mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-03 06:13:07 +00:00
keccak stark
This commit is contained in:
parent
2cbf063eb6
commit
db6c3fd811
@ -1,48 +1,452 @@
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use itertools::Itertools;
|
||||
use log::info;
|
||||
use plonky2::field::extension_field::{Extendable, FieldExtension};
|
||||
use plonky2::field::packed_field::PackedField;
|
||||
use plonky2::field::polynomial::PolynomialValues;
|
||||
use plonky2::hash::hash_types::RichField;
|
||||
use plonky2::plonk::plonk_common::reduce_with_powers_ext_circuit;
|
||||
use plonky2::timed;
|
||||
use plonky2::util::timing::TimingTree;
|
||||
|
||||
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
|
||||
use crate::permutation::PermutationPair;
|
||||
use crate::keccak::logic::{
|
||||
andn, andn_gen, andn_gen_circuit, xor, xor3_gen, xor3_gen_circuit, xor_gen, xor_gen_circuit,
|
||||
};
|
||||
use crate::keccak::registers::{
|
||||
rc_value, rc_value_bit, reg_a, reg_a_prime, reg_a_prime_prime, reg_a_prime_prime_0_0_bit,
|
||||
reg_a_prime_prime_prime, reg_b, reg_c, reg_c_partial, reg_step, NUM_REGISTERS,
|
||||
};
|
||||
use crate::keccak::round_flags::{eval_round_flags, eval_round_flags_recursively};
|
||||
use crate::stark::Stark;
|
||||
use crate::util::trace_rows_to_poly_values;
|
||||
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
|
||||
|
||||
/// Number of rounds in a Keccak permutation.
|
||||
pub(crate) const NUM_ROUNDS: usize = 24;
|
||||
|
||||
/// Number of 64-bit limbs in a preimage of the Keccak permutation.
|
||||
pub(crate) const INPUT_LIMBS: usize = 25;
|
||||
|
||||
pub(crate) const NUM_PUBLIC_INPUTS: usize = 4;
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct KeccakStark<F, const D: usize> {
|
||||
pub(crate) f: PhantomData<F>,
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> KeccakStark<F, D> {
|
||||
/// Generate the rows of the trace. Note that this does not generate the permuted columns used
|
||||
/// in our lookup arguments, as those are computed after transposing to column-wise form.
|
||||
fn generate_trace_rows(&self, inputs: Vec<[u64; INPUT_LIMBS]>) -> Vec<[F; NUM_REGISTERS]> {
|
||||
let num_rows = (inputs.len() * NUM_ROUNDS).next_power_of_two();
|
||||
info!("{} rows", num_rows);
|
||||
let mut rows = Vec::with_capacity(num_rows);
|
||||
for input in inputs {
|
||||
rows.extend(self.generate_trace_rows_for_perm(input));
|
||||
}
|
||||
|
||||
for i in rows.len()..num_rows {
|
||||
let mut row = [F::ZERO; NUM_REGISTERS];
|
||||
self.generate_trace_rows_for_round(&mut row, i % NUM_ROUNDS);
|
||||
rows.push(row);
|
||||
}
|
||||
|
||||
rows
|
||||
}
|
||||
|
||||
fn generate_trace_rows_for_perm(
|
||||
&self,
|
||||
input: [u64; INPUT_LIMBS],
|
||||
) -> [[F; NUM_REGISTERS]; NUM_ROUNDS] {
|
||||
let mut rows = [[F::ZERO; NUM_REGISTERS]; NUM_ROUNDS];
|
||||
|
||||
for x in 0..5 {
|
||||
for y in 0..5 {
|
||||
let input_xy = input[x * 5 + y];
|
||||
for z in 0..64 {
|
||||
rows[0][reg_a(x, y, z)] = F::from_canonical_u64((input_xy >> z) & 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
self.generate_trace_rows_for_round(&mut rows[0], 0);
|
||||
for round in 1..24 {
|
||||
// TODO: Populate input from prev. row output.
|
||||
self.generate_trace_rows_for_round(&mut rows[round], round);
|
||||
}
|
||||
|
||||
rows
|
||||
}
|
||||
|
||||
fn generate_trace_rows_for_round(&self, row: &mut [F; NUM_REGISTERS], round: usize) {
|
||||
row[round] = F::ONE;
|
||||
|
||||
// Populate C partial and C.
