mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-10 17:53:06 +00:00
Merge branch 'main' of github.com:mir-protocol/plonky2 into bls-fp2
This commit is contained in:
commit
f265041845
@ -3,15 +3,22 @@
|
||||
// Creates a new sub context and executes the code of the given account.
|
||||
global sys_call:
|
||||
// stack: kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size
|
||||
// TODO: Charge gas.
|
||||
SWAP2
|
||||
// stack: address, gas, kexit_info, value, args_offset, args_size, ret_offset, ret_size
|
||||
%u256_to_addr // Truncate to 160 bits
|
||||
DUP1 %insert_accessed_addresses POP // TODO: Use return value in gas calculation.
|
||||
SWAP2
|
||||
// stack: kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size
|
||||
DUP1 %insert_accessed_addresses
|
||||
|
||||
%call_charge_gas
|
||||
|
||||
%stack (kexit_info, callgas, address, value, args_offset, args_size, ret_offset, ret_size) ->
|
||||
(args_size, args_offset, kexit_info, callgas, address, value, args_offset, args_size, ret_offset, ret_size)
|
||||
%checked_mem_expansion
|
||||
%stack (kexit_info, callgas, address, value, args_offset, args_size, ret_offset, ret_size) ->
|
||||
(ret_size, ret_offset, kexit_info, callgas, address, value, args_offset, args_size, ret_offset, ret_size)
|
||||
%checked_mem_expansion
|
||||
|
||||
%create_context
|
||||
// stack: new_ctx, kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size
|
||||
// stack: new_ctx, kexit_info, callgas, address, value, args_offset, args_size, ret_offset, ret_size
|
||||
// TODO: Consider call depth
|
||||
|
||||
// Each line in the block below does not change the stack.
|
||||
@ -20,15 +27,15 @@ global sys_call:
|
||||
DUP5 %set_new_ctx_value
|
||||
DUP5 DUP5 %address %transfer_eth %jumpi(panic) // TODO: Fix this panic.
|
||||
%set_new_ctx_parent_pc(after_call_instruction)
|
||||
DUP3 %set_new_ctx_gas_limit // TODO: This is not correct in most cases. Use C_callgas as in the YP.
|
||||
DUP3 %set_new_ctx_gas_limit
|
||||
DUP4 %set_new_ctx_code
|
||||
|
||||
%stack (new_ctx, kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size) ->
|
||||
(new_ctx, args_offset, args_size, new_ctx, kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size)
|
||||
%stack (new_ctx, kexit_info, callgas, address, value, args_offset, args_size, ret_offset, ret_size) ->
|
||||
(new_ctx, args_offset, args_size, new_ctx, kexit_info, callgas, address, value, args_offset, args_size, ret_offset, ret_size)
|
||||
%copy_mem_to_calldata
|
||||
|
||||
// stack: new_ctx, kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size
|
||||
%stack (new_ctx, kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size)
|
||||
// stack: new_ctx, kexit_info, callgas, address, value, args_offset, args_size, ret_offset, ret_size
|
||||
%stack (new_ctx, kexit_info, callgas, address, value, args_offset, args_size, ret_offset, ret_size)
|
||||
-> (new_ctx, kexit_info, ret_offset, ret_size)
|
||||
%enter_new_ctx
|
||||
|
||||
@ -117,7 +124,7 @@ global after_call_instruction:
|
||||
SWAP3
|
||||
// stack: kexit_info, leftover_gas, new_ctx, success, ret_offset, ret_size
|
||||
// Add the leftover gas into the appropriate bits of kexit_info.
|
||||
SWAP1 %shl_const(192) ADD
|
||||
SWAP1 %shl_const(192) SWAP1 SUB
|
||||
// stack: kexit_info, new_ctx, success, ret_offset, ret_size
|
||||
|
||||
// The callee's terminal instruction will have populated RETURNDATA.
