mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-06 15:53:10 +00:00
Merge pull request #27 from mir-protocol/fri-reduction-arity-contd
More work on FRI reduction arity
This commit is contained in:
commit
c464c038af
@ -38,13 +38,13 @@ impl Hash for CrandallField {
|
||||
|
||||
impl Display for CrandallField {
|
||||
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
|
||||
Display::fmt(&self.0, f)
|
||||
Display::fmt(&self.to_canonical_u64(), f)
|
||||
}
|
||||
}
|
||||
|
||||
impl Debug for CrandallField {
|
||||
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
|
||||
Debug::fmt(&self.0, f)
|
||||
Debug::fmt(&self.to_canonical_u64(), f)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
147
src/fri.rs
147
src/fri.rs
@ -2,13 +2,13 @@ use crate::field::fft::fft;
|
||||
use crate::field::field::Field;
|
||||
use crate::field::lagrange::{barycentric_weights, interpolate};
|
||||
use crate::hash::hash_n_to_1;
|
||||
use crate::merkle_proofs::verify_merkle_proof_subtree;
|
||||
use crate::merkle_proofs::verify_merkle_proof;
|
||||
use crate::merkle_tree::MerkleTree;
|
||||
use crate::plonk_challenger::Challenger;
|
||||
use crate::plonk_common::reduce_with_powers;
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::proof::{FriProof, FriQueryRound, FriQueryStep, Hash};
|
||||
use crate::util::{log2_strict, reverse_bits};
|
||||
use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place};
|
||||
use anyhow::{ensure, Result};
|
||||
|
||||
/// Somewhat arbitrary. Smaller values will increase delta, but with diminishing returns,
|
||||
@ -93,18 +93,28 @@ fn fri_committed_trees<F: Field>(
|
||||
challenger: &mut Challenger<F>,
|
||||
config: &FriConfig,
|
||||
) -> (Vec<MerkleTree<F>>, PolynomialCoeffs<F>) {
|
||||
let mut trees = vec![MerkleTree::new(
|
||||
polynomial_values.values.iter().map(|&v| vec![v]).collect(),
|
||||
true,
|
||||
)];
|
||||
let mut values = polynomial_values.clone();
|
||||
let mut coeffs = polynomial_coeffs.clone();
|
||||
let mut values;
|
||||
|
||||
challenger.observe_hash(&trees[0].root);
|
||||
let mut trees = Vec::new();
|
||||
|
||||
let num_reductions = config.reduction_arity_bits.len();
|
||||
for i in 0..num_reductions {
|
||||
let arity = 1 << config.reduction_arity_bits[i];
|
||||
|
||||
reverse_index_bits_in_place(&mut values.values);
|
||||
let tree = MerkleTree::new(
|
||||
values
|
||||
.values
|
||||
.chunks(arity)
|
||||
.map(|chunk| chunk.to_vec())
|
||||
.collect(),
|
||||
false,
|
||||
);
|
||||
|
||||
challenger.observe_hash(&tree.root);
|
||||
trees.push(tree);
|
||||
|
||||
let beta = challenger.get_challenge();
|
||||
// P(x) = sum_{i<r} x^i * P_i(x^r) becomes sum_{i<r} beta^i * P_i(x).
|
||||
coeffs = PolynomialCoeffs::new(
|
||||
@ -114,17 +124,10 @@ fn fri_committed_trees<F: Field>(
|
||||
.map(|chunk| reduce_with_powers(chunk, beta))
|
||||
.collect::<Vec<_>>(),
|
||||
);
|
||||
if i == num_reductions - 1 {
|
||||
// We don't need a Merkle root for the final polynomial, since we send its
|
||||
// coefficients directly to the verifier.
|
||||
break;
|
||||
}
|
||||
// TODO: Is it faster to interpolate?
