Test not working

This commit is contained in:
wborgeaud 2022-10-13 18:13:57 +02:00
parent 29e0aef376
commit f194553345
5 changed files with 294 additions and 257 deletions

View File

@ -144,6 +144,10 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
targets.iter().for_each(|&t| self.register_public_input(t));
}
pub fn num_public_inputs(&self) -> usize {
self.public_inputs.len()
}
/// Adds a new "virtual" target. This is not an actual wire in the witness, but just a target
/// that help facilitate witness generation. In particular, a generator can assign a values to a
/// virtual target, which can then be copied to other (virtual or concrete) targets. When we

View File

@ -66,9 +66,9 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub fn conditionally_verify_proof<C: GenericConfig<D, F = F>>(
&mut self,
condition: BoolTarget,
proof_with_pis0: ProofWithPublicInputsTarget<D>,
proof_with_pis0: &ProofWithPublicInputsTarget<D>,
inner_verifier_data0: &VerifierCircuitTarget,
proof_with_pis1: ProofWithPublicInputsTarget<D>,
proof_with_pis1: &ProofWithPublicInputsTarget<D>,
inner_verifier_data1: &VerifierCircuitTarget,
inner_common_data: &CommonCircuitData<F, C, D>,
) where
@ -124,8 +124,8 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let selected_verifier_data = VerifierCircuitTarget {
constants_sigmas_cap: self.select_cap(
condition,
inner_verifier_data0.constants_sigmas_cap.clone(),
inner_verifier_data1.constants_sigmas_cap.clone(),
&inner_verifier_data0.constants_sigmas_cap,
&inner_verifier_data1.constants_sigmas_cap,
),
circuit_digest: self.select_hash(
condition,
@ -137,10 +137,10 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.verify_proof(selected_proof, &selected_verifier_data, inner_common_data);
}
fn select_vec(&mut self, b: BoolTarget, v0: Vec<Target>, v1: Vec<Target>) -> Vec<Target> {
v0.into_iter()
fn select_vec(&mut self, b: BoolTarget, v0: &[Target], v1: &[Target]) -> Vec<Target> {
v0.iter()
.zip_eq(v1)
.map(|(t0, t1)| self.select(b, t0, t1))
.map(|(t0, t1)| self.select(b, *t0, *t1))
.collect()
}
@ -158,15 +158,15 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
fn select_cap(
&mut self,
b: BoolTarget,
cap0: MerkleCapTarget,
cap1: MerkleCapTarget,
cap0: &MerkleCapTarget,
cap1: &MerkleCapTarget,
) -> MerkleCapTarget {
assert_eq!(cap0.0.len(), cap1.0.len());
MerkleCapTarget(
cap0.0
.into_iter()
.zip_eq(cap1.0)
.map(|(h0, h1)| self.select_hash(b, h0, h1))
.iter()
.zip_eq(&cap1.0)
.map(|(h0, h1)| self.select_hash(b, *h0, *h1))
.collect(),
)
}
@ -174,10 +174,10 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
fn select_vec_cap(
&mut self,
b: BoolTarget,
v0: Vec<MerkleCapTarget>,
v1: Vec<MerkleCapTarget>,
v0: &[MerkleCapTarget],
v1: &[MerkleCapTarget],
) -> Vec<MerkleCapTarget> {
v0.into_iter()
v0.iter()
.zip_eq(v1)
.map(|(c0, c1)| self.select_cap(b, c0, c1))
.collect()
@ -186,53 +186,53 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
fn select_opening_set(
&mut self,
b: BoolTarget,
os0: OpeningSetTarget<D>,
os1: OpeningSetTarget<D>,
os0: &OpeningSetTarget<D>,
os1: &OpeningSetTarget<D>,
) -> OpeningSetTarget<D> {
OpeningSetTarget {
constants: self.select_vec_ext(b, os0.constants, os1.constants),
plonk_sigmas: self.select_vec_ext(b, os0.plonk_sigmas, os1.plonk_sigmas),
wires: self.select_vec_ext(b, os0.wires, os1.wires),
plonk_zs: self.select_vec_ext(b, os0.plonk_zs, os1.plonk_zs),
plonk_zs_next: self.select_vec_ext(b, os0.plonk_zs_next, os1.plonk_zs_next),
partial_products: self.select_vec_ext(b, os0.partial_products, os1.partial_products),
quotient_polys: self.select_vec_ext(b, os0.quotient_polys, os1.quotient_polys),
constants: self.select_vec_ext(b, &os0.constants, &os1.constants),
plonk_sigmas: self.select_vec_ext(b, &os0.plonk_sigmas, &os1.plonk_sigmas),
wires: self.select_vec_ext(b, &os0.wires, &os1.wires),
plonk_zs: self.select_vec_ext(b, &os0.plonk_zs, &os1.plonk_zs),
plonk_zs_next: self.select_vec_ext(b, &os0.plonk_zs_next, &os1.plonk_zs_next),
partial_products: self.select_vec_ext(b, &os0.partial_products, &os1.partial_products),
quotient_polys: self.select_vec_ext(b, &os0.quotient_polys, &os1.quotient_polys),
