Merge branch 'main' into bignum-modexp

This commit is contained in:
Nicholas Ward 2023-03-28 11:15:27 -07:00
commit c18377d12f
32 changed files with 2027 additions and 978 deletions

View File

@ -1,7 +1,7 @@
use ethereum_types::U256;
use plonky2::field::types::PrimeField64;
use crate::bn254_arithmetic::BN_BASE;
use crate::extension_tower::BN_BASE;
use crate::util::{addmod, mulmod, submod};
mod addcy;

View File

@ -1,876 +0,0 @@
use std::mem::transmute;
use std::ops::{Add, Div, Mul, Neg, Sub};
use ethereum_types::U256;
use rand::distributions::{Distribution, Standard};
use rand::Rng;
pub const BN_BASE: U256 = U256([
0x3c208c16d87cfd47,
0x97816a916871ca8d,
0xb85045b68181585d,
0x30644e72e131a029,
]);
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Fp {
pub val: U256,
}
impl Fp {
pub fn new(val: usize) -> Fp {
Fp {
val: U256::from(val),
}
}
}
impl Distribution<Fp> for Standard {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Fp {
let xs = rng.gen::<[u64; 4]>();
Fp {
val: U256(xs) % BN_BASE,
}
}
}
impl Add for Fp {
type Output = Self;
fn add(self, other: Self) -> Self {
Fp {
val: (self.val + other.val) % BN_BASE,
}
}
}
impl Neg for Fp {
type Output = Self;
fn neg(self) -> Self::Output {
Fp {
val: (BN_BASE - self.val) % BN_BASE,
}
}
}
impl Sub for Fp {
type Output = Self;
fn sub(self, other: Self) -> Self {
Fp {
val: (BN_BASE + self.val - other.val) % BN_BASE,
}
}
}
#[allow(clippy::suspicious_arithmetic_impl)]
impl Mul for Fp {
type Output = Self;
fn mul(self, other: Self) -> Self {
Fp {
val: U256::try_from((self.val).full_mul(other.val) % BN_BASE).unwrap(),
}
}
}
impl Fp {
pub fn inv(self) -> Fp {
exp_fp(self, BN_BASE - 2)
}
}
#[allow(clippy::suspicious_arithmetic_impl)]
impl Div for Fp {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inv()
}
}
pub const ZERO_FP: Fp = Fp { val: U256::zero() };
pub const UNIT_FP: Fp = Fp { val: U256::one() };
fn exp_fp(x: Fp, e: U256) -> Fp {
let mut current = x;
let mut product = Fp { val: U256::one() };
for j in 0..256 {
if e.bit(j) {
product = product * current;
}
current = current * current;
}
product
}
/// The degree 2 field extension Fp2 is given by adjoining i, the square root of -1, to Fp
/// The arithmetic in this extension is standard complex arithmetic
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Fp2 {
pub re: Fp,
pub im: Fp,
}
pub const ZERO_FP2: Fp2 = Fp2 {
re: ZERO_FP,
im: ZERO_FP,
};
pub const UNIT_FP2: Fp2 = Fp2 {
re: UNIT_FP,
im: ZERO_FP,
};
impl Distribution<Fp2> for Standard {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Fp2 {
let (re, im) = rng.gen::<(Fp, Fp)>();
Fp2 { re, im }
}
}
impl Add for Fp2 {
type Output = Self;
fn add(self, other: Self) -> Self {
Fp2 {
re: self.re + other.re,
im: self.im + other.im,
}
}
}
impl Neg for Fp2 {
type Output = Self;
fn neg(self) -> Self::Output {
Fp2 {
re: -self.re,
im: -self.im,
}
}
}
impl Sub for Fp2 {
type Output = Self;
fn sub(self, other: Self) -> Self {
Fp2 {
re: self.re - other.re,
im: self.im - other.im,
}
}
}
impl Mul for Fp2 {
type Output = Self;
fn mul(self, other: Self) -> Self {
Fp2 {
re: self.re * other.re - self.im * other.im,
im: self.re * other.im + self.im * other.re,
}
}
}
impl Fp2 {
// We preemptively define a helper function which multiplies an Fp2 element by 9 + i
fn i9(self) -> Fp2 {
let nine = Fp::new(9);
Fp2 {
re: nine * self.re - self.im,
im: self.re + nine * self.im,
}
}
// This function scalar multiplies an Fp2 by an Fp
pub fn scale(self, x: Fp) -> Fp2 {
Fp2 {
re: x * self.re,
im: x * self.im,
}
}
/// Return the complex conjugate z' of z: Fp2
/// This also happens to be the frobenius map
/// z -> z^p
/// since p == 3 mod 4 and hence
/// i^p = i^3 = -i
fn conj(self) -> Fp2 {
Fp2 {
re: self.re,
im: -self.im,
}
}
// Return the magnitude squared of a complex number
fn norm_sq(self) -> Fp {
self.re * self.re + self.im * self.im
}
/// The inverse of z is given by z'/||z||^2 since ||z||^2 = zz'
pub fn inv(self) -> Fp2 {
let norm_sq = self.norm_sq();
self.conj().scale(norm_sq.inv())
}
}
#[allow(clippy::suspicious_arithmetic_impl)]
impl Div for Fp2 {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inv()
}
}
/// The degree 3 field extension Fp6 over Fp2 is given by adjoining t, where t^3 = 9 + i
// Fp6 has basis 1, t, t^2 over Fp2
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Fp6 {
pub t0: Fp2,
pub t1: Fp2,
pub t2: Fp2,
}
pub const ZERO_FP6: Fp6 = Fp6 {
t0: ZERO_FP2,
t1: ZERO_FP2,
t2: ZERO_FP2,
};
pub const UNIT_FP6: Fp6 = Fp6 {
t0: UNIT_FP2,
t1: ZERO_FP2,
t2: ZERO_FP2,
};
impl Distribution<Fp6> for Standard {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Fp6 {
let (t0, t1, t2) = rng.gen::<(Fp2, Fp2, Fp2)>();
Fp6 { t0, t1, t2 }
}
}
impl Add for Fp6 {
type Output = Self;
fn add(self, other: Self) -> Self {
Fp6 {
t0: self.t0 + other.t0,
t1: self.t1 + other.t1,
t2: self.t2 + other.t2,
}
}
}
impl Neg for Fp6 {
type Output = Self;