|
||||
for x in 0..5 {
|
||||
for z in 0..64 {
|
||||
let a = [0, 1, 2, 3, 4].map(|i| row[reg_a(x, i, z)]);
|
||||
let c_partial = xor([a[0], a[1], a[2]]);
|
||||
let c = xor([c_partial, a[3], a[4]]);
|
||||
row[reg_c_partial(x, z)] = c_partial;
|
||||
row[reg_c(x, z)] = c;
|
||||
}
|
||||
}
|
||||
|
||||
// Populate A'.
|
||||
// A'[x, y] = xor(A[x, y], D[x])
|
||||
// = xor(A[x, y], C[x - 1], ROT(C[x + 1], 1))
|
||||
for x in 0..5 {
|
||||
for y in 0..5 {
|
||||
for z in 0..64 {
|
||||
row[reg_a_prime(x, y, z)] = xor([
|
||||
row[reg_a(x, y, z)],
|
||||
row[reg_c((x + 4) % 5, z)],
|
||||
row[reg_c((x + 1) % 5, (z + 1) % 64)],
|
||||
]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Populate A''.
|
||||
// A''[x, y] = xor(B[x, y], andn(B[x + 1, y], B[x + 2, y])).
|
||||
for x in 0..5 {
|
||||
for y in 0..5 {
|
||||
let get_bit = |z| {
|
||||
xor([
|
||||
row[reg_b(x, y, z)],
|
||||
andn(row[reg_b((x + 1) % 5, y, z)], row[reg_b((x + 2) % 5, y, z)]),
|
||||
])
|
||||
};
|
||||
|
||||
let lo = (0..32)
|
||||
.rev()
|
||||
.fold(F::ZERO, |acc, z| acc.double() + get_bit(z));
|
||||
let hi = (32..64)
|
||||
.rev()
|
||||
.fold(F::ZERO, |acc, z| acc.double() + get_bit(z));
|
||||
|
||||
let reg_lo = reg_a_prime_prime(x, y);
|
||||
let reg_hi = reg_lo + 1;
|
||||
row[reg_lo] = lo;
|
||||
row[reg_hi] = hi;
|
||||
}
|
||||
}
|
||||
|
||||
// A''[0, 0] is additionally xor'd with RC.
|
||||
let reg_lo = reg_a_prime_prime(0, 0);
|
||||
let reg_hi = reg_lo + 1;
|
||||
let rc_lo = rc_value(round) % (1 << 32);
|
||||
let rc_hi = rc_value(round) >> 32;
|
||||
row[reg_lo] = F::from_canonical_u64(row[reg_lo].to_canonical_u64() ^ rc_lo);
|
||||
row[reg_hi] = F::from_canonical_u64(row[reg_hi].to_canonical_u64() ^ rc_hi);
|
||||
}
|
||||
|
||||
pub fn generate_trace(&self, inputs: Vec<[u64; INPUT_LIMBS]>) -> Vec<PolynomialValues<F>> {
|
||||
let mut timing = TimingTree::new("generate trace", log::Level::Debug);
|
||||
|
||||
// Generate the witness, except for permuted columns in the lookup argument.