}
}
fn select_vec_ext(
&mut self,
b: BoolTarget,
v0: Vec<ExtensionTarget<D>>,
v1: Vec<ExtensionTarget<D>>,
v0: &[ExtensionTarget<D>],
v1: &[ExtensionTarget<D>],
) -> Vec<ExtensionTarget<D>> {
v0.into_iter()
v0.iter()
.zip_eq(v1)
.map(|(e0, e1)| self.select_ext(b, e0, e1))
.map(|(e0, e1)| self.select_ext(b, *e0, *e1))
.collect()
}
fn select_opening_proof(
&mut self,
b: BoolTarget,
proof0: FriProofTarget<D>,
proof1: FriProofTarget<D>,
proof0: &FriProofTarget<D>,
proof1: &FriProofTarget<D>,
) -> FriProofTarget<D> {
FriProofTarget {
commit_phase_merkle_caps: self.select_vec_cap(
b,
proof0.commit_phase_merkle_caps,
proof1.commit_phase_merkle_caps,
&proof0.commit_phase_merkle_caps,
&proof1.commit_phase_merkle_caps,
),
query_round_proofs: self.select_vec_query_round(
b,
proof0.query_round_proofs,
proof1.query_round_proofs,
&proof0.query_round_proofs,
&proof1.query_round_proofs,
),
final_poly: PolynomialCoeffsExtTarget(self.select_vec_ext(
b,
proof0.final_poly.0,
proof1.final_poly.0,
&proof0.final_poly.0,
&proof1.final_poly.0,
)),
pow_witness: self.select(b, proof0.pow_witness, proof1.pow_witness),
}
@ -241,26 +241,26 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
fn select_query_round(
&mut self,
b: BoolTarget,
qr0: FriQueryRoundTarget<D>,
qr1: FriQueryRoundTarget<D>,
qr0: &FriQueryRoundTarget<D>,
qr1: &FriQueryRoundTarget<D>,
) -> FriQueryRoundTarget<D> {
FriQueryRoundTarget {
initial_trees_proof: self.select_initial_tree_proof(
b,
qr0.initial_trees_proof,
qr1.initial_trees_proof,
&qr0.initial_trees_proof,
&qr1.initial_trees_proof,
),
steps: self.select_vec_query_step(b, qr0.steps, qr1.steps),
steps: self.select_vec_query_step(b, &qr0.steps, &qr1.steps),
}
}
fn select_vec_query_round(
&mut self,
b: BoolTarget,
v0: Vec<FriQueryRoundTarget<D>>,
v1: Vec<FriQueryRoundTarget<D>>,
v0: &[FriQueryRoundTarget<D>],
v1: &[FriQueryRoundTarget<D>],
) -> Vec<FriQueryRoundTarget<D>> {
v0.into_iter()
v0.iter()
.zip_eq(v1)
.map(|(qr0, qr1)| self.select_query_round(b, qr0, qr1))
.collect()
@ -269,14 +269,14 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
fn select_initial_tree_proof(
&mut self,
b: BoolTarget,
proof0: FriInitialTreeProofTarget,
proof1: FriInitialTreeProofTarget,
proof0: &FriInitialTreeProofTarget,
proof1: &FriInitialTreeProofTarget,
) -> FriInitialTreeProofTarget {
FriInitialTreeProofTarget {
evals_proofs: proof0
.evals_proofs
.into_iter()
.zip_eq(proof1.evals_proofs)
.iter()
.zip_eq(&proof1.evals_proofs)
.map(|((v0, p0), (v1, p1))| {
(
self.select_vec(b, v0, v1),
@ -290,15 +290,15 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
fn select_merkle_proof(
&mut self,
b: BoolTarget,
proof0: MerkleProofTarget,
proof1: MerkleProofTarget,
proof0: &MerkleProofTarget,
proof1: &MerkleProofTarget,
) -> MerkleProofTarget {
MerkleProofTarget {
siblings: proof0
.siblings
.into_iter()
.zip_eq(proof1.siblings)
.map(|(h0, h1)| self.select_hash(b, h0, h1))
.iter()
.zip_eq(&proof1.siblings)
.map(|(h0, h1)| self.select_hash(b, *h0, *h1))
.collect(),
}
}
@ -306,22 +306,22 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
fn select_query_step(
&mut self,
b: BoolTarget,
qs0: FriQueryStepTarget<D>,
qs1: FriQueryStepTarget<D>,
qs0: &FriQueryStepTarget<D>,
qs1: &FriQueryStepTarget<D>,
) -> FriQueryStepTarget<D> {
FriQueryStepTarget {
evals: self.select_vec_ext(b, qs0.evals, qs1.evals),
merkle_proof: self.select_merkle_proof(b, qs0.merkle_proof, qs1.merkle_proof),
evals: self.select_vec_ext(b, &qs0.evals, &qs1.evals),
merkle_proof: self.select_merkle_proof(b, &qs0.merkle_proof, &qs1.merkle_proof),
}
}
fn select_vec_query_step(
&mut self,
b: BoolTarget,
v0: Vec<FriQueryStepTarget<D>>,
v1: Vec<FriQueryStepTarget<D>>,
v0: &[FriQueryStepTarget<D>],
v1: &[FriQueryStepTarget<D>],
) -> Vec<FriQueryStepTarget<D>> {
v0.into_iter()
v0.iter()
.zip_eq(v1)
.map(|(qs0, qs1)| self.select_query_step(b, qs0, qs1))
.collect()
@ -384,9 +384,9 @@ mod tests {
let b = builder.constant_bool(F::rand().0 % 2 == 0);
builder.conditionally_verify_proof(
b,
pt,
&pt,
&inner_data,
dummy_pt,
&dummy_pt,
&dummy_inner_data,
&data.common,
);