fn neg(self) -> Self::Output {
Fp6 {
t0: -self.t0,
t1: -self.t1,
t2: -self.t2,
}
}
}
impl Sub for Fp6 {
type Output = Self;
fn sub(self, other: Self) -> Self {
Fp6 {
t0: self.t0 - other.t0,
t1: self.t1 - other.t1,
t2: self.t2 - other.t2,
}
}
}
impl Mul for Fp6 {
type Output = Self;
fn mul(self, other: Self) -> Self {
Fp6 {
t0: self.t0 * other.t0 + (self.t1 * other.t2 + self.t2 * other.t1).i9(),
t1: self.t0 * other.t1 + self.t1 * other.t0 + (self.t2 * other.t2).i9(),
t2: self.t0 * other.t2 + self.t1 * other.t1 + self.t2 * other.t0,
}
}
}
impl Fp6 {
// This function scalar multiplies an Fp6 by an Fp2
fn scale(self, x: Fp2) -> Fp6 {
Fp6 {
t0: x * self.t0,
t1: x * self.t1,
t2: x * self.t2,
}
}
/// This function multiplies an Fp6 element by t, and hence shifts the bases,
/// where the t^2 coefficient picks up a factor of 9+i as the 1 coefficient of the output
fn sh(self) -> Fp6 {
Fp6 {
t0: self.t2.i9(),
t1: self.t0,
t2: self.t1,
}
}
/// The nth frobenius endomorphism of a p^q field is given by mapping
/// x to x^(p^n)
/// which sends a + bt + ct^2: Fp6 to
/// a^(p^n) + b^(p^n) * t^(p^n) + c^(p^n) * t^(2p^n)
/// The Fp2 coefficients are determined by the comment in the conj method,
/// while the values of
/// t^(p^n) and t^(2p^n)
/// are precomputed in the constant arrays FROB_T1 and FROB_T2
pub fn frob(self, n: usize) -> Fp6 {
let n = n % 6;
let frob_t1 = FROB_T1[n];
let frob_t2 = FROB_T2[n];
if n % 2 != 0 {
Fp6 {
t0: self.t0.conj(),
t1: frob_t1 * self.t1.conj(),
t2: frob_t2 * self.t2.conj(),
}
} else {
Fp6 {
t0: self.t0,
t1: frob_t1 * self.t1,
t2: frob_t2 * self.t2,
}
}
}
/// Let x_n = x^(p^n) and note that
/// x_0 = x^(p^0) = x^1 = x
/// (x_n)_m = (x^(p^n))^(p^m) = x^(p^n * p^m) = x^(p^(n+m)) = x_{n+m}
/// By Galois Theory, given x: Fp6, the product
/// phi = x_0 * x_1 * x_2 * x_3 * x_4 * x_5
/// lands in Fp, and hence the inverse of x is given by
/// (x_1 * x_2 * x_3 * x_4 * x_5) / phi
/// We can save compute by rearranging the numerator:
/// (x_1 * x_3) * x_5 * (x_1 * x_3)_1
/// By Galois theory, the following are in Fp2 and are complex conjugates
/// x_1 * x_3 * x_5, x_0 * x_2 * x_4
/// and therefore
/// phi = ||x_1 * x_3 * x_5||^2
/// and hence the inverse is given by
/// ([x_1 * x_3] * x_5) * [x_1 * x_3]_1 / ||[x_1 * x_3] * x_5||^2
pub fn inv(self) -> Fp6 {
let prod_13 = self.frob(1) * self.frob(3);
let prod_135 = (prod_13 * self.frob(5)).t0;
let phi = prod_135.norm_sq();
let prod_odds_over_phi = prod_135.scale(phi.inv());
let prod_24 = prod_13.frob(1);
prod_24.scale(prod_odds_over_phi)
}
pub fn on_stack(self) -> Vec<U256> {
let f: [U256; 6] = unsafe { transmute(self) };
f.into_iter().collect()
}
}
#[allow(clippy::suspicious_arithmetic_impl)]
impl Div for Fp6 {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inv()
}
}
/// The degree 2 field extension Fp12 over Fp6 is given by adjoining z, where z^2 = t.
/// It thus has basis 1, z over Fp6
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Fp12 {
pub z0: Fp6,
pub z1: Fp6,
}
pub const UNIT_FP12: Fp12 = Fp12 {
z0: UNIT_FP6,
z1: ZERO_FP6,
};
impl Distribution<Fp12> for Standard {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Fp12 {
let (z0, z1) = rng.gen::<(Fp6, Fp6)>();
Fp12 { z0, z1 }
}
}
impl Mul for Fp12 {
type Output = Self;
fn mul(self, other: Self) -> Self {
let h0 = self.z0 * other.z0;
let h1 = self.z1 * other.z1;
let h01 = (self.z0 + self.z1) * (other.z0 + other.z1);
Fp12 {
z0: h0 + h1.sh(),
z1: h01 - (h0 + h1),
}
}
}
impl Fp12 {
// This function scalar multiplies an Fp12 by an Fp6
fn scale(self, x: Fp6) -> Fp12 {
Fp12 {
z0: x * self.z0,
z1: x * self.z1,
}
}
fn conj(self) -> Fp12 {
Fp12 {
z0: self.z0,
z1: -self.z1,
}
}
/// The nth frobenius endomorphism of a p^q field is given by mapping
/// x to x^(p^n)
/// which sends a + bz: Fp12 to
/// a^(p^n) + b^(p^n) * z^(p^n)
/// where the values of z^(p^n) are precomputed in the constant array FROB_Z
pub fn frob(self, n: usize) -> Fp12 {
let n = n % 12;
Fp12 {
z0: self.z0.frob(n),
z1: self.z1.frob(n).scale(FROB_Z[n]),
}
}
/// By Galois Theory, given x: Fp12, the product
/// phi = Prod_{i=0}^11 x_i
/// lands in Fp, and hence the inverse of x is given by
/// (Prod_{i=1}^11 x_i) / phi
/// The 6th Frob map is nontrivial but leaves Fp6 fixed and hence must be the conjugate:
/// x_6 = (a + bz)_6 = a - bz = x.conj()
/// Letting prod_17 = x_1 * x_7, the remaining factors in the numerator can be expresed as:
/// [(prod_17) * (prod_17)_2] * (prod_17)_4 * [(prod_17) * (prod_17)_2]_1
/// By Galois theory, both the following are in Fp2 and are complex conjugates
/// prod_odds, prod_evens
/// Thus phi = ||prod_odds||^2, and hence the inverse is given by
/// prod_odds * prod_evens_except_six * x.conj() / ||prod_odds||^2
pub fn inv(self) -> Fp12 {
let prod_17 = (self.frob(1) * self.frob(7)).z0;
let prod_1379 = prod_17 * prod_17.frob(2);
let prod_odds = (prod_1379 * prod_17.frob(4)).t0;
