Merge pull request #692 from mir-protocol/gate_documentation

Gate documentation
This commit is contained in:
Nicholas Ward 2022-09-06 09:38:38 -07:00 committed by GitHub
commit d5fbcae3f8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 526 additions and 505 deletions

View File

@ -8,9 +8,9 @@ use crate::fri::proof::{
};
use crate::fri::structure::{FriBatchInfoTarget, FriInstanceInfoTarget, FriOpeningsTarget};
use crate::fri::{FriConfig, FriParams};
use crate::gadgets::interpolation::InterpolationGate;
use crate::gates::gate::Gate;
use crate::gates::interpolation::HighDegreeInterpolationGate;
use crate::gates::high_degree_interpolation::HighDegreeInterpolationGate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
use crate::gates::random_access::RandomAccessGate;
use crate::hash::hash_types::MerkleCapTarget;

View File

@ -1,178 +0,0 @@
use std::ops::Range;
use plonky2_field::extension::Extendable;
use crate::gates::gate::Gate;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::target::Target;
use crate::plonk::circuit_builder::CircuitBuilder;
/// Trait for gates which interpolate a polynomial, whose points are a (base field) coset of the multiplicative subgroup
/// with the given size, and whose values are extension field elements, given by input wires.
/// Outputs the evaluation of the interpolant at a given (extension field) evaluation point.
pub(crate) trait InterpolationGate<F: RichField + Extendable<D>, const D: usize>:
Gate<F, D> + Copy
{
fn new(subgroup_bits: usize) -> Self;
fn num_points(&self) -> usize;
/// Wire index of the coset shift.
fn wire_shift(&self) -> usize {
0
}
fn start_values(&self) -> usize {
1
}
/// Wire indices of the `i`th interpolant value.
fn wires_value(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_values() + i * D;
start..start + D
}
fn start_evaluation_point(&self) -> usize {
self.start_values() + self.num_points() * D
}
/// Wire indices of the point to evaluate the interpolant at.
fn wires_evaluation_point(&self) -> Range<usize> {
let start = self.start_evaluation_point();
start..start + D
}
fn start_evaluation_value(&self) -> usize {
self.start_evaluation_point() + D
}
/// Wire indices of the interpolated value.
fn wires_evaluation_value(&self) -> Range<usize> {
let start = self.start_evaluation_value();
start..start + D
}
fn start_coeffs(&self) -> usize {
self.start_evaluation_value() + D
}
/// The number of routed wires required in the typical usage of this gate, where the points to
/// interpolate, the evaluation point, and the corresponding value are all routed.
fn num_routed_wires(&self) -> usize {
self.start_coeffs()
}
/// Wire indices of the interpolant's `i`th coefficient.
fn wires_coeff(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_coeffs() + i * D;
start..start + D
}
fn end_coeffs(&self) -> usize {
self.start_coeffs() + D * self.num_points()
}
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Interpolates a polynomial, whose points are a coset of the multiplicative subgroup with the
/// given size, and whose values are given. Returns the evaluation of the interpolant at
/// `evaluation_point`.
pub(crate) fn interpolate_coset<G: InterpolationGate<F, D>>(
&mut self,
subgroup_bits: usize,
coset_shift: Target,
values: &[ExtensionTarget<D>],
evaluation_point: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let gate = G::new(subgroup_bits);
let row = self.add_gate(gate, vec![]);
self.connect(coset_shift, Target::wire(row, gate.wire_shift()));
for (i, &v) in values.iter().enumerate() {
self.connect_extension(v, ExtensionTarget::from_range(row, gate.wires_value(i)));
}
self.connect_extension(
evaluation_point,
ExtensionTarget::from_range(row, gate.wires_evaluation_point()),
);
ExtensionTarget::from_range(row, gate.wires_evaluation_value())
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2_field::extension::FieldExtension;
use plonky2_field::interpolation::interpolant;
use plonky2_field::types::Field;
use crate::gates::interpolation::HighDegreeInterpolationGate;
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::plonk::verifier::verify;
#[test]
fn test_interpolate() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type FF = <C as GenericConfig<D>>::FE;
let config = CircuitConfig::standard_recursion_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let subgroup_bits = 2;
let len = 1 << subgroup_bits;
let coset_shift = F::rand();
let g = F::primitive_root_of_unity(subgroup_bits);
let points = F::cyclic_subgroup_coset_known_order(g, coset_shift, len);
let values = FF::rand_vec(len);
let homogeneous_points = points
.iter()
.zip(values.iter())
.map(|(&a, &b)| (<FF as FieldExtension<D>>::from_basefield(a), b))
.collect::<Vec<_>>();
let true_interpolant = interpolant(&homogeneous_points);
let z = FF::rand();
let true_eval = true_interpolant.eval(z);
let coset_shift_target = builder.constant(coset_shift);
let value_targets = values
.iter()
.map(|&v| (builder.constant_extension(v)))
.collect::<Vec<_>>();
let zt = builder.constant_extension(z);
let eval_hd = builder.interpolate_coset::<HighDegreeInterpolationGate<F, D>>(
subgroup_bits,
coset_shift_target,
&value_targets,
zt,
);
let eval_ld = builder.interpolate_coset::<LowDegreeInterpolationGate<F, D>>(
subgroup_bits,
coset_shift_target,
&value_targets,
zt,
);
let true_eval_target = builder.constant_extension(true_eval);
builder.connect_extension(eval_hd, true_eval_target);
builder.connect_extension(eval_ld, true_eval_target);
let data = builder.build::<C>();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
}