View File

@ -0,0 +1,227 @@
use anyhow::Result;
use plonky2_field::extension::Extendable;
use crate::gates::noop::NoopGate;
use crate::hash::hash_types::RichField;
use crate::iop::target::BoolTarget;
use crate::iop::witness::{PartialWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::{
CircuitData, CommonCircuitData, VerifierCircuitTarget, VerifierOnlyCircuitData,
};
use crate::plonk::config::Hasher;
use crate::plonk::config::{AlgebraicHasher, GenericConfig};
use crate::plonk::proof::{ProofWithPublicInputs, ProofWithPublicInputsTarget};
use crate::recursion::conditional_recursive_verifier::dummy_proof;
pub struct CyclicRecursionData<
'a,
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
const D: usize,
> {
proof: &'a Option<ProofWithPublicInputs<F, C, D>>,
verifier_data: &'a VerifierOnlyCircuitData<C, D>,
common_data: &'a CommonCircuitData<F, C, D>,
}
pub struct CyclicRecursionTarget<const D: usize> {
pub proof: ProofWithPublicInputsTarget<D>,
pub verifier_data: VerifierCircuitTarget,
pub dummy_proof: ProofWithPublicInputsTarget<D>,
pub dummy_verifier_data: VerifierCircuitTarget,
pub base_case: BoolTarget,
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub fn cyclic_recursion<C: GenericConfig<D, F = F>>(
mut self,
mut common_data: CommonCircuitData<F, C, D>,
) -> Result<(CircuitData<F, C, D>, CyclicRecursionTarget<D>)>
where
C::Hasher: AlgebraicHasher<F>,
[(); C::Hasher::HASH_SIZE]:,
{
let verifier_data = VerifierCircuitTarget {
constants_sigmas_cap: self.add_virtual_cap(self.config.fri_config.cap_height),
circuit_digest: self.add_virtual_hash(),
};
self.register_public_inputs(&verifier_data.circuit_digest.elements);
for i in 0..self.config.fri_config.num_cap_elements() {
self.register_public_inputs(&verifier_data.constants_sigmas_cap.0[i].elements);
}
let dummy_verifier_data = VerifierCircuitTarget {
constants_sigmas_cap: self.add_virtual_cap(self.config.fri_config.cap_height),
circuit_digest: self.add_virtual_hash(),
};
let base_case = self.add_virtual_bool_target();
self.register_public_input(base_case.target);
common_data.num_public_inputs = self.num_public_inputs();
common_data.degree_bits = common_data.degree_bits.max(13);
dbg!(common_data.degree_bits);
let proof = self.add_virtual_proof_with_pis(&common_data);
let dummy_proof = self.add_virtual_proof_with_pis(&common_data);
self.conditionally_verify_proof(
base_case,
&dummy_proof,
&dummy_verifier_data,
&proof,
&verifier_data,
&common_data,
);
while self.num_gates() < 1 << (common_data.degree_bits - 1) {
self.add_gate(NoopGate, vec![]);
}
let data = self.build::<C>();
dbg!(&data.common.degree_bits, common_data.degree_bits);
assert_eq!(&data.common, &common_data);
Ok((
data,
CyclicRecursionTarget {
proof,
verifier_data,
dummy_proof,
dummy_verifier_data,
base_case,
},
))
}
}
/// Set the targets in a `ProofTarget` to their corresponding values in a `Proof`.
pub fn set_cyclic_recursion_data_target<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
const D: usize,
>(
pw: &mut PartialWitness<F>,
cyclic_recursion_data_target: &CyclicRecursionTarget<D>,
cyclic_recursion_data: &CyclicRecursionData<F, C, D>,
) -> Result<()>
where
F: RichField + Extendable<D>,
C::Hasher: AlgebraicHasher<F>,
[(); C::Hasher::HASH_SIZE]:,
{
if let Some(proof) = cyclic_recursion_data.proof {
pw.set_bool_target(cyclic_recursion_data_target.base_case, false);
pw.set_proof_with_pis_target(&cyclic_recursion_data_target.proof, proof);
pw.set_verifier_data_target(
&cyclic_recursion_data_target.verifier_data,
cyclic_recursion_data.verifier_data,
);