|
||||
let trace_rows = timed!(
|
||||
&mut timing,
|
||||
"generate trace rows",
|
||||
self.generate_trace_rows(inputs)
|
||||
);
|
||||
|
||||
let trace_polys = timed!(
|
||||
&mut timing,
|
||||
"convert to PolynomialValues",
|
||||
trace_rows_to_poly_values(trace_rows)
|
||||
);
|
||||
|
||||
timing.print();
|
||||
trace_polys
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for KeccakStark<F, D> {
|
||||
const COLUMNS: usize = 7;
|
||||
const PUBLIC_INPUTS: usize = 0;
|
||||
const COLUMNS: usize = NUM_REGISTERS;
|
||||
const PUBLIC_INPUTS: usize = NUM_PUBLIC_INPUTS;
|
||||
|
||||
fn eval_packed_generic<FE, P, const D2: usize>(
|
||||
&self,
|
||||
_vars: StarkEvaluationVars<FE, P, { Self::COLUMNS }, { Self::PUBLIC_INPUTS }>,
|
||||
_yield_constr: &mut ConstraintConsumer<P>,
|
||||
vars: StarkEvaluationVars<FE, P, { Self::COLUMNS }, { Self::PUBLIC_INPUTS }>,
|
||||
yield_constr: &mut ConstraintConsumer<P>,
|
||||
) where
|
||||
FE: FieldExtension<D2, BaseField = F>,
|
||||
P: PackedField<Scalar = FE>,
|
||||
{
|
||||
eval_round_flags(vars, yield_constr);
|
||||
|
||||
// C_partial[x] = xor(A[x, 0], A[x, 1], A[x, 2])
|
||||
for x in 0..5 {
|
||||
for z in 0..64 {
|
||||
let c_partial = vars.local_values[reg_c_partial(x, z)];
|
||||
let a_0 = vars.local_values[reg_a(x, 0, z)];
|
||||
let a_1 = vars.local_values[reg_a(x, 1, z)];
|
||||
let a_2 = vars.local_values[reg_a(x, 2, z)];
|
||||
let xor_012 = xor3_gen(a_0, a_1, a_2);
|
||||
yield_constr.constraint(c_partial - xor_012);
|
||||
}
|
||||
}
|
||||
|
||||
// C[x] = xor(C_partial[x], A[x, 3], A[x, 4])
|
||||
for x in 0..5 {
|
||||
for z in 0..64 {
|
||||
let c = vars.local_values[reg_c(x, z)];
|
||||
let xor_012 = vars.local_values[reg_c_partial(x, z)];
|
||||
let a_3 = vars.local_values[reg_a(x, 3, z)];
|
||||
let a_4 = vars.local_values[reg_a(x, 4, z)];
|
||||
let xor_01234 = xor3_gen(xor_012, a_3, a_4);
|
||||
yield_constr.constraint(c - xor_01234);
|
||||
}
|
||||
}
|
||||
|
||||
// A'[x, y] = xor(A[x, y], D[x])
|
||||
// = xor(A[x, y], C[x - 1], ROT(C[x + 1], 1))
|
||||
for x in 0..5 {
|
||||
for z in 0..64 {
|
||||
let c_left = vars.local_values[reg_c((x + 4) % 5, z)];
|
||||
let c_right = vars.local_values[reg_c((x + 1) % 5, (z + 1) % 64)];
|
||||
let d = xor_gen(c_left, c_right);
|
||||
|
||||
for y in 0..5 {
|
||||
let a = vars.local_values[reg_a(x, y, z)];
|
||||
let a_prime = vars.local_values[reg_a_prime(x, y, z)];
|
||||
let xor = xor_gen(d, a);
|
||||
yield_constr.constraint(a_prime - xor);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// A''[x, y] = xor(B[x, y], andn(B[x + 1, y], B[x + 2, y])).
|
||||
for x in 0..5 {
|
||||
for y in 0..5 {
|
||||
let get_bit = |z| {
|
||||
xor_gen(
|
||||
vars.local_values[reg_b(x, y, z)],
|
||||
andn_gen(
|
||||
vars.local_values[reg_b((x + 1) % 5, y, z)],
|
||||
vars.local_values[reg_b((x + 2) % 5, y, z)],
|
||||
),
|
||||
)
|
||||
};
|
||||
|
||||
let reg_lo = reg_a_prime_prime(x, y);
|
||||
let reg_hi = reg_lo + 1;
|
||||
let lo = vars.local_values[reg_lo];
|
||||
let hi = vars.local_values[reg_hi];
|
||||
let computed_lo = (0..32)
|
||||
.rev()
|
||||
.fold(P::ZEROS, |acc, z| acc.doubles() + get_bit(z));
|