View File

@ -1,7 +1,6 @@
pub mod arithmetic;
pub mod arithmetic_extension;
pub mod hash;
pub mod interpolation;
pub mod polynomial;
pub mod random_access;
pub mod range_check;

View File

@ -0,0 +1,363 @@
use std::marker::PhantomData;
use std::ops::Range;
use plonky2_field::extension::algebra::PolynomialCoeffsAlgebra;
use plonky2_field::extension::{Extendable, FieldExtension};
use plonky2_field::interpolation::interpolant;
use plonky2_field::polynomial::PolynomialCoeffs;
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
use crate::gates::gate::Gate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::util::StridedConstraintConsumer;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// One of the instantiations of `InterpolationGate`: allows constraints of variable
/// degree, up to `1<<subgroup_bits`.
/// The higher degree is a tradeoff for less gates (`eval_unfiltered_recursively` for
/// this version uses less gates than `LowDegreeInterpolationGate`).
#[derive(Copy, Clone, Debug)]
pub struct HighDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
pub subgroup_bits: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
for HighDegreeInterpolationGate<F, D>
{
fn new(subgroup_bits: usize) -> Self {
Self {
subgroup_bits,
_phantom: PhantomData,
}
}
fn num_points(&self) -> usize {
1 << self.subgroup_bits
}
}
impl<F: RichField + Extendable<D>, const D: usize> HighDegreeInterpolationGate<F, D> {
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.start_coeffs() + self.num_points() * D
}
/// The domain of the points we're interpolating.
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
g.powers().take(size).map(move |x| x * shift)
}
/// The domain of the points we're interpolating.
fn coset_ext(&self, shift: F::Extension) -> impl Iterator<Item = F::Extension> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
g.powers().take(size).map(move |x| shift.scalar_mul(x))
}
/// The domain of the points we're interpolating.
fn coset_ext_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
shift: ExtensionTarget<D>,
) -> Vec<ExtensionTarget<D>> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
g.powers()
.take(size)
.map(move |x| {
let subgroup_element = builder.constant(x);
builder.scalar_mul_ext(subgroup_element, shift)
})
.collect()
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D>
for HighDegreeInterpolationGate<F, D>
{
fn id(&self) -> String {
format!("{:?}<D={}>", self, D)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
let coset = self.coset_ext(vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = interpolant.eval_base(point);
constraints.extend((value - computed_value).to_basefield_array());
}
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(evaluation_point);
constraints.extend((evaluation_value - computed_evaluation_value).to_basefield_array());
constraints
}
fn eval_unfiltered_base_one(
&self,
vars: EvaluationVarsBase<F>,
mut yield_constr: StridedConstraintConsumer<F>,
) {
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffs::new(coeffs);
let coset = self.coset(vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext(self.wires_value(i));
let computed_value = interpolant.eval_base(point);
yield_constr.many((value - computed_value).to_basefield_array());
}
let evaluation_point = vars.get_local_ext(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(evaluation_point);
yield_constr.many((evaluation_value - computed_evaluation_value).to_basefield_array());
}
fn eval_unfiltered_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
let coset = self.coset_ext_circuit(builder, vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = interpolant.eval_scalar(builder, point);
constraints.extend(
builder
.sub_ext_algebra(value, computed_value)
.to_ext_target_array(),
);
}
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
constraints.extend(
builder
.sub_ext_algebra(evaluation_value, computed_evaluation_value)
.to_ext_target_array(),
);
constraints
}
fn generators(&self, row: usize, _local_constants: &[F]) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = InterpolationGenerator::<F, D> {
row,
gate: *self,
_phantom: PhantomData,
};
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.end()
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
// The highest power of x is `num_points - 1`, and then multiplication by the coefficient