|
||||
values = fft(coeffs.clone());
|
||||
|
||||
let tree = MerkleTree::new(values.values.iter().map(|&v| vec![v]).collect(), true);
|
||||
challenger.observe_hash(&tree.root);
|
||||
trees.push(tree);
|
||||
}
|
||||
|
||||
challenger.observe_elements(&coeffs.coeffs);
|
||||
(trees, coeffs)
|
||||
}
|
||||
@ -180,11 +183,11 @@ fn fri_prover_query_rounds<F: Field>(
|
||||
config: &FriConfig,
|
||||
) -> Vec<FriQueryRound<F>> {
|
||||
(0..config.num_query_rounds)
|
||||
.map(|_| fri_query_round(trees, challenger, n, config))
|
||||
.map(|_| fri_prover_query_round(trees, challenger, n, config))
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn fri_query_round<F: Field>(
|
||||
fn fri_prover_query_round<F: Field>(
|
||||
trees: &[MerkleTree<F>],
|
||||
challenger: &mut Challenger<F>,
|
||||
n: usize,
|
||||
@ -194,28 +197,22 @@ fn fri_query_round<F: Field>(
|
||||
// TODO: Challenger doesn't change between query rounds, so x is always the same.
|
||||
let x = challenger.get_challenge();
|
||||
let mut domain_size = n;
|
||||
let mut x_index = x.to_canonical_u64() as usize;
|
||||
let mut x_index = x.to_canonical_u64() as usize % n;
|
||||
for (i, tree) in trees.iter().enumerate() {
|
||||
let arity_bits = config.reduction_arity_bits[i];
|
||||
let arity = 1 << arity_bits;
|
||||
let next_domain_size = domain_size >> arity_bits;
|
||||
x_index %= domain_size;
|
||||
let roots_coset_indices = coset_indices(x_index, next_domain_size, domain_size, arity);
|
||||
let evals = if i == 0 {
|
||||
// For the first layer, we need to send the evaluation at `x` too.
|
||||
roots_coset_indices
|
||||
.iter()
|
||||
.map(|&index| tree.get(index)[0])
|
||||
.collect()
|
||||
tree.get(x_index >> arity_bits).to_vec()
|
||||
} else {
|
||||
// For the other layers, we don't need to send the evaluation at `x`, since it can
|
||||
// be inferred by the verifier. See the `compute_evaluation` function.
|
||||
roots_coset_indices[1..]
|
||||
.iter()
|
||||
.map(|&index| tree.get(index)[0])
|
||||
.collect()
|
||||
let mut evals = tree.get(x_index >> arity_bits).to_vec();
|
||||
evals.remove(x_index & (arity - 1));
|
||||
evals
|
||||
};
|
||||
let merkle_proof = tree.prove_subtree(x_index & (next_domain_size - 1), arity_bits);
|
||||
let merkle_proof = tree.prove(x_index >> arity_bits);
|
||||
|
||||
query_steps.push(FriQueryStep {
|
||||
evals,
|
||||
@ -223,32 +220,34 @@ fn fri_query_round<F: Field>(
|
||||
});
|
||||
|
||||
domain_size = next_domain_size;
|
||||
x_index >>= arity_bits;
|
||||
}
|
||||
FriQueryRound { steps: query_steps }
|
||||
}
|
||||
|
||||
/// Returns the indices in the domain of all `y` in `F` with `y^arity=x^arity`, starting with `x` itself.
|
||||
fn coset_indices(
|
||||
x_index: usize,
|
||||
next_domain_size: usize,
|
||||
domain_size: usize,
|
||||
arity: usize,
|
||||
) -> Vec<usize> {
|
||||
(0..arity)
|
||||
.map(|i| (i * next_domain_size + x_index) % domain_size)
|
||||
.collect()
|
||||
}
|
||||
|
||||
/// Computes P'(x^arity) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity
|
||||
/// and P' is the FRI reduced polynomial.