||||
let computed_hi = (32..64)
|
||||
.rev()
|
||||
.fold(P::ZEROS, |acc, z| acc.doubles() + get_bit(z));
|
||||
|
||||
yield_constr.constraint(computed_lo - lo);
|
||||
yield_constr.constraint(computed_hi - hi);
|
||||
}
|
||||
}
|
||||
|
||||
// A'''[0, 0] = A''[0, 0] XOR RC
|
||||
let a_prime_prime_0_0_bits = (0..64)
|
||||
.map(|i| vars.local_values[reg_a_prime_prime_0_0_bit(i)])
|
||||
.collect_vec();
|
||||
let computed_a_prime_prime_0_0_lo = (0..32)
|
||||
.rev()
|
||||
.fold(P::ZEROS, |acc, z| acc.doubles() + a_prime_prime_0_0_bits[z]);
|
||||
let computed_a_prime_prime_0_0_hi = (32..64)
|
||||
.rev()
|
||||
.fold(P::ZEROS, |acc, z| acc.doubles() + a_prime_prime_0_0_bits[z]);
|
||||
let a_prime_prime_0_0_lo = vars.local_values[reg_a_prime_prime(0, 0)];
|
||||
let a_prime_prime_0_0_hi = vars.local_values[reg_a_prime_prime(0, 0) + 1];
|
||||
yield_constr.constraint(computed_a_prime_prime_0_0_lo - a_prime_prime_0_0_lo);
|
||||
yield_constr.constraint(computed_a_prime_prime_0_0_hi - a_prime_prime_0_0_hi);
|
||||
|
||||
let get_xored_bit = |i| {
|
||||
let mut rc_bit_i = P::ZEROS;
|
||||
for r in 0..NUM_ROUNDS {
|
||||
let this_round = vars.local_values[reg_step(r)];
|
||||
let this_round_constant =
|
||||
P::from(FE::from_canonical_u32(rc_value_bit(r, i) as u32));
|
||||
rc_bit_i += this_round * this_round_constant;
|
||||
}
|
||||
|
||||
xor_gen(a_prime_prime_0_0_bits[i], rc_bit_i)
|
||||
};
|
||||
|
||||
let a_prime_prime_prime_0_0_lo = vars.local_values[reg_a_prime_prime_prime(0, 0)];
|
||||
let a_prime_prime_prime_0_0_hi = vars.local_values[reg_a_prime_prime_prime(0, 0) + 1];
|
||||
let computed_a_prime_prime_prime_0_0_lo = (0..32)
|
||||
.rev()
|
||||
.fold(P::ZEROS, |acc, z| acc.doubles() + get_xored_bit(z));
|
||||
let computed_a_prime_prime_prime_0_0_hi = (32..64)
|
||||
.rev()
|
||||
.fold(P::ZEROS, |acc, z| acc.doubles() + get_xored_bit(z));
|
||||
yield_constr.constraint(computed_a_prime_prime_prime_0_0_lo - a_prime_prime_prime_0_0_lo);
|
||||
yield_constr.constraint(computed_a_prime_prime_prime_0_0_hi - a_prime_prime_prime_0_0_hi);
|
||||
|
||||
// Enforce that this round's output equals the next round's input.
|
||||
for x in 0..5 {
|
||||
for y in 0..5 {
|
||||
let output = vars.local_values[reg_a_prime_prime_prime(x, y)];
|
||||
let input_bits = (0..64)
|
||||
.map(|z| vars.next_values[reg_a(x, y, z)])
|
||||
.collect_vec();
|
||||
let input_bits_combined = (0..64)
|
||||
.rev()
|
||||
.fold(P::ZEROS, |acc, z| acc.doubles() + input_bits[z]);
|
||||
yield_constr.constraint(output - input_bits_combined);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn eval_ext_circuit(
|
||||
&self,
|
||||
_builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
|
||||
_vars: StarkEvaluationTargets<D, { Self::COLUMNS }, { Self::PUBLIC_INPUTS }>,
|
||||
_yield_constr: &mut RecursiveConstraintConsumer<F, D>,
|
||||
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
|
||||
vars: StarkEvaluationTargets<D, { Self::COLUMNS }, { Self::PUBLIC_INPUTS }>,
|
||||
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
|
||||
) {
|
||||
let two = builder.two();
|
||||
|
||||
eval_round_flags_recursively(builder, vars, yield_constr);