// adds 1.
self.num_points()
}
fn num_constraints(&self) -> usize {
// num_points * D constraints to check for consistency between the coefficients and the
// point-value pairs, plus D constraints for the evaluation value.
self.num_points() * D + D
}
}
#[derive(Debug)]
struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
row: usize,
gate: HighDegreeInterpolationGate<F, D>,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for InterpolationGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let local_target = |column| {
Target::Wire(Wire {
row: self.row,
column,
})
};
let local_targets = |columns: Range<usize>| columns.map(local_target);
let num_points = self.gate.num_points();
let mut deps = Vec::with_capacity(1 + D + num_points * D);
deps.push(local_target(self.gate.wire_shift()));
deps.extend(local_targets(self.gate.wires_evaluation_point()));
for i in 0..num_points {
deps.extend(local_targets(self.gate.wires_value(i)));
}
deps
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |column| Wire {
row: self.row,
column,
};
let get_local_wire = |column| witness.get_wire(local_wire(column));
let get_local_ext = |wire_range: Range<usize>| {
debug_assert_eq!(wire_range.len(), D);
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
let arr = values.try_into().unwrap();
F::Extension::from_basefield_array(arr)
};
// Compute the interpolant.
let points = self.gate.coset(get_local_wire(self.gate.wire_shift()));
let points = points
.into_iter()
.enumerate()
.map(|(i, point)| (point.into(), get_local_ext(self.gate.wires_value(i))))
.collect::<Vec<_>>();
let interpolant = interpolant(&points);
for (i, &coeff) in interpolant.coeffs.iter().enumerate() {
let wires = self.gate.wires_coeff(i).map(local_wire);
out_buffer.set_ext_wires(wires, coeff);
}
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
let evaluation_value = interpolant.eval(evaluation_point);
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
out_buffer.set_ext_wires(evaluation_value_wires, evaluation_value);
}
}
#[cfg(test)]
mod tests {
use std::marker::PhantomData;
use anyhow::Result;
use plonky2_field::goldilocks_field::GoldilocksField;
use plonky2_field::polynomial::PolynomialCoeffs;
use plonky2_field::types::Field;
use crate::gates::gate::Gate;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::gates::high_degree_interpolation::HighDegreeInterpolationGate;
use crate::gates::interpolation::InterpolationGate;
use crate::hash::hash_types::HashOut;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::plonk::vars::EvaluationVars;
#[test]
fn wire_indices() {
let gate = HighDegreeInterpolationGate::<GoldilocksField, 4> {
subgroup_bits: 1,
_phantom: PhantomData,
};
// The exact indices aren't really important, but we want to make sure we don't have any
// overlaps or gaps.
assert_eq!(gate.wire_shift(), 0);
assert_eq!(gate.wires_value(0), 1..5);
assert_eq!(gate.wires_value(1), 5..9);
assert_eq!(gate.wires_evaluation_point(), 9..13);
assert_eq!(gate.wires_evaluation_value(), 13..17);
assert_eq!(gate.wires_coeff(0), 17..21);
assert_eq!(gate.wires_coeff(1), 21..25);
assert_eq!(gate.num_wires(), 25);
}
#[test]
fn low_degree() {
test_low_degree::<GoldilocksField, _, 4>(HighDegreeInterpolationGate::new(2));
}
#[test]
fn eval_fns() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
test_eval_fns::<F, C, _, D>(HighDegreeInterpolationGate::new(2))
}
#[test]
fn test_gate_constraint() {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type FF = <C as GenericConfig<D>>::FE;
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
fn get_wires(
gate: &HighDegreeInterpolationGate<F, D>,
shift: F,
coeffs: PolynomialCoeffs<FF>,
eval_point: FF,
) -> Vec<FF> {
let points = gate.coset(shift);
let mut v = vec![shift];
for x in points {
v.extend(coeffs.eval(x.into()).0);
}
v.extend(eval_point.0);
v.extend(coeffs.eval(eval_point).0);
for i in 0..coeffs.len() {
v.extend(coeffs.coeffs[i].0);
}
v.iter().map(|&x| x.into()).collect()
}
// Get a working row for InterpolationGate.
let shift = F::rand();
let coeffs = PolynomialCoeffs::new(vec![FF::rand(), FF::rand()]);
let eval_point = FF::rand();
let gate = HighDegreeInterpolationGate::<F, D>::new(1);
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(&gate, shift, coeffs, eval_point),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
}