|
||||
@ -250,3 +257,78 @@ global after_call_instruction:
|
||||
%jump(memcpy)
|
||||
%%after:
|
||||
%endmacro
|
||||
|
||||
// Charge gas for *call opcodes and return the sub-context gas limit.
|
||||
// Doesn't include memory expansion costs.
|
||||
%macro call_charge_gas
|
||||
// Compute C_aaccess
|
||||
// stack: cold_access, address, gas, kexit_info, value, args_offset, args_size, ret_offset, ret_size
|
||||
%mul_const(@GAS_COLDACCOUNTACCESS_MINUS_WARMACCESS)
|
||||
%add_const(@GAS_WARMACCESS)
|
||||
|
||||
// Compute C_xfer
|
||||
// stack: Caaccess, address, gas, kexit_info, value
|
||||
DUP5 ISZERO PUSH 1 SUB
|
||||
// stack: value≠0, Caaccess, address, gas, kexit_info, value
|
||||
DUP1
|
||||
%mul_const(@GAS_CALLVALUE)
|
||||
|
||||
// Compute C_new
|
||||
// stack: Cxfer, value≠0, Caaccess, address, gas, kexit_info, value
|
||||
SWAP1
|
||||
// stack: value≠0, Cxfer, Caaccess, address, gas, kexit_info, value
|
||||
DUP4 %is_dead MUL
|
||||
// stack: is_dead(address) and value≠0, Cxfer, Caaccess, address, gas, kexit_info, value
|
||||
%mul_const(@GAS_NEWACCOUNT)
|
||||
// stack: Cnew, Cxfer, Caaccess, address, gas, kexit_info, value
|
||||
|
||||
// Compute C_extra
|
||||
ADD ADD
|
||||
|
||||
// Compute C_gascap
|
||||
// stack: Cextra, address, gas, kexit_info, value
|
||||
DUP4 %leftover_gas
|
||||
// stack: leftover_gas, Cextra, address, gas, kexit_info, value
|
||||
DUP2 DUP2 LT
|
||||
// stack: leftover_gas<Cextra, leftover_gas, Cextra, address, gas, kexit_info, value
|
||||
DUP5 DUP2 MUL
|
||||
// stack: (leftover_gas<Cextra)*gas, leftover_gas<Cextra, leftover_gas, Cextra, address, gas, kexit_info, value
|
||||
SWAP1 PUSH 1 SUB
|
||||
// stack: leftover_gas>=Cextra, (leftover_gas<Cextra)*gas, leftover_gas, Cextra, address, gas, kexit_info, value
|
||||
DUP4 DUP4 SUB
|
||||
// stack: leftover_gas - Cextra, leftover_gas>=Cextra, (leftover_gas<Cextra)*gas, leftover_gas, Cextra, address, gas, kexit_info, value
|
||||
%all_but_one_64th
|
||||
// stack: L(leftover_gas - Cextra), leftover_gas>=Cextra, (leftover_gas<Cextra)*gas, leftover_gas, Cextra, address, gas, kexit_info, value
|
||||
DUP7 %min MUL ADD
|
||||
// stack: Cgascap, leftover_gas, Cextra, address, gas, kexit_info, value
|
||||
|
||||
// Compute C_call and charge for it.
|
||||
%stack (Cgascap, leftover_gas, Cextra) -> (Cextra, Cgascap, Cgascap)
|
||||
ADD
|
||||
%stack (C_call, Cgascap, address, gas, kexit_info, value) ->
|
||||
(C_call, kexit_info, Cgascap, address, gas, value)
|
||||
%charge_gas
|
||||
|
||||
// Compute C_callgas
|
||||
%stack (kexit_info, Cgascap, address, gas, value) ->
|
||||
(Cgascap, address, gas, kexit_info, value)
|
||||
DUP5 ISZERO PUSH 1 SUB
|
||||
// stack: value!=0, Cgascap, address, gas, kexit_info, value
|
||||
%mul_const(@GAS_CALLSTIPEND) ADD
|
||||
%stack (C_callgas, address, gas, kexit_info, value) ->
|
||||
(kexit_info, C_callgas, address, value)
|
||||
%endmacro
|
||||
|
||||
// Checked memory expansion.
