better comments

This commit is contained in:
Dmitry Vagner 2023-01-25 14:12:29 +07:00
parent 0b81258af3
commit d98c69f0bc
2 changed files with 26 additions and 23 deletions

View File

@ -158,7 +158,7 @@ impl Mul for Fp2 {
}
impl Fp2 {
/// We preemptively define a helper function which multiplies an Fp2 element by 9 + i
// We preemptively define a helper function which multiplies an Fp2 element by 9 + i
fn i9(self) -> Fp2 {
let nine = Fp::new(9);
Fp2 {
@ -167,6 +167,7 @@ impl Fp2 {
}
}
// This function scalar multiplies an Fp2 by an Fp
pub fn scale(self, x: Fp) -> Fp2 {
Fp2 {
re: x * self.re,
@ -174,7 +175,11 @@ impl Fp2 {
}
}
// This function takes the complex conjugate
/// Return the complex conjugate z' of z: Fp2
/// This also happens to be the frobenius map
/// z -> z^p
/// since p == 3 mod 4 and hence
/// i^p = i^3 = -i
fn conj(self) -> Fp2 {
Fp2 {
re: self.re,
@ -182,20 +187,15 @@ impl Fp2 {
}
}
// Return the magnitude of the complex number
fn norm(self) -> Fp {
// Return the magnitude squared of a complex number
fn norm_sq(self) -> Fp {
self.re * self.re + self.im * self.im
}
// This function normalizes the input to the complex unit circle
fn normalize(self) -> Fp2 {
let norm = self.norm();
self.scale(UNIT_FP / norm)
}
/// The inverse of z is given by z'/||z|| since ||z|| = zz'
/// The inverse of z is given by z'/||z||^2 since ||z||^2 = zz'
pub fn inv(self) -> Fp2 {
let norm = self.re * self.re + self.im * self.im;
self.conj().scale(norm)
self.conj().scale(norm.inv())
}
}
@ -300,11 +300,10 @@ impl Fp6 {
/// x to x^(p^n)
/// which sends a + bt + ct^2: Fp6 to
/// a^(p^n) + b^(p^n) * t^(p^n) + c^(p^n) * t^(2p^n)
/// Note that p == 3 mod 4, and i^3 = -i, so x + yi gets mapped to
/// (x + yi)^(p^n) = x^(p^n) + y^(p^n) i^(p^n) = x + y i^(p^n mod 4)
/// which reduces to x + yi for n even and x - yi for n odd
/// The values of t^(p^n) and t^(2p^n) are precomputed in
/// the constant arrays FROB_T1 and FROB_T2
/// The Fp2 coefficients are determined by the comment in the conj method,
/// while the values of
/// t^(p^n) and t^(2p^n)
/// are precomputed in the constant arrays FROB_T1 and FROB_T2
fn frob(self, n: usize) -> Fp6 {
let n = n % 6;
let frob_t1 = FROB_T1[n];
@ -336,12 +335,15 @@ impl Fp6 {
/// (x_1 * x_3) * x_5 * (x_1 * x_3)_1
/// By Galois theory, the following are in Fp2 and are complex conjugates
/// x_1 * x_3 * x_5, x_0 * x_2 * x_4
/// Thus phi = norm(x_1 * x_3 * x_5), and hence the inverse is given by
/// normalize([x_1 * x_3] * x_5) * [x_1 * x_3]_1
/// and therefore
/// phi = ||x_1 * x_3 * x_5||^2
/// and hence the inverse is given by
/// ([x_1 * x_3] * x_5) * [x_1 * x_3]_1 / ||[x_1 * x_3] * x_5||^2
pub fn inv(self) -> Fp6 {
let prod_13 = self.frob(1) * self.frob(3);
let prod_135 = (prod_13 * self.frob(5)).t0;
let prod_odds_over_phi = prod_135.normalize();
let phi = prod_135.norm_sq();
let prod_odds_over_phi = prod_135.scale(phi.inv());
let prod_24 = prod_13.frob(1);
prod_24.scale(prod_odds_over_phi)
}
@ -427,10 +429,11 @@ impl Fp12 {
let prod_17 = (self.frob(1) * self.frob(7)).z0;
let prod_1379 = prod_17 * prod_17.frob(2);
let prod_odds = (prod_1379 * prod_17.frob(4)).t0;
let prod_odds_over_phi = prod_odds.normalize();
let phi = prod_odds.norm_sq();
let prod_odds_over_phi = prod_odds.scale(phi.inv());
let prod_evens_except_six = prod_1379.frob(1);
let prod_penultimate = prod_evens_except_six.scale(prod_odds_over_phi);
self.conj().scale(prod_penultimate)
let prod_except_six = prod_evens_except_six.scale(prod_odds_over_phi);
self.conj().scale(prod_except_six)
}
}

View File

@ -1,5 +1,5 @@
/// def final_exp(y):
/// y0, y4, y2 = 1, 1, 1
/// y4, y2, y0 = 1, 1, 1
/// power_loop_4()
/// power_loop_2()
/// power_loop_0()