View File

@ -1,361 +1,178 @@
use std::marker::PhantomData;
use std::ops::Range;
use plonky2_field::extension::algebra::PolynomialCoeffsAlgebra;
use plonky2_field::extension::{Extendable, FieldExtension};
use plonky2_field::interpolation::interpolant;
use plonky2_field::polynomial::PolynomialCoeffs;
use plonky2_field::extension::Extendable;
use crate::gadgets::interpolation::InterpolationGate;
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
use crate::gates::gate::Gate;
use crate::gates::util::StridedConstraintConsumer;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// Interpolation gate with constraints of degree at most `1<<subgroup_bits`.
/// `eval_unfiltered_recursively` uses less gates than `LowDegreeInterpolationGate`.
#[derive(Copy, Clone, Debug)]
pub struct HighDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
pub subgroup_bits: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
for HighDegreeInterpolationGate<F, D>
/// Trait for gates which interpolate a polynomial, whose points are a (base field) coset of the multiplicative subgroup
/// with the given size, and whose values are extension field elements, given by input wires.
/// Outputs the evaluation of the interpolant at a given (extension field) evaluation point.
pub(crate) trait InterpolationGate<F: RichField + Extendable<D>, const D: usize>:
Gate<F, D> + Copy
{
fn new(subgroup_bits: usize) -> Self {
Self {
subgroup_bits,
_phantom: PhantomData,
}
}
fn new(subgroup_bits: usize) -> Self;
fn num_points(&self) -> usize {
1 << self.subgroup_bits
}
}
fn num_points(&self) -> usize;
impl<F: RichField + Extendable<D>, const D: usize> HighDegreeInterpolationGate<F, D> {
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.start_coeffs() + self.num_points() * D
}
/// The domain of the points we're interpolating.
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
g.powers().take(size).map(move |x| x * shift)
}
/// The domain of the points we're interpolating.
fn coset_ext(&self, shift: F::Extension) -> impl Iterator<Item = F::Extension> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
g.powers().take(size).map(move |x| shift.scalar_mul(x))
}
/// The domain of the points we're interpolating.
fn coset_ext_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
shift: ExtensionTarget<D>,
) -> Vec<ExtensionTarget<D>> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
g.powers()
.take(size)
.map(move |x| {
let subgroup_element = builder.constant(x);
builder.scalar_mul_ext(subgroup_element, shift)
})
.collect()
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D>
for HighDegreeInterpolationGate<F, D>
{
fn id(&self) -> String {
format!("{:?}<D={}>", self, D)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
let coset = self.coset_ext(vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = interpolant.eval_base(point);
constraints.extend((value - computed_value).to_basefield_array());
}
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(evaluation_point);
constraints.extend((evaluation_value - computed_evaluation_value).to_basefield_array());
constraints
}
fn eval_unfiltered_base_one(
&self,
vars: EvaluationVarsBase<F>,
mut yield_constr: StridedConstraintConsumer<F>,
) {
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffs::new(coeffs);
let coset = self.coset(vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext(self.wires_value(i));
let computed_value = interpolant.eval_base(point);
yield_constr.many((value - computed_value).to_basefield_array());
}
let evaluation_point = vars.get_local_ext(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(evaluation_point);
yield_constr.many((evaluation_value - computed_evaluation_value).to_basefield_array());
}
fn eval_unfiltered_circuit(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect();
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
let coset = self.coset_ext_circuit(builder, vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = interpolant.eval_scalar(builder, point);
constraints.extend(
builder
.sub_ext_algebra(value, computed_value)
.to_ext_target_array(),
);
}
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
constraints.extend(
builder
.sub_ext_algebra(evaluation_value, computed_evaluation_value)
.to_ext_target_array(),