|
||||
|
||||
// C_partial[x] = xor(A[x, 0], A[x, 1], A[x, 2])
|
||||
for x in 0..5 {
|
||||
for z in 0..64 {
|
||||
let c_partial = vars.local_values[reg_c_partial(x, z)];
|
||||
let a_0 = vars.local_values[reg_a(x, 0, z)];
|
||||
let a_1 = vars.local_values[reg_a(x, 1, z)];
|
||||
let a_2 = vars.local_values[reg_a(x, 2, z)];
|
||||
|
||||
let xor_012 = xor3_gen_circuit(builder, a_0, a_1, a_2);
|
||||
let diff = builder.sub_extension(c_partial, xor_012);
|
||||
yield_constr.constraint(builder, diff);
|
||||
}
|
||||
}
|
||||
|
||||
// C[x] = xor(C_partial[x], A[x, 3], A[x, 4])
|
||||
for x in 0..5 {
|
||||
for z in 0..64 {
|
||||
let c = vars.local_values[reg_c(x, z)];
|
||||
let xor_012 = vars.local_values[reg_c_partial(x, z)];
|
||||
let a_3 = vars.local_values[reg_a(x, 3, z)];
|
||||
let a_4 = vars.local_values[reg_a(x, 4, z)];
|
||||
|
||||
let xor_01234 = xor3_gen_circuit(builder, xor_012, a_3, a_4);
|
||||
let diff = builder.sub_extension(c, xor_01234);
|
||||
yield_constr.constraint(builder, diff);
|
||||
}
|
||||
}
|
||||
|
||||
// A'[x, y] = xor(A[x, y], D[x])
|
||||
// = xor(A[x, y], C[x - 1], ROT(C[x + 1], 1))
|
||||
for x in 0..5 {
|
||||
for z in 0..64 {
|
||||
let c_left = vars.local_values[reg_c((x + 4) % 5, z)];
|
||||
let c_right = vars.local_values[reg_c((x + 1) % 5, (z + 1) % 64)];
|
||||
let d = xor_gen_circuit(builder, c_left, c_right);
|
||||
|
||||
for y in 0..5 {
|
||||
let a = vars.local_values[reg_a(x, y, z)];
|
||||
let a_prime = vars.local_values[reg_a_prime(x, y, z)];
|
||||
let xor = xor_gen_circuit(builder, d, a);
|
||||
let diff = builder.sub_extension(a_prime, xor);
|
||||
yield_constr.constraint(builder, diff);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// A''[x, y] = xor(B[x, y], andn(B[x + 1, y], B[x + 2, y])).
|
||||
for x in 0..5 {
|
||||
for y in 0..5 {
|
||||
let mut get_bit = |z| {
|
||||
let andn = andn_gen_circuit(
|
||||
builder,
|
||||
vars.local_values[reg_b((x + 1) % 5, y, z)],
|
||||
vars.local_values[reg_b((x + 2) % 5, y, z)],
|
||||
);
|
||||
xor_gen_circuit(builder, vars.local_values[reg_b(x, y, z)], andn)
|
||||
};
|
||||
|
||||
let reg_lo = reg_a_prime_prime(x, y);
|
||||
let reg_hi = reg_lo + 1;
|
||||
let lo = vars.local_values[reg_lo];
|
||||
let hi = vars.local_values[reg_hi];
|
||||
let bits_lo = (0..32).map(|z| get_bit(z)).collect_vec();
|
||||
let bits_hi = (32..64).map(|z| get_bit(z)).collect_vec();
|
||||
let computed_lo = reduce_with_powers_ext_circuit(builder, &bits_lo, two);
|
||||
let computed_hi = reduce_with_powers_ext_circuit(builder, &bits_hi, two);
|
||||
let diff = builder.sub_extension(computed_lo, lo);
|
||||
yield_constr.constraint(builder, diff);
|
||||
let diff = builder.sub_extension(computed_hi, hi);
|
||||
yield_constr.constraint(builder, diff);
|
||||
}
|
||||
}
|
||||
|
||||
// A'''[0, 0] = A''[0, 0] XOR RC
|
||||
let a_prime_prime_0_0_bits = (0..64)
|
||||
.map(|i| vars.local_values[reg_a_prime_prime_0_0_bit(i)])
|
||||
.collect_vec();
|
||||
let computed_a_prime_prime_0_0_lo =
|
||||
reduce_with_powers_ext_circuit(builder, &a_prime_prime_0_0_bits[0..32], two);
|
||||
let computed_a_prime_prime_0_0_hi =
|
||||