|
||||
fn compute_evaluation<F: Field>(x: F, arity_bits: usize, last_evals: &[F], beta: F) -> F {
|
||||
fn compute_evaluation<F: Field>(
|
||||
x: F,
|
||||
old_x_index: usize,
|
||||
arity_bits: usize,
|
||||
last_evals: &[F],
|
||||
beta: F,
|
||||
) -> F {
|
||||
debug_assert_eq!(last_evals.len(), 1 << arity_bits);
|
||||
// The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta.
|
||||
|
||||
let g = F::primitive_root_of_unity(arity_bits);
|
||||
|
||||
// The evaluation vector needs to be reordered first.
|
||||
let mut evals = last_evals.to_vec();
|
||||
reverse_index_bits_in_place(&mut evals);
|
||||
evals.rotate_left(reverse_bits(old_x_index, arity_bits));
|
||||
|
||||
// The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta.
|
||||
let points = g
|
||||
.powers()
|
||||
.zip(last_evals)
|
||||
.map(|(y, &e)| (x * y, e))
|
||||
.zip(evals)
|
||||
.map(|(y, e)| (x * y, e))
|
||||
.collect::<Vec<_>>();
|
||||
let barycentric_weights = barycentric_weights(&points);
|
||||
interpolate(&points, beta, &barycentric_weights)
|
||||
@ -312,12 +311,13 @@ fn fri_verifier_query_round<F: Field>(
|
||||
let mut evaluations = Vec::new();
|
||||
let x = challenger.get_challenge();
|
||||
let mut domain_size = n;
|
||||
let mut x_index = x.to_canonical_u64() as usize;
|
||||
let mut x_index = x.to_canonical_u64() as usize % n;
|
||||
let mut old_x_index = 0;
|
||||
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
|
||||
let mut subgroup_x = F::primitive_root_of_unity(log2_strict(n)).exp_usize(x_index % n);
|
||||
let log_n = log2_strict(n);
|
||||
let mut subgroup_x = F::primitive_root_of_unity(log_n).exp_usize(reverse_bits(x_index, log_n));
|
||||
for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() {
|
||||
let arity = 1 << arity_bits;
|
||||
x_index %= domain_size;
|
||||
let next_domain_size = domain_size >> arity_bits;
|
||||
if i == 0 {
|
||||
let evals = round_proof.steps[0].evals.clone();
|
||||
@ -327,33 +327,22 @@ fn fri_verifier_query_round<F: Field>(
|
||||
// Infer P(y) from {P(x)}_{x^arity=y}.
|
||||
let e_x = compute_evaluation(
|
||||
subgroup_x,
|
||||
old_x_index,
|
||||
config.reduction_arity_bits[i - 1],
|
||||
last_evals,
|
||||
betas[i - 1],
|
||||
);
|
||||
let mut evals = round_proof.steps[i].evals.clone();
|
||||
// Insert P(y) into the evaluation vector, since it wasn't included by the prover.
|
||||
evals.insert(0, e_x);
|
||||
evals.insert(x_index & (arity - 1), e_x);
|
||||
evaluations.push(evals);
|
||||
};
|
||||
let sorted_evals = {
|
||||
let roots_coset_indices = coset_indices(x_index, next_domain_size, domain_size, arity);
|
||||
let mut sorted_evals_enumerate = evaluations[i].iter().enumerate().collect::<Vec<_>>();
|
||||
// We need to sort the evaluations so that they match their order in the Merkle tree.