pw.set_proof_with_pis_target(&cyclic_recursion_data_target.dummy_proof, proof);
pw.set_verifier_data_target(
&cyclic_recursion_data_target.dummy_verifier_data,
cyclic_recursion_data.verifier_data,
);
} else {
let (dummy_proof, dummy_data) = dummy_proof(cyclic_recursion_data.common_data)?;
pw.set_bool_target(cyclic_recursion_data_target.base_case, true);
pw.set_proof_with_pis_target(&cyclic_recursion_data_target.proof, &dummy_proof);
pw.set_verifier_data_target(
&cyclic_recursion_data_target.verifier_data,
&dummy_data.verifier_only,
);
pw.set_proof_with_pis_target(&cyclic_recursion_data_target.dummy_proof, &dummy_proof);
pw.set_verifier_data_target(
&cyclic_recursion_data_target.dummy_verifier_data,
&dummy_data.verifier_only,
);
}
Ok(())
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2_field::extension::Extendable;
use crate::field::types::Field;
use crate::hash::hash_types::RichField;
use crate::hash::poseidon::PoseidonHash;
use crate::iop::witness::{PartialWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::{CircuitConfig, CommonCircuitData, VerifierCircuitTarget};
use crate::plonk::config::{AlgebraicHasher, GenericConfig, Hasher, PoseidonGoldilocksConfig};
use crate::recursion::cyclic_recursion::{
set_cyclic_recursion_data_target, CyclicRecursionData,
};
fn common_data_for_recursion<
F: RichField + Extendable<D>,
C: GenericConfig<D, F = F>,
const D: usize,
>() -> CommonCircuitData<F, C, D>
where
C::Hasher: AlgebraicHasher<F>,
[(); C::Hasher::HASH_SIZE]:,
{
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let data = builder.build::<C>();
let config = CircuitConfig::standard_recursion_config();
let mut pw = PartialWitness::<F>::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let proof = builder.add_virtual_proof_with_pis(&data.common);
let verifier_data = VerifierCircuitTarget {
constants_sigmas_cap: builder.add_virtual_cap(data.common.config.fri_config.cap_height),
circuit_digest: builder.add_virtual_hash(),
};
builder.verify_proof(proof, &verifier_data, &data.common);
let data = builder.build::<C>();
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let data = builder.build::<C>();
let config = CircuitConfig::standard_recursion_config();
let mut pw = PartialWitness::<F>::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let proof = builder.add_virtual_proof_with_pis(&data.common);
let verifier_data = VerifierCircuitTarget {
constants_sigmas_cap: builder.add_virtual_cap(data.common.config.fri_config.cap_height),
circuit_digest: builder.add_virtual_hash(),
};
builder.verify_proof(proof, &verifier_data, &data.common);
builder.build::<C>().common
}
#[test]
fn test_cyclic_recursion() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_recursion_config();
let mut pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
// Build realistic circuit
let t = builder.add_virtual_target();
pw.set_target(t, F::rand());
let t_inv = builder.inverse(t);
let h = builder.hash_n_to_hash_no_pad::<PoseidonHash>(vec![t_inv]);
builder.register_public_inputs(&h.elements);
let common_data = common_data_for_recursion::<F, C, D>();
dbg!(common_data.degree_bits);
let (cyclic_circuit_data, cyclic_data_target) = builder.cyclic_recursion(common_data)?;
let cyclic_recursion_data = CyclicRecursionData {
proof: &None,
verifier_data: &cyclic_circuit_data.verifier_only,
common_data: &cyclic_circuit_data.common,
};
set_cyclic_recursion_data_target(&mut pw, &cyclic_data_target, &cyclic_recursion_data)?;
let proof = cyclic_circuit_data.prove(pw)?;
cyclic_circuit_data.verify(proof);
Ok(())
}
}