let phi = prod_odds.norm_sq();
let prod_odds_over_phi = prod_odds.scale(phi.inv());
let prod_evens_except_six = prod_1379.frob(1);
let prod_except_six = prod_evens_except_six.scale(prod_odds_over_phi);
self.conj().scale(prod_except_six)
}
pub fn on_stack(self) -> Vec<U256> {
let f: [U256; 12] = unsafe { transmute(self) };
f.into_iter().collect()
}
}
#[allow(clippy::suspicious_arithmetic_impl)]
impl Div for Fp12 {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inv()
}
}
const FROB_T1: [Fp2; 6] = [
Fp2 {
re: Fp { val: U256::one() },
im: Fp { val: U256::zero() },
},
Fp2 {
re: Fp {
val: U256([
0x99e39557176f553d,
0xb78cc310c2c3330c,
0x4c0bec3cf559b143,
0x2fb347984f7911f7,
]),
},
im: Fp {
val: U256([
0x1665d51c640fcba2,
0x32ae2a1d0b7c9dce,
0x4ba4cc8bd75a0794,
0x16c9e55061ebae20,
]),
},
},
Fp2 {
re: Fp {
val: U256([
0xe4bd44e5607cfd48,
0xc28f069fbb966e3d,
0x5e6dd9e7e0acccb0,
0x30644e72e131a029,
]),
},
im: Fp { val: U256::zero() },
},
Fp2 {
re: Fp {
val: U256([
0x7b746ee87bdcfb6d,
0x805ffd3d5d6942d3,
0xbaff1c77959f25ac,
0x0856e078b755ef0a,
]),
},
im: Fp {
val: U256([
0x380cab2baaa586de,
0x0fdf31bf98ff2631,
0xa9f30e6dec26094f,
0x04f1de41b3d1766f,
]),
},
},
Fp2 {
re: Fp {
val: U256([
0x5763473177fffffe,
0xd4f263f1acdb5c4f,
0x59e26bcea0d48bac,
0x0,
]),
},
im: Fp { val: U256::zero() },
},
Fp2 {
re: Fp {
val: U256([
0x62e913ee1dada9e4,
0xf71614d4b0b71f3a,
0x699582b87809d9ca,
0x28be74d4bb943f51,
]),
},
im: Fp {
val: U256([
0xedae0bcec9c7aac7,
0x54f40eb4c3f6068d,
0xc2b86abcbe01477a,
0x14a88ae0cb747b99,
]),
},
},
];
const FROB_T2: [Fp2; 6] = [
Fp2 {
re: Fp { val: U256::one() },
im: Fp { val: U256::zero() },
},
Fp2 {
re: {
Fp {
val: U256([
0x848a1f55921ea762,
0xd33365f7be94ec72,
0x80f3c0b75a181e84,
0x05b54f5e64eea801,
]),
}
},
im: {
Fp {
val: U256([
0xc13b4711cd2b8126,
0x3685d2ea1bdec763,
0x9f3a80b03b0b1c92,
0x2c145edbe7fd8aee,
]),
}
},
},
Fp2 {
re: {
Fp {
val: U256([
0x5763473177fffffe,
0xd4f263f1acdb5c4f,
0x59e26bcea0d48bac,
0x0,
]),
}
},
im: { Fp { val: U256::zero() } },
},
Fp2 {
re: {
Fp {
val: U256([
0x0e1a92bc3ccbf066,
0xe633094575b06bcb,
0x19bee0f7b5b2444e,
0xbc58c6611c08dab,
]),
}
},
im: {
Fp {
val: U256([
0x5fe3ed9d730c239f,
0xa44a9e08737f96e5,
0xfeb0f6ef0cd21d04,
0x23d5e999e1910a12,
]),
}
},
},
Fp2 {
re: {
Fp {
val: U256([
0xe4bd44e5607cfd48,
0xc28f069fbb966e3d,
0x5e6dd9e7e0acccb0,
0x30644e72e131a029,
]),
}
},
im: { Fp { val: U256::zero() } },
},
Fp2 {
re: {
Fp {
val: U256([
0xa97bda050992657f,
0xde1afb54342c724f,
0x1d9da40771b6f589,
0x1ee972ae6a826a7d,
]),
}
},
im: {
Fp {
val: U256([
0x5721e37e70c255c9,
0x54326430418536d1,
0xd2b513cdbb257724,
0x10de546ff8d4ab51,
]),
}
},
},
];
const FROB_Z: [Fp2; 12] = [
Fp2 {
re: { Fp { val: U256::one() } },
im: { Fp { val: U256::zero() } },
},
Fp2 {
re: {
Fp {
val: U256([
0xd60b35dadcc9e470,
0x5c521e08292f2176,
0xe8b99fdd76e68b60,
0x1284b71c2865a7df,
]),
}
},
im: {
Fp {
val: U256([
0xca5cf05f80f362ac,
0x747992778eeec7e5,
0xa6327cfe12150b8e,
0x246996f3b4fae7e6,
]),
}
},
},
Fp2 {
re: {
Fp {
val: U256([
0xe4bd44e5607cfd49,
0xc28f069fbb966e3d,
0x5e6dd9e7e0acccb0,
0x30644e72e131a029,
]),
}
},
im: { Fp { val: U256::zero() } },
},
Fp2 {
re: {
Fp {
val: U256([
0xe86f7d391ed4a67f,
0x894cb38dbe55d24a,
0xefe9608cd0acaa90,
0x19dc81cfcc82e4bb,
]),
}
},
im: {
Fp {
val: U256([
0x7694aa2bf4c0c101,
0x7f03a5e397d439ec,
0x06cbeee33576139d,
0xabf8b60be77d73,
]),
}
},
},
Fp2 {
re: {
Fp {
val: U256([
0xe4bd44e5607cfd48,
0xc28f069fbb966e3d,
0x5e6dd9e7e0acccb0,
0x30644e72e131a029,
]),
}
},
im: { Fp { val: U256::zero() } },
},
Fp2 {
re: {
Fp {
val: U256([
0x1264475e420ac20f,
0x2cfa95859526b0d4,
0x072fc0af59c61f30,
0x757cab3a41d3cdc,
]),
}
},
im: {
Fp {
val: U256([
0xe85845e34c4a5b9c,
0xa20b7dfd71573c93,
0x18e9b79ba4e2606c,
0xca6b035381e35b6,
]),
}
},
},
Fp2 {
re: {
Fp {
val: U256([
0x3c208c16d87cfd46,
0x97816a916871ca8d,
0xb85045b68181585d,
0x30644e72e131a029,
]),
}
},
im: { Fp { val: U256::zero() } },
},
Fp2 {
re: {
Fp {
val: U256([
0x6615563bfbb318d7,
0x3b2f4c893f42a916,
0xcf96a5d90a9accfd,
0x1ddf9756b8cbf849,
]),
}
},
im: {
Fp {
val: U256([
0x71c39bb757899a9b,
0x2307d819d98302a7,
0x121dc8b86f6c4ccf,
0x0bfab77f2c36b843,
]),
}
},
},
Fp2 {
re: {
Fp {
val: U256([
0x5763473177fffffe,
0xd4f263f1acdb5c4f,
0x59e26bcea0d48bac,
0x0,
]),
}
},
im: { Fp { val: U256::zero() } },
},
Fp2 {
re: {
Fp {
val: U256([
0x53b10eddb9a856c8,
0x0e34b703aa1bf842,
0xc866e529b0d4adcd,
0x1687cca314aebb6d,
]),
}
},
im: {
Fp {
val: U256([
0xc58be1eae3bc3c46,
0x187dc4add09d90a0,
0xb18456d34c0b44c0,
0x2fb855bcd54a22b6,
]),
}
},
},
Fp2 {
re: {
Fp {
val: U256([
0x5763473177ffffff,
0xd4f263f1acdb5c4f,
0x59e26bcea0d48bac,
0x0,
]),
}
},
im: { Fp { val: U256::zero() } },
},
Fp2 {
re: {
Fp {
val: U256([
0x29bc44b896723b38,
0x6a86d50bd34b19b9,
0xb120850727bb392d,
0x290c83bf3d14634d,
]),
}
},
im: {
Fp {
val: U256([
0x53c846338c32a1ab,
0xf575ec93f71a8df9,
0x9f668e1adc9ef7f0,
0x23bd9e3da9136a73,
]),
}
},
},
];