|
||||
%macro checked_mem_expansion
|
||||
// stack: size, offset, kexit_info
|
||||
DUP1 ISZERO %jumpi(%%zero)
|
||||
ADD // TODO: check for overflow
|
||||
// stack: expanded_num_bytes, kexit_info
|
||||
DUP1 %ensure_reasonable_offset
|
||||
%update_mem_bytes
|
||||
%jump(%%after)
|
||||
%%zero:
|
||||
%pop2
|
||||
%%after:
|
||||
%endmacro
|
||||
|
||||
@ -66,4 +66,4 @@
|
||||
DUP1 %is_non_existent
|
||||
SWAP1 %is_empty
|
||||
ADD // OR
|
||||
%endmacro
|
||||
%endmacro
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
//! An EVM interpreter for testing and debugging purposes.
|
||||
|
||||
use core::cmp::Ordering;
|
||||
use std::collections::HashMap;
|
||||
use std::ops::Range;
|
||||
|
||||
@ -305,20 +306,20 @@ impl<'a> Interpreter<'a> {
|
||||
0x02 => self.run_mul(), // "MUL",
|
||||
0x03 => self.run_sub(), // "SUB",
|
||||
0x04 => self.run_div(), // "DIV",
|
||||
0x05 => todo!(), // "SDIV",
|
||||
0x05 => self.run_sdiv(), // "SDIV",
|
||||
0x06 => self.run_mod(), // "MOD",
|
||||
0x07 => todo!(), // "SMOD",
|
||||
0x07 => self.run_smod(), // "SMOD",
|
||||
0x08 => self.run_addmod(), // "ADDMOD",
|
||||
0x09 => self.run_mulmod(), // "MULMOD",
|
||||
0x0a => self.run_exp(), // "EXP",
|
||||
0x0b => todo!(), // "SIGNEXTEND",
|
||||
0x0b => self.run_signextend(), // "SIGNEXTEND",
|
||||
0x0c => self.run_addfp254(), // "ADDFP254",
|
||||
0x0d => self.run_mulfp254(), // "MULFP254",
|
||||
0x0e => self.run_subfp254(), // "SUBFP254",
|
||||
0x10 => self.run_lt(), // "LT",
|
||||
0x11 => self.run_gt(), // "GT",
|
||||
0x12 => todo!(), // "SLT",
|
||||
0x13 => todo!(), // "SGT",
|
||||
0x12 => self.run_slt(), // "SLT",
|
||||
0x13 => self.run_sgt(), // "SGT",
|
||||
0x14 => self.run_eq(), // "EQ",
|
||||
0x15 => self.run_iszero(), // "ISZERO",
|
||||
0x16 => self.run_and(), // "AND",
|
||||
@ -328,7 +329,7 @@ impl<'a> Interpreter<'a> {
|
||||
0x1a => self.run_byte(), // "BYTE",
|
||||
0x1b => self.run_shl(), // "SHL",
|
||||
0x1c => self.run_shr(), // "SHR",
|
||||
0x1d => todo!(), // "SAR",
|
||||
0x1d => self.run_sar(), // "SAR",
|
||||
0x20 => self.run_keccak256(), // "KECCAK256",
|
||||
0x21 => self.run_keccak_general(), // "KECCAK_GENERAL",
|
||||
0x30 => todo!(), // "ADDRESS",
|
||||
@ -467,12 +468,75 @@ impl<'a> Interpreter<'a> {
|
||||
self.push(if y.is_zero() { U256::zero() } else { x / y });
|
||||
}
|
||||
|
||||
fn run_sdiv(&mut self) {
|
||||
let mut x = self.pop();
|
||||
let mut y = self.pop();
|
||||
|
||||
let y_is_zero = y.is_zero();
|
||||
|
||||
if y_is_zero {
|
||||
self.push(U256::zero());
|
||||
} else if y.eq(&MINUS_ONE) && x.eq(&MIN_VALUE) {
|
||||
self.push(MIN_VALUE);
|
||||
} else {
|
||||
let x_is_pos = x.eq(&(x & SIGN_MASK));
|
||||
let y_is_pos = y.eq(&(y & SIGN_MASK));
|
||||
|
||||
// We compute the absolute quotient first,
|
||||
// then adapt its sign based on the operands.