|
||||
sorted_evals_enumerate.sort_by_key(|&(j, _)| {
|
||||
reverse_bits(roots_coset_indices[j], log2_strict(domain_size))
|
||||
});
|
||||
sorted_evals_enumerate
|
||||
.into_iter()
|
||||
.map(|(_, &e)| vec![e])
|
||||
.collect()
|
||||
};
|
||||
verify_merkle_proof_subtree(
|
||||
sorted_evals,
|
||||
x_index & (next_domain_size - 1),
|
||||
verify_merkle_proof(
|
||||
evaluations[i].clone(),
|
||||
x_index >> arity_bits,
|
||||
proof.commit_phase_merkle_roots[i],
|
||||
&round_proof.steps[i].merkle_proof,
|
||||
true,
|
||||
false,
|
||||
)?;
|
||||
|
||||
if i > 0 {
|
||||
@ -363,12 +352,15 @@ fn fri_verifier_query_round<F: Field>(
|
||||
}
|
||||
}
|
||||
domain_size = next_domain_size;
|
||||
old_x_index = x_index;
|
||||
x_index >>= arity_bits;
|
||||
}
|
||||
|
||||
let last_evals = evaluations.last().unwrap();
|
||||
let final_arity_bits = *config.reduction_arity_bits.last().unwrap();
|
||||
let purported_eval = compute_evaluation(
|
||||
subgroup_x,
|
||||
old_x_index,
|
||||
final_arity_bits,
|
||||
last_evals,
|
||||
*betas.last().unwrap(),
|
||||
@ -393,6 +385,7 @@ mod tests {
|
||||
use crate::field::crandall_field::CrandallField;
|
||||
use crate::field::fft::ifft;
|
||||
use anyhow::Result;
|
||||
use rand::rngs::ThreadRng;
|
||||
use rand::Rng;
|
||||
|
||||
fn test_fri(
|
||||
@ -421,8 +414,7 @@ mod tests {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn gen_arities(degree_log: usize) -> Vec<usize> {
|
||||
let mut rng = rand::thread_rng();
|
||||
fn gen_arities(degree_log: usize, rng: &mut ThreadRng) -> Vec<usize> {
|
||||
let mut arities = Vec::new();
|
||||
let mut remaining = degree_log;
|
||||
while remaining > 0 {
|
||||
@ -435,15 +427,18 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_fri_multi_params() -> Result<()> {
|
||||
let mut rng = rand::thread_rng();
|
||||
for degree_log in 1..6 {
|
||||
for rate_bits in 0..4 {
|
||||
for rate_bits in 0..3 {
|
||||
for num_query_round in 0..4 {
|
||||
test_fri(
|
||||
degree_log,
|
||||
rate_bits,
|
||||
gen_arities(degree_log),
|
||||
num_query_round,
|
||||
)?;
|
||||
for _ in 0..3 {
|
||||
test_fri(
|
||||
degree_log,
|
||||
rate_bits,
|
||||
gen_arities(degree_log, &mut rng),
|
||||
num_query_round,
|
||||
)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -29,6 +29,11 @@ pub(crate) fn verify_merkle_proof<F: Field>(
|
||||
proof: &MerkleProof<F>,
|
||||
reverse_bits: bool,
|
||||
) -> Result<()> {
|
||||
ensure!(
|
||||
leaf_index >> proof.siblings.len() == 0,
|
||||
"Merkle leaf index is too large."
|
||||
);
|
||||
|
||||
let index = if reverse_bits {
|
||||
crate::util::reverse_bits(leaf_index, proof.siblings.len())
|
||||
} else {
|
||||
@ -48,34 +53,6 @@ pub(crate) fn verify_merkle_proof<F: Field>(
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Verifies that the given subtree is present at the given index in the Merkle tree with the
|
||||
/// given root.