);
constraints
}
fn generators(&self, row: usize, _local_constants: &[F]) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = InterpolationGenerator::<F, D> {
row,
gate: *self,
_phantom: PhantomData,
};
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.end()
}
fn num_constants(&self) -> usize {
/// Wire index of the coset shift.
fn wire_shift(&self) -> usize {
0
}
fn degree(&self) -> usize {
// The highest power of x is `num_points - 1`, and then multiplication by the coefficient
// adds 1.
self.num_points()
fn start_values(&self) -> usize {
1
}
fn num_constraints(&self) -> usize {
// num_points * D constraints to check for consistency between the coefficients and the
// point-value pairs, plus D constraints for the evaluation value.
self.num_points() * D + D
/// Wire indices of the `i`th interpolant value.
fn wires_value(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_values() + i * D;
start..start + D
}
fn start_evaluation_point(&self) -> usize {
self.start_values() + self.num_points() * D
}
/// Wire indices of the point to evaluate the interpolant at.
fn wires_evaluation_point(&self) -> Range<usize> {
let start = self.start_evaluation_point();
start..start + D
}
fn start_evaluation_value(&self) -> usize {
self.start_evaluation_point() + D
}
/// Wire indices of the interpolated value.
fn wires_evaluation_value(&self) -> Range<usize> {
let start = self.start_evaluation_value();
start..start + D
}
fn start_coeffs(&self) -> usize {
self.start_evaluation_value() + D
}
/// The number of routed wires required in the typical usage of this gate, where the points to
/// interpolate, the evaluation point, and the corresponding value are all routed.
fn num_routed_wires(&self) -> usize {
self.start_coeffs()
}
/// Wire indices of the interpolant's `i`th coefficient.
fn wires_coeff(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_coeffs() + i * D;
start..start + D
}
fn end_coeffs(&self) -> usize {
self.start_coeffs() + D * self.num_points()
}
}
#[derive(Debug)]
struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
row: usize,
gate: HighDegreeInterpolationGate<F, D>,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for InterpolationGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let local_target = |column| {
Target::Wire(Wire {
row: self.row,
column,
})
};
let local_targets = |columns: Range<usize>| columns.map(local_target);
let num_points = self.gate.num_points();
let mut deps = Vec::with_capacity(1 + D + num_points * D);
deps.push(local_target(self.gate.wire_shift()));
deps.extend(local_targets(self.gate.wires_evaluation_point()));
for i in 0..num_points {
deps.extend(local_targets(self.gate.wires_value(i)));
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Interpolates a polynomial, whose points are a coset of the multiplicative subgroup with the
/// given size, and whose values are given. Returns the evaluation of the interpolant at
/// `evaluation_point`.
pub(crate) fn interpolate_coset<G: InterpolationGate<F, D>>(
&mut self,
subgroup_bits: usize,
coset_shift: Target,
values: &[ExtensionTarget<D>],
evaluation_point: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let gate = G::new(subgroup_bits);
let row = self.add_gate(gate, vec![]);
self.connect(coset_shift, Target::wire(row, gate.wire_shift()));
for (i, &v) in values.iter().enumerate() {
self.connect_extension(v, ExtensionTarget::from_range(row, gate.wires_value(i)));
}
deps
}
self.connect_extension(
evaluation_point,
ExtensionTarget::from_range(row, gate.wires_evaluation_point()),
);
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |column| Wire {
row: self.row,
column,
};
let get_local_wire = |column| witness.get_wire(local_wire(column));
let get_local_ext = |wire_range: Range<usize>| {
debug_assert_eq!(wire_range.len(), D);
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
let arr = values.try_into().unwrap();
F::Extension::from_basefield_array(arr)
};
// Compute the interpolant.
let points = self.gate.coset(get_local_wire(self.gate.wire_shift()));
let points = points
.into_iter()
.enumerate()
.map(|(i, point)| (point.into(), get_local_ext(self.gate.wires_value(i))))
.collect::<Vec<_>>();
let interpolant = interpolant(&points);
for (i, &coeff) in interpolant.coeffs.iter().enumerate() {