|
||||
if !x_is_pos {
|
||||
x = two_complement(x);
|
||||
}
|
||||
if !y_is_pos {
|
||||
y = two_complement(y);
|
||||
}
|
||||
let div = x / y;
|
||||
if div.eq(&U256::zero()) {
|
||||
self.push(U256::zero());
|
||||
}
|
||||
|
||||
self.push(if x_is_pos == y_is_pos {
|
||||
div
|
||||
} else {
|
||||
two_complement(div)
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
fn run_mod(&mut self) {
|
||||
let x = self.pop();
|
||||
let y = self.pop();
|
||||
self.push(if y.is_zero() { U256::zero() } else { x % y });
|
||||
}
|
||||
|
||||
fn run_smod(&mut self) {
|
||||
let mut x = self.pop();
|
||||
let mut y = self.pop();
|
||||
|
||||
if y.is_zero() {
|
||||
self.push(U256::zero());
|
||||
} else {
|
||||
let x_is_pos = x.eq(&(x & SIGN_MASK));
|
||||
let y_is_pos = y.eq(&(y & SIGN_MASK));
|
||||
|
||||
// We compute the absolute remainder first,
|
||||
// then adapt its sign based on the operands.
|
||||
if !x_is_pos {
|
||||
x = two_complement(x);
|
||||
}
|
||||
if !y_is_pos {
|
||||
y = two_complement(y);
|
||||
}
|
||||
let rem = x % y;
|
||||
if rem.eq(&U256::zero()) {
|
||||
self.push(U256::zero());
|
||||
}
|
||||
|
||||
// Remainder always has the same sign as the dividend.
|
||||
self.push(if x_is_pos { rem } else { two_complement(rem) });
|
||||
}
|
||||
}
|
||||
|
||||
fn run_addmod(&mut self) {
|
||||
let x = U512::from(self.pop());
|
||||
let y = U512::from(self.pop());
|
||||
@ -513,6 +577,43 @@ impl<'a> Interpreter<'a> {
|
||||
self.push_bool(x > y);
|
||||
}
|
||||
|
||||
fn run_slt(&mut self) {
|
||||
let x = self.pop();
|
||||
let y = self.pop();
|
||||
self.push_bool(signed_cmp(x, y) == Ordering::Less);
|
||||
}
|
||||
|
||||
fn run_sgt(&mut self) {
|
||||
let x = self.pop();
|
||||
let y = self.pop();
|
||||
self.push_bool(signed_cmp(x, y) == Ordering::Greater);
|
||||
}
|
||||
|
||||
fn run_signextend(&mut self) {
|
||||
let n = self.pop();
|
||||
let x = self.pop();
|
||||
if n > U256::from(31) {
|
||||
self.push(x);
|
||||
} else {
|
||||
let n = n.low_u64() as usize;
|
||||
let num_bytes_prepend = 31 - n;
|
||||
|
||||
let mut x_bytes = [0u8; 32];
|
||||
x.to_big_endian(&mut x_bytes);
|
||||
let x_bytes = x_bytes[num_bytes_prepend..].to_vec();
|
||||
let sign_bit = x_bytes[0] >> 7;
|
||||
|
||||
let mut bytes = if sign_bit == 0 {
|
||||
vec![0; num_bytes_prepend]
|
||||
} else {
|
||||
vec![0xff; num_bytes_prepend]
|
||||
};
|
||||
bytes.extend_from_slice(&x_bytes);
|
||||
|
||||
self.push(U256::from_big_endian(&bytes));
|
||||
}
|
||||
}
|
||||
|
||||
fn run_eq(&mut self) {
|
||||
let x = self.pop();
|
||||
let y = self.pop();
|
||||
@ -574,6 +675,30 @@ impl<'a> Interpreter<'a> {
|
||||