|
||||
pub(crate) fn verify_merkle_proof_subtree<F: Field>(
|
||||
subtree_leaves_data: Vec<Vec<F>>,
|
||||
subtree_index: usize,
|
||||
merkle_root: Hash<F>,
|
||||
proof: &MerkleProof<F>,
|
||||
reverse_bits: bool,
|
||||
) -> Result<()> {
|
||||
let index = if reverse_bits {
|
||||
crate::util::reverse_bits(subtree_index, proof.siblings.len())
|
||||
} else {
|
||||
subtree_index
|
||||
};
|
||||
let mut current_digest = MerkleTree::new(subtree_leaves_data, false).root;
|
||||
for (i, &sibling_digest) in proof.siblings.iter().enumerate() {
|
||||
let bit = (index >> i & 1) == 1;
|
||||
current_digest = if bit {
|
||||
compress(sibling_digest, current_digest)
|
||||
} else {
|
||||
compress(current_digest, sibling_digest)
|
||||
}
|
||||
}
|
||||
ensure!(current_digest == merkle_root, "Invalid Merkle proof.");
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
impl<F: Field> CircuitBuilder<F> {
|
||||
/// Verifies that the given leaf data is present at the given index in the Merkle tree with the
|
||||
/// given root.
|
||||
|
||||
@ -78,42 +78,6 @@ impl<F: Field> MerkleTree<F> {
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a Merkle proof for an entire subtree.
|
||||
/// Example:
|
||||
/// ```tree
|
||||
/// G
|
||||
/// / \
|
||||
/// / \
|
||||
/// / \
|
||||
/// E F
|
||||
/// / \ / \
|
||||
/// A B C D
|
||||
/// ```
|
||||
/// `self.prove_subtree(0, 1)` gives a Merkle proof for the subtree E->(A,B), i.e., the
|
||||
/// path (F,).
|
||||
pub fn prove_subtree(&self, subtree_index: usize, subtree_height: usize) -> MerkleProof<F> {
|
||||
let index = if self.reverse_bits {
|
||||
reverse_bits(
|
||||
subtree_index,
|
||||
log2_strict(self.leaves.len()) - subtree_height,
|
||||
)
|
||||
} else {
|
||||
subtree_index
|
||||
};
|
||||
MerkleProof {
|
||||
siblings: self
|
||||
.layers
|
||||
.iter()
|
||||
.skip(subtree_height)
|
||||
.scan(index, |acc, layer| {
|
||||
let index = *acc ^ 1;
|
||||
*acc >>= 1;
|
||||
Some(layer[index])
|
||||
})
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@ -121,7 +85,7 @@ mod tests {
|
||||
use anyhow::Result;
|
||||
|
||||
use crate::field::crandall_field::CrandallField;
|
||||
use crate::merkle_proofs::{verify_merkle_proof, verify_merkle_proof_subtree};
|
||||
use crate::merkle_proofs::verify_merkle_proof;
|
||||
|
||||
use super::*;
|
||||
|
||||
@ -143,32 +107,6 @@ mod tests {
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
fn verify_all_subtrees<F: Field>(
|
||||
leaves: Vec<Vec<F>>,
|
||||
n: usize,
|
||||
log_n: usize,
|
||||
reverse_bits: bool,
|
||||
) -> Result<()> {
|
||||
let tree = MerkleTree::new(leaves.clone(), reverse_bits);
|
||||
for height in 0..=log_n {
|
||||
for i in 0..(n >> height) {
|
||||
let index = if reverse_bits {
|
||||
crate::util::reverse_bits(i, log_n - height)
|
||||
} else {
|
||||
i
|
||||
};
|
||||
let subtree_proof = tree.prove_subtree(i, height);
|
||||
verify_merkle_proof_subtree(
|
||||
tree.leaves[index << height..(index + 1) << height].to_vec(),
|
||||
i,
|
||||
tree.root,
|
||||
&subtree_proof,
|
||||
reverse_bits,
|
||||
)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_merkle_trees() -> Result<()> {
|
||||
@ -179,10 +117,7 @@ mod tests {
|
||||
let leaves = random_data::<F>(n, 7);
|
||||
|
||||
verify_all_leaves(leaves.clone(), n, false)?;
|
||||
verify_all_subtrees(leaves.clone(), n, log_n, false)?;
|
||||
|
||||
verify_all_leaves(leaves.clone(), n, true)?;
|
||||
verify_all_subtrees(leaves, n, log_n, true)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user