let wires = self.gate.wires_coeff(i).map(local_wire);
out_buffer.set_ext_wires(wires, coeff);
}
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
let evaluation_value = interpolant.eval(evaluation_point);
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
out_buffer.set_ext_wires(evaluation_value_wires, evaluation_value);
ExtensionTarget::from_range(row, gate.wires_evaluation_value())
}
}
#[cfg(test)]
mod tests {
use std::marker::PhantomData;
use anyhow::Result;
use plonky2_field::goldilocks_field::GoldilocksField;
use plonky2_field::polynomial::PolynomialCoeffs;
use plonky2_field::extension::FieldExtension;
use plonky2_field::interpolation::interpolant;
use plonky2_field::types::Field;
use crate::gadgets::interpolation::InterpolationGate;
use crate::gates::gate::Gate;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::gates::interpolation::HighDegreeInterpolationGate;
use crate::hash::hash_types::HashOut;
use crate::gates::high_degree_interpolation::HighDegreeInterpolationGate;
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::plonk::vars::EvaluationVars;
use crate::plonk::verifier::verify;
#[test]
fn wire_indices() {
let gate = HighDegreeInterpolationGate::<GoldilocksField, 4> {
subgroup_bits: 1,
_phantom: PhantomData,
};
// The exact indices aren't really important, but we want to make sure we don't have any
// overlaps or gaps.
assert_eq!(gate.wire_shift(), 0);
assert_eq!(gate.wires_value(0), 1..5);
assert_eq!(gate.wires_value(1), 5..9);
assert_eq!(gate.wires_evaluation_point(), 9..13);
assert_eq!(gate.wires_evaluation_value(), 13..17);
assert_eq!(gate.wires_coeff(0), 17..21);
assert_eq!(gate.wires_coeff(1), 21..25);
assert_eq!(gate.num_wires(), 25);
}
#[test]
fn low_degree() {
test_low_degree::<GoldilocksField, _, 4>(HighDegreeInterpolationGate::new(2));
}
#[test]
fn eval_fns() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
test_eval_fns::<F, C, _, D>(HighDegreeInterpolationGate::new(2))
}
#[test]
fn test_gate_constraint() {
fn test_interpolate() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type FF = <C as GenericConfig<D>>::FE;
let config = CircuitConfig::standard_recursion_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
fn get_wires(
gate: &HighDegreeInterpolationGate<F, D>,
shift: F,
coeffs: PolynomialCoeffs<FF>,
eval_point: FF,
) -> Vec<FF> {
let points = gate.coset(shift);
let mut v = vec![shift];
for x in points {
v.extend(coeffs.eval(x.into()).0);
}
v.extend(eval_point.0);
v.extend(coeffs.eval(eval_point).0);
for i in 0..coeffs.len() {
v.extend(coeffs.coeffs[i].0);
}
v.iter().map(|&x| x.into()).collect()
}
let subgroup_bits = 2;
let len = 1 << subgroup_bits;
let coset_shift = F::rand();
let g = F::primitive_root_of_unity(subgroup_bits);
let points = F::cyclic_subgroup_coset_known_order(g, coset_shift, len);
let values = FF::rand_vec(len);
// Get a working row for InterpolationGate.
let shift = F::rand();
let coeffs = PolynomialCoeffs::new(vec![FF::rand(), FF::rand()]);
let eval_point = FF::rand();
let gate = HighDegreeInterpolationGate::<F, D>::new(1);
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(&gate, shift, coeffs, eval_point),
public_inputs_hash: &HashOut::rand(),
};
let homogeneous_points = points
.iter()
.zip(values.iter())
.map(|(&a, &b)| (<FF as FieldExtension<D>>::from_basefield(a), b))
.collect::<Vec<_>>();
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
let true_interpolant = interpolant(&homogeneous_points);
let z = FF::rand();
let true_eval = true_interpolant.eval(z);
let coset_shift_target = builder.constant(coset_shift);
let value_targets = values
.iter()
.map(|&v| (builder.constant_extension(v)))
.collect::<Vec<_>>();
let zt = builder.constant_extension(z);
let eval_hd = builder.interpolate_coset::<HighDegreeInterpolationGate<F, D>>(
subgroup_bits,
coset_shift_target,
&value_targets,
zt,
);
let eval_ld = builder.interpolate_coset::<LowDegreeInterpolationGate<F, D>>(
subgroup_bits,
coset_shift_target,
&value_targets,
zt,
);
let true_eval_target = builder.constant_extension(true_eval);
builder.connect_extension(eval_hd, true_eval_target);
builder.connect_extension(eval_ld, true_eval_target);
let data = builder.build::<C>();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
}