View File

@ -1,2 +1,3 @@
pub mod conditional_recursive_verifier;
pub mod cyclic_recursion;
pub mod recursive_verifier;

View File

@ -455,199 +455,4 @@ mod tests {
fn init_logger() {
let _ = env_logger::builder().format_timestamp(None).try_init();
}
#[test]
fn test_cyclic_recursion() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
// type FF = <C as GenericConfig<D>>::FE;
let config = CircuitConfig::standard_recursion_config();
let (proof, vd, cd) = dummy_proof::<F, C, D>(&config, 1 << 14)?;
let (proof, vd, cd) =
recursive_proof::<F, C, C, D>(proof, vd, cd, &config, None, false, false)?;
let (_proof, _vd, mut cd) =
recursive_proof::<F, C, C, D>(proof, vd, cd, &config, Some(14), false, false)?;
cd.num_public_inputs = 69;
// First proof
let config = CircuitConfig::standard_recursion_config();
let mut pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let verifier_data = VerifierCircuitTarget {
constants_sigmas_cap: builder.add_virtual_cap(builder.config.fri_config.cap_height),
circuit_digest: builder.add_virtual_hash(),
};
builder.register_public_inputs(&verifier_data.circuit_digest.elements);
for i in 0..1 << builder.config.fri_config.cap_height {
builder.register_public_inputs(&verifier_data.constants_sigmas_cap.0[i].elements);
}
let dummy_verifier_data = VerifierCircuitTarget {
constants_sigmas_cap: builder.add_virtual_cap(builder.config.fri_config.cap_height),
circuit_digest: builder.add_virtual_hash(),
};
let condition = builder.add_virtual_bool_target();
builder.register_public_input(condition.target);
pw.set_bool_target(condition, false);
let (dummy_proof, dummy_data) =
crate::recursion::conditional_recursive_verifier::dummy_proof(&cd)?;
let pt0 = builder.add_virtual_proof_with_pis(&cd);
let pt1 = builder.add_virtual_proof_with_pis(&cd);
pw.set_proof_with_pis_target(&pt0, &dummy_proof);
pw.set_proof_with_pis_target(&pt1, &dummy_proof);
pw.set_hash_target(
dummy_verifier_data.circuit_digest,
dummy_data.verifier_only.circuit_digest,
);
pw.set_cap_target(
&dummy_verifier_data.constants_sigmas_cap,
&dummy_data.verifier_only.constants_sigmas_cap,
);
builder.conditionally_verify_proof(
condition,
pt0,
&verifier_data,
pt1,
&dummy_verifier_data,
&cd,
);
while builder.num_gates() < 1 << 13 {
builder.add_gate(NoopGate, vec![]);
}
let data = builder.build::<C>();
dbg!(cd.degree_bits);
dbg!(data.common.degree_bits);
assert_eq!(&data.common, &cd);
pw.set_verifier_data_target(&verifier_data, &data.verifier_only);
let proof = data.prove(pw)?;
assert_eq!(
data.verifier_only.circuit_digest.elements[0],
proof.public_inputs[0]
);
data.verify(proof.clone())?;
// Second proof
let config = CircuitConfig::standard_recursion_config();
let mut pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let verifier_data = VerifierCircuitTarget {
constants_sigmas_cap: builder.add_virtual_cap(builder.config.fri_config.cap_height),
circuit_digest: builder.add_virtual_hash(),
};
builder.register_public_inputs(&verifier_data.circuit_digest.elements);
for i in 0..1 << builder.config.fri_config.cap_height {
builder.register_public_inputs(&verifier_data.constants_sigmas_cap.0[i].elements);