View File

@ -2,13 +2,13 @@ use std::ops::Add;
use rand::Rng;
use crate::bn254_arithmetic::{Fp, Fp12, Fp2, Fp6, UNIT_FP12, ZERO_FP, ZERO_FP2};
use crate::extension_tower::{FieldExt, Fp12, Fp2, Fp6, BN254};
// The curve consists of pairs (x, y): (Fp, Fp) | y^2 = x^3 + 2
// The curve consists of pairs (x, y): (BN254, BN254) | y^2 = x^3 + 2
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Curve {
pub x: Fp,
pub y: Fp,
pub x: BN254,
pub y: BN254,
}
/// Standard addition formula for elliptic curves, restricted to the cases
@ -19,7 +19,7 @@ impl Add for Curve {
fn add(self, other: Self) -> Self {
let m = if self == other {
Fp::new(3) * self.x * self.x / (Fp::new(2) * self.y)
BN254::new(3) * self.x * self.x / (BN254::new(2) * self.y)
} else {
(other.y - self.y) / (other.x - self.x)
};
@ -34,12 +34,12 @@ impl Add for Curve {
// The twisted curve consists of pairs (x, y): (Fp2, Fp2) | y^2 = x^3 + 3/(9 + i)
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct TwistedCurve {
pub x: Fp2,
pub y: Fp2,
pub x: Fp2<BN254>,
pub y: Fp2<BN254>,
}
// The tate pairing takes a point each from the curve and its twist and outputs an Fp12 element
pub fn tate(p: Curve, q: TwistedCurve) -> Fp12 {
pub fn tate(p: Curve, q: TwistedCurve) -> Fp12<BN254> {
let miller_output = miller_loop(p, q);
invariant_exponent(miller_output)
}
@ -47,10 +47,10 @@ pub fn tate(p: Curve, q: TwistedCurve) -> Fp12 {
/// Standard code for miller loop, can be found on page 99 at this url:
/// https://static1.squarespace.com/static/5fdbb09f31d71c1227082339/t/5ff394720493bd28278889c6/1609798774687/PairingsForBeginners.pdf#page=107
/// where EXP is a hardcoding of the array of Booleans that the loop traverses
pub fn miller_loop(p: Curve, q: TwistedCurve) -> Fp12 {
pub fn miller_loop(p: Curve, q: TwistedCurve) -> Fp12<BN254> {
let mut r = p;
let mut acc = UNIT_FP12;
let mut line;
let mut acc: Fp12<BN254> = Fp12::<BN254>::UNIT;
let mut line: Fp12<BN254>;
for i in EXP {
line = tangent(r, q);
@ -66,42 +66,46 @@ pub fn miller_loop(p: Curve, q: TwistedCurve) -> Fp12 {
}
/// The sloped line function for doubling a point
pub fn tangent(p: Curve, q: TwistedCurve) -> Fp12 {
let cx = -Fp::new(3) * p.x * p.x;
let cy = Fp::new(2) * p.y;
sparse_embed(p.y * p.y - Fp::new(9), q.x.scale(cx), q.y.scale(cy))
pub fn tangent(p: Curve, q: TwistedCurve) -> Fp12<BN254> {
let cx = -BN254::new(3) * p.x * p.x;
let cy = BN254::new(2) * p.y;
sparse_embed(p.y * p.y - BN254::new(9), q.x * cx, q.y * cy)
}
/// The sloped line function for adding two points
pub fn cord(p1: Curve, p2: Curve, q: TwistedCurve) -> Fp12 {
pub fn cord(p1: Curve, p2: Curve, q: TwistedCurve) -> Fp12<BN254> {
let cx = p2.y - p1.y;
let cy = p1.x - p2.x;
sparse_embed(p1.y * p2.x - p2.y * p1.x, q.x.scale(cx), q.y.scale(cy))
sparse_embed(p1.y * p2.x - p2.y * p1.x, q.x * cx, q.y * cy)
}
/// The tangent and cord functions output sparse Fp12 elements.
/// This map embeds the nonzero coefficients into an Fp12.
pub fn sparse_embed(g000: Fp, g01: Fp2, g11: Fp2) -> Fp12 {
pub fn sparse_embed(g000: BN254, g01: Fp2<BN254>, g11: Fp2<BN254>) -> Fp12<BN254> {
let g0 = Fp6 {
t0: Fp2 {
re: g000,
im: ZERO_FP,
im: BN254::ZERO,
},
t1: g01,
t2: ZERO_FP2,
t2: Fp2::<BN254>::ZERO,
};
let g1 = Fp6 {
t0: ZERO_FP2,
t0: Fp2::<BN254>::ZERO,
t1: g11,
t2: ZERO_FP2,
t2: Fp2::<BN254>::ZERO,
};
Fp12 { z0: g0, z1: g1 }
}
pub fn gen_fp12_sparse<R: Rng + ?Sized>(rng: &mut R) -> Fp12 {
sparse_embed(rng.gen::<Fp>(), rng.gen::<Fp2>(), rng.gen::<Fp2>())
pub fn gen_fp12_sparse<R: Rng + ?Sized>(rng: &mut R) -> Fp12<BN254> {
sparse_embed(
rng.gen::<BN254>(),
rng.gen::<Fp2<BN254>>(),
rng.gen::<Fp2<BN254>>(),
)
}
/// The output y of the miller loop is not an invariant,
@ -116,7 +120,7 @@ pub fn gen_fp12_sparse<R: Rng + ?Sized>(rng: &mut R) -> Fp12 {
/// (p^4 - p^2 + 1)/N = p^3 + (a2)p^2 - (a1)p - a0
/// where 0 < a0, a1, a2 < p. Then the final power is given by
/// y = y_3 * (y^a2)_2 * (y^-a1)_1 * (y^-a0)
pub fn invariant_exponent(f: Fp12) -> Fp12 {
pub fn invariant_exponent(f: Fp12<BN254>) -> Fp12<BN254> {
let mut y = f.frob(6) / f;
y = y.frob(2) * y;
let (y_a2, y_a1, y_a0) = get_custom_powers(y);
@ -134,11 +138,11 @@ pub fn invariant_exponent(f: Fp12) -> Fp12 {
/// EXPS4 = [(a4[i], a2[i], a0[i]) for i in 0..len(a4)]
/// EXPS2 = [ (a2[i], a0[i]) for i in len(a4)..len(a2)]
/// EXPS0 = [ a0[i] for i in len(a2)..len(a0)]
fn get_custom_powers(f: Fp12) -> (Fp12, Fp12, Fp12) {
let mut sq: Fp12 = f;
let mut y0: Fp12 = UNIT_FP12;
let mut y2: Fp12 = UNIT_FP12;
let mut y4: Fp12 = UNIT_FP12;
fn get_custom_powers(f: Fp12<BN254>) -> (Fp12<BN254>, Fp12<BN254>, Fp12<BN254>) {
let mut sq: Fp12<BN254> = f;
let mut y0: Fp12<BN254> = Fp12::<BN254>::UNIT;
let mut y2: Fp12<BN254> = Fp12::<BN254>::UNIT;
let mut y4: Fp12<BN254> = Fp12::<BN254>::UNIT;
// proceed via standard squaring algorithm for exponentiation