View File

@ -7,9 +7,9 @@ use plonky2_field::interpolation::interpolant;
use plonky2_field::polynomial::PolynomialCoeffs;
use plonky2_field::types::Field;
use crate::gadgets::interpolation::InterpolationGate;
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
use crate::gates::gate::Gate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::util::StridedConstraintConsumer;
use crate::hash::hash_types::RichField;
use crate::iop::ext_target::ExtensionTarget;
@ -20,8 +20,9 @@ use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// Interpolation gate with constraints of degree 2.
/// `eval_unfiltered_recursively` uses more gates than `HighDegreeInterpolationGate`.
/// One of the instantiations of `InterpolationGate`: all constraints are degree <= 2.
/// The lower degree is a tradeoff for more gates (`eval_unfiltered_recursively` for
/// this version uses more gates than `LowDegreeInterpolationGate`).
#[derive(Copy, Clone, Debug)]
pub struct LowDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
pub subgroup_bits: usize,
@ -387,9 +388,9 @@ mod tests {
use plonky2_field::polynomial::PolynomialCoeffs;
use plonky2_field::types::Field;
use crate::gadgets::interpolation::InterpolationGate;
use crate::gates::gate::Gate;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::gates::interpolation::InterpolationGate;
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
use crate::hash::hash_types::HashOut;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};

View File

@ -7,6 +7,7 @@ pub mod base_sum;
pub mod constant;
pub mod exponentiation;
pub mod gate;
pub mod high_degree_interpolation;
pub mod interpolation;
pub mod low_degree_interpolation;
pub mod multiplication_extension;

View File

@ -24,9 +24,15 @@ use crate::plonk::vars::{
/// A gate for checking that a particular element of a list matches a given value.
#[derive(Copy, Clone, Debug)]
pub struct RandomAccessGate<F: RichField + Extendable<D>, const D: usize> {
/// Number of bits in the index (log2 of the list size).
pub bits: usize,
/// How many separate copies are packed into one gate.
pub num_copies: usize,
/// Leftover wires are used as global scratch space to store constants.
pub num_extra_constants: usize,
_phantom: PhantomData<F>,
}
@ -41,13 +47,18 @@ impl<F: RichField + Extendable<D>, const D: usize> RandomAccessGate<F, D> {
}
pub fn new_from_config(config: &CircuitConfig, bits: usize) -> Self {
// We can access a list of 2^bits elements.
let vec_size = 1 << bits;
// Need `(2 + vec_size) * num_copies` routed wires
// We need `(2 + vec_size) * num_copies` routed wires.
let max_copies = (config.num_routed_wires / (2 + vec_size)).min(
// Need `(2 + vec_size + bits) * num_copies` wires
// We need `(2 + vec_size + bits) * num_copies` wires in total.
config.num_wires / (2 + vec_size + bits),
);
// Any leftover wires can be used for constants.
let max_extra_constants = config.num_routed_wires - (2 + vec_size) * max_copies;
Self::new(
max_copies,
bits,
@ -55,20 +66,24 @@ impl<F: RichField + Extendable<D>, const D: usize> RandomAccessGate<F, D> {
)
}
/// Length of the list being accessed.
fn vec_size(&self) -> usize {
1 << self.bits
}
/// For each copy, a wire containing the claimed index of the element.
pub fn wire_access_index(&self, copy: usize) -> usize {
debug_assert!(copy < self.num_copies);
(2 + self.vec_size()) * copy
}
/// For each copy, a wire containing the element claimed to be at the index.
pub fn wire_claimed_element(&self, copy: usize) -> usize {
debug_assert!(copy < self.num_copies);
(2 + self.vec_size()) * copy + 1
}
/// For each copy, wires containing the entire list.
pub fn wire_list_item(&self, i: usize, copy: usize) -> usize {
debug_assert!(i < self.vec_size());
debug_assert!(copy < self.num_copies);
@ -84,6 +99,7 @@ impl<F: RichField + Extendable<D>, const D: usize> RandomAccessGate<F, D> {
self.start_extra_constants() + i
}
/// All above wires are routed.
pub fn num_routed_wires(&self) -> usize {
self.start_extra_constants() + self.num_extra_constants
}
@ -202,10 +218,12 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGa
.collect()
}
// Check that the one remaining element after the folding is the claimed element.
debug_assert_eq!(list_items.len(), 1);
constraints.push(builder.sub_extension(list_items[0], claimed_element));
}
// Check the constant values.
constraints.extend((0..self.num_extra_constants).map(|i| {
builder.sub_extension(
vars.local_constants[i],