCircuitData` usable for recursion.
|
||||
fn common_data_for_recursion<
|
||||
F: RichField + Extendable<D>,
|
||||
C: GenericConfig<D, F = F>,
|
||||
const D: usize,
|
||||
>() -> CommonCircuitData<F, D>
|
||||
where
|
||||
C::Hasher: AlgebraicHasher<F>,
|
||||
[(); C::Hasher::HASH_SIZE]:,
|
||||
{
|
||||
let config = CircuitConfig::standard_recursion_config();
|
||||
let builder = CircuitBuilder::<F, D>::new(config);
|
||||
let data = builder.build::<C>();
|
||||
let config = CircuitConfig::standard_recursion_config();
|
||||
let mut builder = CircuitBuilder::<F, D>::new(config);
|
||||
let proof = builder.add_virtual_proof_with_pis::<C>(&data.common);
|
||||
let verifier_data = VerifierCircuitTarget {
|
||||
constants_sigmas_cap: builder.add_virtual_cap(data.common.config.fri_config.cap_height),
|
||||
circuit_digest: builder.add_virtual_hash(),
|
||||
};
|
||||
builder.verify_proof::<C>(proof, &verifier_data, &data.common);
|
||||
let data = builder.build::<C>();
|
||||
|
||||
let config = CircuitConfig::standard_recursion_config();
|
||||
let mut builder = CircuitBuilder::<F, D>::new(config);
|
||||
let proof = builder.add_virtual_proof_with_pis::<C>(&data.common);
|
||||
let verifier_data = VerifierCircuitTarget {
|
||||
constants_sigmas_cap: builder.add_virtual_cap(data.common.config.fri_config.cap_height),
|
||||
circuit_digest: builder.add_virtual_hash(),
|
||||
};
|
||||
builder.verify_proof::<C>(proof, &verifier_data, &data.common);
|
||||
while builder.num_gates() < 1 << 12 {
|
||||
builder.add_gate(NoopGate, vec![]);
|
||||
}
|
||||
builder.build::<C>().common
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cyclic_recursion() -> Result<()> {
|
||||
const D: usize = 2;
|
||||
type C = PoseidonGoldilocksConfig;
|
||||
type F = <C as GenericConfig<D>>::F;
|
||||
|
||||
let config = CircuitConfig::standard_recursion_config();
|
||||
let mut pw = PartialWitness::new();
|
||||
let mut builder = CircuitBuilder::<F, D>::new(config);
|
||||
|
||||
// Circuit that computes a repeated hash.
|
||||
let initial_hash = builder.add_virtual_hash();
|
||||
builder.register_public_inputs(&initial_hash.elements);
|
||||
// Hash from the previous proof.
|
||||
let old_hash = builder.add_virtual_hash();
|
||||
// The input hash is either the previous hash or the initial hash depending on whether
|
||||
// the last proof was a base case.
|
||||
let input_hash = builder.add_virtual_hash();
|
||||
let h = builder.hash_n_to_hash_no_pad::<PoseidonHash>(input_hash.elements.to_vec());
|
||||
builder.register_public_inputs(&h.elements);
|
||||
// Previous counter.
|
||||
let old_counter = builder.add_virtual_target();
|
||||
let one = builder.one();
|
||||
let new_counter = builder.add_virtual_public_input();
|
||||
let old_pis = [
|
||||
initial_hash.elements.as_slice(),
|
||||
old_hash.elements.as_slice(),
|
||||
[old_counter].as_slice(),
|
||||
]
|
||||
.concat();
|
||||
|
||||
let mut common_data = common_data_for_recursion::<F, C, D>();
|
||||
|
||||
let base_case = builder.add_virtual_bool_target_safe();
|
||||
// Add cyclic recursion gadget.
|
||||
let cyclic_data_target =
|
||||
builder.cyclic_recursion::<C>(base_case, &old_pis, &mut common_data)?;
|
||||
let input_hash_bis =
|
||||
builder.select_hash(cyclic_data_target.base_case, initial_hash, old_hash);
|
||||
builder.connect_hashes(input_hash, input_hash_bis);
|
||||
let not_base_case = builder.sub(one, cyclic_data_target.base_case.target);
|
||||
// New counter is the previous counter +1 if the previous proof wasn't a base case.