View File

@ -37,6 +37,8 @@ pub(crate) fn combined_kernel() -> Kernel {
include_str!("asm/core/terminate.asm"),
include_str!("asm/core/transfer.asm"),
include_str!("asm/core/util.asm"),
include_str!("asm/core/access_lists.asm"),
include_str!("asm/curve/bls381/util.asm"),
include_str!("asm/curve/bn254/curve_arithmetic/constants.asm"),
include_str!("asm/curve/bn254/curve_arithmetic/curve_add.asm"),
include_str!("asm/curve/bn254/curve_arithmetic/curve_mul.asm"),

View File

@ -1,8 +1,18 @@
global sys_extcodehash:
// stack: kexit_info, address
// TODO: Charge gas.
SWAP1
SWAP1 %u256_to_addr
// stack: address, kexit_info
DUP1 %insert_accessed_addresses
// stack: cold_access, address, kexit_info
PUSH @GAS_COLDACCOUNTACCESS_MINUS_WARMACCESS
MUL
PUSH @GAS_WARMACCESS
ADD
%stack (gas, address, kexit_info) -> (gas, kexit_info, address)
%charge_gas
// stack: kexit_info, address
SWAP1
%extcodehash
// stack: hash, kexit_info
SWAP1
@ -41,7 +51,18 @@ retzero:
global sys_extcodesize:
// stack: kexit_info, address
// TODO: Charge gas.
SWAP1 %u256_to_addr
// stack: address, kexit_info
DUP1 %insert_accessed_addresses
// stack: cold_access, address, kexit_info
PUSH @GAS_COLDACCOUNTACCESS_MINUS_WARMACCESS
MUL
PUSH @GAS_WARMACCESS
ADD
%stack (gas, address, kexit_info) -> (gas, kexit_info, address)
%charge_gas
// stack: kexit_info, address
SWAP1
// stack: address, kexit_info
%extcodesize
@ -69,6 +90,7 @@ global sys_extcodecopy:
// TODO: Charge other gas.
%stack (kexit_info, address, dest_offset, offset, size)
-> (address, dest_offset, offset, size, kexit_info)
%u256_to_addr DUP1 %insert_accessed_addresses POP // TODO: Use return value in gas calculation.
%extcodecopy
// stack: kexit_info
EXIT_KERNEL

View File

@ -1,7 +1,17 @@
global sys_balance:
// stack: kexit_info, address
// TODO: assuming a cold account access for now.
%charge_gas_const(@GAS_COLDACCOUNTACCESS)
SWAP1 %u256_to_addr
// stack: address, kexit_info
DUP1 %insert_accessed_addresses
// stack: cold_access, address, kexit_info
PUSH @GAS_COLDACCOUNTACCESS_MINUS_WARMACCESS
MUL
PUSH @GAS_WARMACCESS
ADD
%stack (gas, address, kexit_info) -> (gas, kexit_info, address)
%charge_gas
// stack: kexit_info, address
SWAP1
// stack: address, kexit_info
%balance

View File

@ -0,0 +1,102 @@
/// Access lists for addresses and storage keys.
/// The access list is stored in an array. The length of the array is stored in the global metadata.
/// For storage keys, the address and key are stored as two consecutive elements.
/// The array is stored in the SEGMENT_ACCESSED_ADDRESSES segment for addresses and in the SEGMENT_ACCESSED_STORAGE_KEYS segment for storage keys.
/// Both arrays are stored in the kernel memory (context=0).
/// Searching and inserting is done by doing a linear search through the array.
/// If the address/storage key isn't found in the array, it is inserted at the end.
/// TODO: Look into using a more efficient data structure for the access lists.
%macro insert_accessed_addresses
%stack (addr) -> (addr, %%after)
%jump(insert_accessed_addresses)
%%after:
// stack: cold_access
%endmacro
%macro insert_accessed_addresses_no_return
%insert_accessed_addresses
POP
%endmacro
/// Inserts the address into the access list if it is not already present.
/// Return 1 if the address was inserted, 0 if it was already present.
global insert_accessed_addresses:
// stack: addr, retdest
%mload_global_metadata(@GLOBAL_METADATA_ACCESSED_ADDRESSES_LEN)
// stack: len, addr, retdest
PUSH 0
insert_accessed_addresses_loop:
%stack (i, len, addr, retdest) -> (i, len, i, len, addr, retdest)
EQ %jumpi(insert_address)
// stack: i, len, addr, retdest
DUP1 %mload_kernel(@SEGMENT_ACCESSED_ADDRESSES)
// stack: loaded_addr, i, len, addr, retdest
DUP4
// stack: addr, loaded_addr, i, len, addr, retdest
EQ %jumpi(insert_accessed_addresses_found)
// stack: i, len, addr, retdest
%increment
%jump(insert_accessed_addresses_loop)
insert_address:
%stack (i, len, addr, retdest) -> (i, addr, len, retdest)
%mstore_kernel(@SEGMENT_ACCESSED_ADDRESSES) // Store new address at the end of the array.
// stack: len, retdest
%increment
%mstore_global_metadata(@GLOBAL_METADATA_ACCESSED_ADDRESSES_LEN) // Store new length.
PUSH 1 // Return 1 to indicate that the address was inserted.
SWAP1 JUMP
insert_accessed_addresses_found:
%stack (i, len, addr, retdest) -> (retdest, 0) // Return 0 to indicate that the address was already present.
JUMP
%macro insert_accessed_storage_keys
%stack (addr, key) -> (addr, key, %%after)
%jump(insert_accessed_storage_keys)
%%after:
// stack: cold_access
%endmacro
/// Inserts the storage key into the access list if it is not already present.
/// Return 1 if the storage key was inserted, 0 if it was already present.
global insert_accessed_storage_keys:
// stack: addr, key, retdest
%mload_global_metadata(@GLOBAL_METADATA_ACCESSED_STORAGE_KEYS_LEN)
// stack: len, addr, key, retdest
PUSH 0
insert_accessed_storage_keys_loop:
%stack (i, len, addr, key, retdest) -> (i, len, i, len, addr, key, retdest)
EQ %jumpi(insert_storage_key)
// stack: i, len, addr, key, retdest
DUP1 %increment %mload_kernel(@SEGMENT_ACCESSED_STORAGE_KEYS)
// stack: loaded_key, i, len, addr, key, retdest
DUP2 %mload_kernel(@SEGMENT_ACCESSED_STORAGE_KEYS)
// stack: loaded_addr, loaded_key, i, len, addr, key, retdest
DUP5 EQ
// stack: loaded_addr==addr, loaded_key, i, len, addr, key, retdest
SWAP1 DUP6 EQ
// stack: loaded_key==key, loaded_addr==addr, i, len, addr, key, retdest
MUL // AND
%jumpi(insert_accessed_storage_keys_found)
// stack: i, len, addr, key, retdest
%add_const(2)
%jump(insert_accessed_storage_keys_loop)
insert_storage_key:
// stack: i, len, addr, key, retdest
DUP1 %increment
%stack (i_plus_1, i, len, addr, key, retdest) -> (i, addr, i_plus_1, key, i_plus_1, retdest)
%mstore_kernel(@SEGMENT_ACCESSED_STORAGE_KEYS) // Store new address at the end of the array.
%mstore_kernel(@SEGMENT_ACCESSED_STORAGE_KEYS) // Store new key after that
// stack: i_plus_1, retdest
%increment
%mstore_global_metadata(@GLOBAL_METADATA_ACCESSED_STORAGE_KEYS_LEN) // Store new length in front of the array.
PUSH 1 // Return 1 to indicate that the storage key was inserted.
SWAP1 JUMP
insert_accessed_storage_keys_found:
%stack (i, len, addr, key, retdest) -> (retdest, 0) // Return 0 to indicate that the storage key was already present.
JUMP