self.push(value >> shift);
|
||||
}
|
||||
|
||||
fn run_sar(&mut self) {
|
||||
let shift = self.pop();
|
||||
let value = self.pop();
|
||||
let value_is_neg = !value.eq(&(value & SIGN_MASK));
|
||||
|
||||
if shift < U256::from(256usize) {
|
||||
let shift = shift.low_u64() as usize;
|
||||
let mask = !(MINUS_ONE >> shift);
|
||||
let value_shifted = value >> shift;
|
||||
|
||||
if value_is_neg {
|
||||
self.push(value_shifted | mask);
|
||||
} else {
|
||||
self.push(value_shifted);
|
||||
};
|
||||
} else {
|
||||
self.push(if value_is_neg {
|
||||
MINUS_ONE
|
||||
} else {
|
||||
U256::zero()
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
fn run_keccak256(&mut self) {
|
||||
let offset = self.pop().as_usize();
|
||||
let size = self.pop().as_usize();
|
||||
@ -837,6 +962,70 @@ impl<'a> Interpreter<'a> {
|
||||
}
|
||||
}
|
||||
|
||||
// Computes the two's complement of the given integer.
|
||||
fn two_complement(x: U256) -> U256 {
|
||||
let flipped_bits = x ^ MINUS_ONE;
|
||||
flipped_bits.overflowing_add(U256::one()).0
|
||||
}
|
||||
|
||||
fn signed_cmp(x: U256, y: U256) -> Ordering {
|
||||
let x_is_zero = x.is_zero();
|
||||
let y_is_zero = y.is_zero();
|
||||
|
||||
if x_is_zero && y_is_zero {
|
||||
return Ordering::Equal;
|
||||
}
|
||||
|
||||
let x_is_pos = x.eq(&(x & SIGN_MASK));
|
||||
let y_is_pos = y.eq(&(y & SIGN_MASK));
|
||||
|
||||
if x_is_zero {
|
||||
if y_is_pos {
|
||||
return Ordering::Less;
|
||||
} else {
|
||||
return Ordering::Greater;
|
||||
}
|
||||
};
|
||||
|
||||
if y_is_zero {
|
||||
if x_is_pos {
|
||||
return Ordering::Greater;
|
||||
} else {
|
||||
return Ordering::Less;
|
||||
}
|
||||
};
|
||||
|
||||
match (x_is_pos, y_is_pos) {
|
||||
(true, true) => x.cmp(&y),
|
||||
(true, false) => Ordering::Greater,
|
||||
(false, true) => Ordering::Less,
|
||||
(false, false) => x.cmp(&y).reverse(),
|
||||
}
|
||||
}
|
||||
|
||||
/// -1 in two's complement representation consists in all bits set to 1.
|
||||
const MINUS_ONE: U256 = U256([
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
]);
|
||||
|
||||
/// -2^255 in two's complement representation consists in the MSB set to 1.
|
||||
const MIN_VALUE: U256 = U256([
|
||||
0x0000000000000000,
|
||||
0x0000000000000000,
|
||||
0x0000000000000000,
|
||||
0x8000000000000000,
|
||||
]);
|
||||
|
||||
const SIGN_MASK: U256 = U256([
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0x7fffffffffffffff,
|
||||
]);
|
||||
|
||||
/// Return the (ordered) JUMPDEST offsets in the code.
|
||||
fn find_jumpdests(code: &[u8]) -> Vec<usize> {
|
||||
let mut offset = 0;
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user