|
||||
let new_counter_bis = builder.add(old_counter, not_base_case);
|
||||
builder.connect(new_counter, new_counter_bis);
|
||||
|
||||
let cyclic_circuit_data = builder.build::<C>();
|
||||
|
||||
let cyclic_recursion_data = CyclicRecursionData {
|
||||
proof: &None, // Base case: We don't have a proof to put here yet.
|
||||
verifier_data: &cyclic_circuit_data.verifier_only,
|
||||
common_data: &cyclic_circuit_data.common,
|
||||
};
|
||||
let initial_hash = [F::ZERO, F::ONE, F::TWO, F::from_canonical_usize(3)];
|
||||
set_cyclic_recursion_data_target(
|
||||
&mut pw,
|
||||
&cyclic_data_target,
|
||||
&cyclic_recursion_data,
|
||||
&initial_hash,
|
||||
)?;
|
||||
let proof = cyclic_circuit_data.prove(pw)?;
|
||||
check_cyclic_proof_verifier_data(
|
||||
&proof,
|
||||
cyclic_recursion_data.verifier_data,
|
||||
cyclic_recursion_data.common_data,
|
||||
)?;
|
||||
cyclic_circuit_data.verify(proof.clone())?;
|
||||
|
||||
// 1st recursive layer.
|
||||
let mut pw = PartialWitness::new();
|
||||
let cyclic_recursion_data = CyclicRecursionData {
|
||||
proof: &Some(proof), // Input previous proof.
|
||||
verifier_data: &cyclic_circuit_data.verifier_only,
|
||||
common_data: &cyclic_circuit_data.common,
|
||||
};
|
||||
set_cyclic_recursion_data_target(
|
||||
&mut pw,
|
||||
&cyclic_data_target,
|
||||
&cyclic_recursion_data,
|
||||
&[],
|
||||
)?;
|
||||
let proof = cyclic_circuit_data.prove(pw)?;
|
||||
check_cyclic_proof_verifier_data(
|
||||
&proof,
|
||||
cyclic_recursion_data.verifier_data,
|
||||
cyclic_recursion_data.common_data,
|
||||
)?;
|
||||
cyclic_circuit_data.verify(proof.clone())?;
|
||||
|
||||
// 2nd recursive layer.
|
||||
let mut pw = PartialWitness::new();
|
||||
let cyclic_recursion_data = CyclicRecursionData {
|
||||
proof: &Some(proof), // Input previous proof.
|
||||
verifier_data: &cyclic_circuit_data.verifier_only,
|
||||
common_data: &cyclic_circuit_data.common,
|
||||
};
|
||||
set_cyclic_recursion_data_target(
|
||||
&mut pw,
|
||||
&cyclic_data_target,
|
||||
&cyclic_recursion_data,
|
||||
&[],
|
||||
)?;
|
||||
let proof = cyclic_circuit_data.prove(pw)?;
|
||||
check_cyclic_proof_verifier_data(
|
||||
&proof,
|
||||
cyclic_recursion_data.verifier_data,
|
||||
cyclic_recursion_data.common_data,
|
||||
)?;
|
||||
|
||||
// Verify that the proof correctly computes a repeated hash.
|
||||
let initial_hash = &proof.public_inputs[..4];
|
||||
let hash = &proof.public_inputs[4..8];
|
||||
let counter = proof.public_inputs[8];
|
||||
let mut h: [F; 4] = initial_hash.try_into().unwrap();
|
||||
assert_eq!(
|
||||
hash,
|
||||
std::iter::repeat_with(|| {
|
||||
h = hash_n_to_hash_no_pad::<F, PoseidonPermutation>(&h).elements;
|
||||
h
|
||||
})
|
||||
.nth(counter.to_canonical_u64() as usize)
|
||||
.unwrap()
|
||||
);
|
||||
|
||||
cyclic_circuit_data.verify(proof)
|
||||
}
|
||||
}
|
||||
3
plonky2/src/recursion/mod.rs
Normal file
3
plonky2/src/recursion/mod.rs
Normal file
@ -0,0 +1,3 @@
|
||||
pub mod conditional_recursive_verifier;
|
||||
pub mod cyclic_recursion;
|
||||
pub mod recursive_verifier;
|
||||
Loading…
x
Reference in New Issue
Block a user