View File

@ -4,6 +4,12 @@
global sys_call:
// stack: kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size
// TODO: Charge gas.
SWAP2
// stack: address, gas, kexit_info, value, args_offset, args_size, ret_offset, ret_size
%u256_to_addr // Truncate to 160 bits
DUP1 %insert_accessed_addresses POP // TODO: Use return value in gas calculation.
SWAP2
// stack: kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size
%create_context
// stack: new_ctx, kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size
@ -29,6 +35,12 @@ global sys_call:
global sys_callcode:
// stack: kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size
// TODO: Charge gas.
SWAP2
// stack: address, gas, kexit_info, value, args_offset, args_size, ret_offset, ret_size
%u256_to_addr // Truncate to 160 bits
DUP1 %insert_accessed_addresses POP // TODO: Use return value in gas calculation.
SWAP2
// stack: kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size
%create_context
// stack: new_ctx, kexit_info, gas, address, value, args_offset, args_size, ret_offset, ret_size
@ -53,6 +65,12 @@ global sys_callcode:
global sys_staticcall:
// stack: kexit_info, gas, address, args_offset, args_size, ret_offset, ret_size
// TODO: Charge gas.
SWAP2
// stack: address, gas, kexit_info, args_offset, args_size, ret_offset, ret_size
%u256_to_addr // Truncate to 160 bits
DUP1 %insert_accessed_addresses POP // TODO: Use return value in gas calculation.
SWAP2
// stack: kexit_info, gas, address, args_offset, args_size, ret_offset, ret_size
%create_context
// stack: new_ctx, kexit_info, gas, address, args_offset, args_size, ret_offset, ret_size
@ -74,6 +92,12 @@ global sys_staticcall:
global sys_delegatecall:
// stack: kexit_info, gas, address, args_offset, args_size, ret_offset, ret_size
// TODO: Charge gas.
SWAP2
// stack: address, gas, kexit_info, args_offset, args_size, ret_offset, ret_size
%u256_to_addr // Truncate to 160 bits
DUP1 %insert_accessed_addresses POP // TODO: Use return value in gas calculation.
SWAP2
// stack: kexit_info, gas, address, args_offset, args_size, ret_offset, ret_size
%create_context
// stack: new_ctx, kexit_info, gas, address, args_offset, args_size, ret_offset, ret_size

View File

@ -47,10 +47,10 @@ global sys_create2:
SWAP4
%stack (salt) -> (salt, sys_create2_got_address)
// stack: salt, sys_create2_got_address, value, code_offset, code_len, kexit_info
DUP4 // code_len
DUP4 // code_offset
DUP5 // code_len
DUP5 // code_offset
PUSH @SEGMENT_MAIN_MEMORY
PUSH 0 // context
GET_CONTEXT
KECCAK_GENERAL
// stack: hash, salt, sys_create2_got_address, value, code_offset, code_len, kexit_info
%address
@ -73,6 +73,7 @@ sys_create2_finish:
// Note: CODE_ADDR refers to a (context, segment, offset) tuple.
global create_inner:
// stack: address, sender, endowment, CODE_ADDR, code_len, retdest
DUP1 %insert_accessed_addresses_no_return
%stack (address, sender, endowment)
-> (sender, address, endowment, sender, address)

View File

@ -34,15 +34,28 @@ global get_create_address:
// Computes the address for a contract based on the CREATE2 rule, i.e.
// address = KEC(0xff || sender || salt || code_hash)[12:]
//
// Pre stack: sender, salt, code_hash, retdest
// Clobbers @SEGMENT_KERNEL_GENERAL.
// Pre stack: sender, code_hash, salt, retdest
// Post stack: address
global get_create2_address:
// stack: sender, salt, code_hash, retdest
// TODO: Replace with actual implementation.
%pop3
PUSH 123
// stack: sender, code_hash, salt, retdest
PUSH 0xff PUSH 0 %mstore_kernel_general
%stack (sender, code_hash, salt, retdest) -> (0, @SEGMENT_KERNEL_GENERAL, 1, sender, 20, get_create2_address_contd, salt, code_hash, retdest)
%jump(mstore_unpacking)
get_create2_address_contd:
POP
%stack (salt, code_hash, retdest) -> (0, @SEGMENT_KERNEL_GENERAL, 21, salt, 32, get_create2_address_contd2, code_hash, retdest)
%jump(mstore_unpacking)
get_create2_address_contd2:
POP
%stack (code_hash, retdest) -> (0, @SEGMENT_KERNEL_GENERAL, 53, code_hash, 32, get_create2_address_finish, retdest)
%jump(mstore_unpacking)
get_create2_address_finish:
POP
%stack (retdest) -> (0, @SEGMENT_KERNEL_GENERAL, 0, 85, retdest) // context, segment, offset, len
KECCAK_GENERAL
// stack: address, retdest
%mod_const(0x10000000000000000000000000000000000000000) // 2^160
%observe_new_address
SWAP1
JUMP

View File

@ -81,6 +81,8 @@ global process_contract_creation_txn:
// stack: account_ptr, address, retdest
DUP2
// stack: address, account_ptr, address, retdest
%addr_to_state_key
// stack: state_key, account_ptr, address, retdest
%mpt_insert_state_trie
// stack: address, retdest
@ -127,13 +129,25 @@ global process_message_txn:
// stack: retdest
%mload_txn_field(@TXN_FIELD_VALUE)
%mload_txn_field(@TXN_FIELD_TO)
DUP1 %insert_accessed_addresses_no_return
%mload_txn_field(@TXN_FIELD_ORIGIN)
DUP1 %insert_accessed_addresses_no_return
// stack: from, to, amount, retdest
%transfer_eth
// stack: transfer_eth_status, retdest
%jumpi(process_message_txn_insufficient_balance)
// stack: retdest
// Add precompiles to accessed addresses.
PUSH @ECREC %insert_accessed_addresses_no_return
PUSH @SHA256 %insert_accessed_addresses_no_return
PUSH @RIP160 %insert_accessed_addresses_no_return
PUSH @ID %insert_accessed_addresses_no_return
PUSH @EXPMOD %insert_accessed_addresses_no_return
PUSH @BN_ADD %insert_accessed_addresses_no_return
PUSH @BN_MUL %insert_accessed_addresses_no_return
PUSH @SNARKV %insert_accessed_addresses_no_return
PUSH @BLAKE2_F %insert_accessed_addresses_no_return
// TODO: Handle precompiles.
// If to's code is empty, return.