reduce_with_powers_ext_circuit(builder, &a_prime_prime_0_0_bits[32..64], two);
|
||||
let a_prime_prime_0_0_lo = vars.local_values[reg_a_prime_prime(0, 0)];
|
||||
let a_prime_prime_0_0_hi = vars.local_values[reg_a_prime_prime(0, 0) + 1];
|
||||
let diff = builder.sub_extension(computed_a_prime_prime_0_0_lo, a_prime_prime_0_0_lo);
|
||||
yield_constr.constraint(builder, diff);
|
||||
let diff = builder.sub_extension(computed_a_prime_prime_0_0_hi, a_prime_prime_0_0_hi);
|
||||
yield_constr.constraint(builder, diff);
|
||||
|
||||
let mut get_xored_bit = |i| {
|
||||
let mut rc_bit_i = builder.zero_extension();
|
||||
for r in 0..NUM_ROUNDS {
|
||||
let this_round = vars.local_values[reg_step(r)];
|
||||
let this_round_constant = builder
|
||||
.constant_extension(F::from_canonical_u32(rc_value_bit(r, i) as u32).into());
|
||||
rc_bit_i = builder.mul_add_extension(this_round, this_round_constant, rc_bit_i);
|
||||
}
|
||||
|
||||
xor_gen_circuit(builder, a_prime_prime_0_0_bits[i], rc_bit_i)
|
||||
};
|
||||
|
||||
let a_prime_prime_prime_0_0_lo = vars.local_values[reg_a_prime_prime_prime(0, 0)];
|
||||
let a_prime_prime_prime_0_0_hi = vars.local_values[reg_a_prime_prime_prime(0, 0) + 1];
|
||||
let bits_lo = (0..32).map(|z| get_xored_bit(z)).collect_vec();
|
||||
let bits_hi = (32..64).map(|z| get_xored_bit(z)).collect_vec();
|
||||
let computed_a_prime_prime_prime_0_0_lo =
|
||||
reduce_with_powers_ext_circuit(builder, &bits_lo, two);
|
||||
let computed_a_prime_prime_prime_0_0_hi =
|
||||
reduce_with_powers_ext_circuit(builder, &bits_hi, two);
|
||||
let diff = builder.sub_extension(
|
||||
computed_a_prime_prime_prime_0_0_lo,
|
||||
a_prime_prime_prime_0_0_lo,
|
||||
);
|
||||
yield_constr.constraint(builder, diff);
|
||||
let diff = builder.sub_extension(
|
||||
computed_a_prime_prime_prime_0_0_hi,
|
||||
a_prime_prime_prime_0_0_hi,
|
||||
);
|
||||
yield_constr.constraint(builder, diff);
|
||||
|
||||
// Enforce that this round's output equals the next round's input.
|
||||
for x in 0..5 {
|
||||
for y in 0..5 {
|
||||
let output = vars.local_values[reg_a_prime_prime_prime(x, y)];
|
||||
let input_bits = (0..64)
|
||||
.map(|z| vars.next_values[reg_a(x, y, z)])
|
||||
.collect_vec();
|
||||
let input_bits_combined = reduce_with_powers_ext_circuit(builder, &input_bits, two);
|
||||
let diff = builder.sub_extension(output, input_bits_combined);
|
||||
yield_constr.constraint(builder, diff);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn constraint_degree(&self) -> usize {
|
||||
3
|
||||
}
|
||||
|
||||
fn permutation_pairs(&self) -> Vec<PermutationPair> {
|
||||
vec![PermutationPair::singletons(0, 6)]
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
||||
@ -1 +1,4 @@
|
||||
pub mod keccak_stark;
|
||||
pub mod logic;
|
||||
pub mod registers;
|
||||
pub mod round_flags;
|
||||
|
||||
@ -95,6 +95,10 @@ where
|
||||
let n = buf.len() / Self::WIDTH;
|
||||
unsafe { std::slice::from_raw_parts_mut(buf_ptr, n) }
|
||||
}
|
||||
|
||||
fn doubles(&self) -> Self {
|
||||
*self * Self::Scalar::TWO
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl<F: Field> PackedField for F {
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user