}
let dummy_verifier_data = VerifierCircuitTarget {
constants_sigmas_cap: builder.add_virtual_cap(builder.config.fri_config.cap_height),
circuit_digest: builder.add_virtual_hash(),
};
let condition = builder.add_virtual_bool_target();
builder.register_public_input(condition.target);
pw.set_bool_target(condition, true);
let pt0 = builder.add_virtual_proof_with_pis(&data.common);
let pt1 = builder.add_virtual_proof_with_pis(&data.common);
pw.set_proof_with_pis_target(&pt0, &proof);
pw.set_proof_with_pis_target(&pt1, &proof);
builder.conditionally_verify_proof(
condition,
pt0,
&verifier_data,
pt1,
&dummy_verifier_data,
&data.common,
);
while builder.num_gates() < 1 << 13 {
builder.add_gate(NoopGate, vec![]);
}
let data1 = builder.build::<C>();
assert_eq!(data.common, data1.common);
assert_eq!(data.verifier_only, data1.verifier_only);
dbg!(cd.degree_bits);
dbg!(data1.common.degree_bits);
pw.set_verifier_data_target(&verifier_data, &data.verifier_only);
pw.set_verifier_data_target(&dummy_verifier_data, &data.verifier_only);
let proof = data.prove(pw)?;
assert_eq!(
data.verifier_only.circuit_digest.elements[0],
proof.public_inputs[0]
);
assert_eq!(
data1.verifier_only.circuit_digest.elements[0],
proof.public_inputs[0]
);
data.verify(proof.clone())?;
// Second proof
let config = CircuitConfig::standard_recursion_config();
let mut pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let verifier_data = VerifierCircuitTarget {
constants_sigmas_cap: builder.add_virtual_cap(builder.config.fri_config.cap_height),
circuit_digest: builder.add_virtual_hash(),
};
builder.register_public_inputs(&verifier_data.circuit_digest.elements);
for i in 0..1 << builder.config.fri_config.cap_height {
builder.register_public_inputs(&verifier_data.constants_sigmas_cap.0[i].elements);
}
let dummy_verifier_data = VerifierCircuitTarget {
constants_sigmas_cap: builder.add_virtual_cap(builder.config.fri_config.cap_height),
circuit_digest: builder.add_virtual_hash(),
};
let condition = builder.add_virtual_bool_target();
builder.register_public_input(condition.target);
pw.set_bool_target(condition, true);
let pt0 = builder.add_virtual_proof_with_pis(&data.common);
let pt1 = builder.add_virtual_proof_with_pis(&data.common);
pw.set_proof_with_pis_target(&pt0, &proof);
pw.set_proof_with_pis_target(&pt1, &proof);
builder.conditionally_verify_proof(
condition,
pt0,
&verifier_data,
pt1,
&dummy_verifier_data,
&data.common,
);
while builder.num_gates() < 1 << 13 {
builder.add_gate(NoopGate, vec![]);
}
let data2 = builder.build::<C>();
assert_eq!(data.common, data2.common);
assert_eq!(data.verifier_only, data2.verifier_only);
dbg!(cd.degree_bits);
dbg!(data1.common.degree_bits);
pw.set_verifier_data_target(&verifier_data, &data.verifier_only);
pw.set_verifier_data_target(&dummy_verifier_data, &data.verifier_only);
let proof = data.prove(pw)?;
assert_eq!(
data.verifier_only.circuit_digest.elements[0],
proof.public_inputs[0]
);
assert_eq!(
data1.verifier_only.circuit_digest.elements[0],
proof.public_inputs[0]
);
data.verify(proof)
}
}