View File

@ -19,8 +19,13 @@ global sys_return:
%jump(terminate_common)
global sys_selfdestruct:
// stack: kexit_info
// stack: kexit_info, address
SWAP1 %u256_to_addr
DUP1 %insert_accessed_addresses_no_return // TODO: Use return value in gas calculation.
// stack: address, kexit_info
SWAP1
// TODO: Charge gas.
// TODO: Add address to the access list.
%consume_gas_const(@GAS_SELFDESTRUCT)
%leftover_gas
// stack: leftover_gas

View File

@ -0,0 +1,53 @@
%macro add_fp381
// stack: x0, x1, y0, y1
PROVER_INPUT(sf::bls381_base::add_hi)
// stack: z1, x0, x1, y0, y1
SWAP4
// stack: y1, x0, x1, y0, z1
PROVER_INPUT(sf::bls381_base::add_lo)
// stack: z0, y1, x0, x1, y0, z1
SWAP4
// stack: y0, y1, x0, x1, z0, z1
%pop4
// stack: z0, z1
%endmacro
%macro mul_fp381
// stack: x0, x1, y0, y1
PROVER_INPUT(sf::bls381_base::mul_hi)
// stack: z1, x0, x1, y0, y1
SWAP4
// stack: y1, x0, x1, y0, z1
PROVER_INPUT(sf::bls381_base::mul_lo)
// stack: z0, y1, x0, x1, y0, z1
SWAP4
// stack: y0, y1, x0, x1, z0, z1
%pop4
// stack: z0, z1
%endmacro
%macro sub_fp381
// stack: x0, x1, y0, y1
PROVER_INPUT(sf::bls381_base::sub_hi)
// stack: z1, x0, x1, y0, y1
SWAP4
// stack: y1, x0, x1, y0, z1
PROVER_INPUT(sf::bls381_base::sub_lo)
// stack: z0, y1, x0, x1, y0, z1
SWAP4
// stack: y0, y1, x0, x1, z0, z1
%pop4
// stack: z0, z1
%endmacro
global test_add_fp381:
%add_fp381
%jump(0xdeadbeef)
global test_mul_fp381:
%mul_fp381
%jump(0xdeadbeef)
global test_sub_fp381:
%sub_fp381
%jump(0xdeadbeef)

View File

@ -201,7 +201,7 @@ global sys_basefee:
// stack: old_num_words, num_words, kexit_info
DUP2 DUP2 GT
// stack: old_num_words > num_words, old_num_words, num_words, kexit_info
%jumpi(%%end)
%jumpi(%%no_update)
// stack: old_num_words, num_words, kexit_info
%memory_cost
// stack: old_cost, num_words, kexit_info
@ -214,6 +214,10 @@ global sys_basefee:
SUB
// stack: additional_cost, kexit_info
%charge_gas
%jump(%%end)
%%no_update:
// stack: old_num_words, num_words, kexit_info
%pop2
%%end:
// stack: kexit_info
%endmacro

View File

@ -124,14 +124,14 @@ sys_calldataload_after_mload_packing:
// stack: kexit_info, dest_offset, offset, size
DUP4 %num_bytes_to_num_words %mul_const(@GAS_COPY) %add_const(@GAS_VERYLOW) %charge_gas
%stack (kexit_info, dest_offset, offset, size) -> (dest_offset, size, dest_offset, offset, size, kexit_info)
%stack (kexit_info, dest_offset, offset, size) -> (dest_offset, size, kexit_info, dest_offset, offset, size)
ADD // TODO: check for overflow, see discussion here https://github.com/mir-protocol/plonky2/pull/930/files/a4ea0965d79561c345e2f77836c07949c7e0bc69#r1143630253
// stack: expanded_num_bytes, dest_offset, offset, size, kexit_info
// stack: expanded_num_bytes, kexit_info, dest_offset, offset, size, kexit_info
DUP1 %ensure_reasonable_offset
%update_mem_bytes
GET_CONTEXT
%stack (context, dest_offset, offset, size, kexit_info) ->
%stack (context, kexit_info, dest_offset, offset, size) ->
(context, @SEGMENT_MAIN_MEMORY, dest_offset, context, $segment, offset, size, %%after, kexit_info)
%jump(memcpy)
%%after:

View File

@ -5,9 +5,19 @@
global sys_sload:
// stack: kexit_info, slot
// TODO: Charge gas.
SWAP1
// stack: slot, kexit_info
DUP1 %address
// stack: addr, slot, slot, kexit_info
%insert_accessed_storage_keys PUSH @GAS_COLDSLOAD_MINUS_WARMACCESS
MUL
PUSH @GAS_WARMACCESS
ADD
%stack (gas, slot, kexit_info) -> (gas, kexit_info, slot)
%charge_gas
// stack: kexit_info, slot
SWAP1
%stack (slot) -> (slot, after_storage_read)
%slot_to_storage_key
// stack: storage_key, after_storage_read, kexit_info

View File

@ -4,6 +4,8 @@
// Post stack: (empty)
global sys_sstore:
%stack (kexit_info, slot, value) -> (slot, kexit_info, slot, value)
%address %insert_accessed_storage_keys POP // TODO: Use return value in gas calculation.
// TODO: Assuming a cold zero -> nonzero write for now.
PUSH @GAS_COLDSLOAD
PUSH @GAS_SSET

View File

@ -357,3 +357,8 @@
%endrep
// stack: a || b || c || d
%endmacro
%macro u256_to_addr
// stack: x
%mod_const(0x10000000000000000000000000000000000000000) // 2^160
%endmacro

View File

@ -45,10 +45,14 @@ pub(crate) enum GlobalMetadata {
/// Gas to refund at the end of the transaction.
RefundCounter = 22,
/// Length of the addresses access list.
AccessedAddressesLen = 23,
/// Length of the storage keys access list.
AccessedStorageKeysLen = 24,
}
impl GlobalMetadata {
pub(crate) const COUNT: usize = 22;
pub(crate) const COUNT: usize = 24;
pub(crate) fn all() -> [Self; Self::COUNT] {
[
@ -74,6 +78,8 @@ impl GlobalMetadata {
Self::BlockChainId,
Self::BlockBaseFee,
Self::RefundCounter,
Self::AccessedAddressesLen,
Self::AccessedStorageKeysLen,
]
}
@ -102,6 +108,8 @@ impl GlobalMetadata {
Self::BlockChainId => "GLOBAL_METADATA_BLOCK_CHAIN_ID",
Self::BlockBaseFee => "GLOBAL_METADATA_BLOCK_BASE_FEE",
Self::RefundCounter => "GLOBAL_METADATA_REFUND_COUNTER",
Self::AccessedAddressesLen => "GLOBAL_METADATA_ACCESSED_ADDRESSES_LEN",
Self::AccessedStorageKeysLen => "GLOBAL_METADATA_ACCESSED_STORAGE_KEYS_LEN",
}
}
}

View File

@ -32,6 +32,10 @@ pub fn evm_constants() -> HashMap<String, U256> {
c.insert(name.into(), U256::from(value));
}
for (name, value) in PRECOMPILES {
c.insert(name.into(), U256::from(value));
}
for segment in Segment::all() {
c.insert(segment.var_name().into(), (segment as u32).into());
}
@ -151,7 +155,7 @@ const EC_CONSTANTS: [(&str, [u8; 32]); 18] = [
),
];
const GAS_CONSTANTS: [(&str, u16); 36] = [
const GAS_CONSTANTS: [(&str, u16); 38] = [
("GAS_ZERO", 0),
("GAS_JUMPDEST", 1),
("GAS_BASE", 2),
@ -163,7 +167,9 @@ const GAS_CONSTANTS: [(&str, u16); 36] = [
("GAS_ACCESSLISTADDRESS", 2_400),
("GAS_ACCESSLISTSTORAGE", 1_900),
("GAS_COLDACCOUNTACCESS", 2_600),
("GAS_COLDACCOUNTACCESS_MINUS_WARMACCESS", 2_500),
("GAS_COLDSLOAD", 2_100),
("GAS_COLDSLOAD_MINUS_WARMACCESS", 2_000),
("GAS_SSET", 20_000),
("GAS_SRESET", 2_900),
("REFUND_SCLEAR", 15_000),
@ -189,3 +195,15 @@ const GAS_CONSTANTS: [(&str, u16); 36] = [
("GAS_COPY", 3),
("GAS_BLOCKHASH", 20),
];
const PRECOMPILES: [(&str, u16); 9] = [
("ECREC", 1),
("SHA256", 2),
("RIP160", 3),
("ID", 4),
("EXPMOD", 5),
("BN_ADD", 6),
("BN_MUL", 7),
("SNARKV", 8),
("BLAKE2_F", 9),
];

View File

@ -8,11 +8,11 @@ use ethereum_types::{U256, U512};
use keccak_hash::keccak;
use plonky2::field::goldilocks_field::GoldilocksField;
use crate::bn254_arithmetic::BN_BASE;
use crate::cpu::kernel::aggregator::KERNEL;
use crate::cpu::kernel::constants::context_metadata::ContextMetadata;
use crate::cpu::kernel::constants::global_metadata::GlobalMetadata;
use crate::cpu::kernel::constants::txn_fields::NormalizedTxnField;
use crate::extension_tower::BN_BASE;
use crate::generation::prover_input::ProverInputFn;
use crate::generation::state::GenerationState;
use crate::generation::GenerationInputs;
@ -59,6 +59,7 @@ pub fn run_interpreter(
)
}
#[derive(Clone)]
pub struct InterpreterMemoryInitialization {
pub label: String,
pub stack: Vec<U256>,

View File

@ -0,0 +1,42 @@
use anyhow::Result;
use ethereum_types::U512;
use rand::Rng;
use crate::cpu::kernel::interpreter::{
run_interpreter_with_memory, InterpreterMemoryInitialization,
};
use crate::extension_tower::{Stack, BLS381};
use crate::memory::segments::Segment::KernelGeneral;
fn run_and_return_bls(label: String, x: BLS381, y: BLS381) -> BLS381 {
let mut stack = x.on_stack();
stack.extend(y.on_stack());
let setup = InterpreterMemoryInitialization {
label,
stack,
segment: KernelGeneral,
memory: vec![],
};
let interpreter = run_interpreter_with_memory(setup).unwrap();
let output = interpreter.stack();
BLS381 {
val: U512::from(output[1]) + (U512::from(output[0]) << 256),
}
}
#[test]
fn test_bls_ops() -> Result<()> {
let mut rng = rand::thread_rng();
let x: BLS381 = rng.gen::<BLS381>();
let y: BLS381 = rng.gen::<BLS381>();
let output_add = run_and_return_bls("test_add_fp381".to_string(), x, y);
let output_mul = run_and_return_bls("test_mul_fp381".to_string(), x, y);
let output_sub = run_and_return_bls("test_sub_fp381".to_string(), x, y);
assert_eq!(output_add, x + y);
assert_eq!(output_mul, x * y);
assert_eq!(output_sub, x - y);
Ok(())
}

View File

@ -2,13 +2,13 @@ use anyhow::Result;
use ethereum_types::U256;
use rand::Rng;
use crate::bn254_arithmetic::{Fp, Fp12, Fp2, Fp6};
use crate::bn254_pairing::{
gen_fp12_sparse, invariant_exponent, miller_loop, tate, Curve, TwistedCurve,
};
use crate::cpu::kernel::interpreter::{
run_interpreter_with_memory, Interpreter, InterpreterMemoryInitialization,
};
use crate::extension_tower::{FieldExt, Fp12, Fp2, Fp6, Stack, BN254};
use crate::memory::segments::Segment::BnPairing;
fn extract_stack(interpreter: Interpreter<'static>) -> Vec<U256> {
@ -20,7 +20,11 @@ fn extract_stack(interpreter: Interpreter<'static>) -> Vec<U256> {
.collect::<Vec<U256>>()
}
fn setup_mul_fp6_test(f: Fp6, g: Fp6, label: &str) -> InterpreterMemoryInitialization {
fn setup_mul_fp6_test(
f: Fp6<BN254>,
g: Fp6<BN254>,
label: &str,
) -> InterpreterMemoryInitialization {
let mut stack = f.on_stack();
if label == "mul_fp254_6" {
stack.extend(g.on_stack());
@ -37,8 +41,8 @@ fn setup_mul_fp6_test(f: Fp6, g: Fp6, label: &str) -> InterpreterMemoryInitializ
#[test]
fn test_mul_fp6() -> Result<()> {
let mut rng = rand::thread_rng();
let f: Fp6 = rng.gen::<Fp6>();
let g: Fp6 = rng.gen::<Fp6>();
let f: Fp6<BN254> = rng.gen::<Fp6<BN254>>();
let g: Fp6<BN254> = rng.gen::<Fp6<BN254>>();
let setup_normal: InterpreterMemoryInitialization = setup_mul_fp6_test(f, g, "mul_fp254_6");
let setup_square: InterpreterMemoryInitialization = setup_mul_fp6_test(f, f, "square_fp254_6");
@ -60,8 +64,8 @@ fn test_mul_fp6() -> Result<()> {
fn setup_mul_fp12_test(
out: usize,
f: Fp12,
g: Fp12,
f: Fp12<BN254>,
g: Fp12<BN254>,
label: &str,
) -> InterpreterMemoryInitialization {
let in0: usize = 200;
@ -89,9 +93,9 @@ fn test_mul_fp12() -> Result<()> {
let out: usize = 224;
let mut rng = rand::thread_rng();
let f: Fp12 = rng.gen::<Fp12>();
let g: Fp12 = rng.gen::<Fp12>();
let h: Fp12 = gen_fp12_sparse(&mut rng);
let f: Fp12<BN254> = rng.gen::<Fp12<BN254>>();
let g: Fp12<BN254> = rng.gen::<Fp12<BN254>>();
let h: Fp12<BN254> = gen_fp12_sparse(&mut rng);
let setup_normal: InterpreterMemoryInitialization =
setup_mul_fp12_test(out, f, g, "mul_fp254_12");
@ -119,7 +123,7 @@ fn test_mul_fp12() -> Result<()> {
Ok(())
}
fn setup_frob_fp6_test(f: Fp6, n: usize) -> InterpreterMemoryInitialization {
fn setup_frob_fp6_test(f: Fp6<BN254>, n: usize) -> InterpreterMemoryInitialization {
InterpreterMemoryInitialization {
label: String::from("test_frob_fp254_6_") + &(n.to_string()),
stack: f.on_stack(),
@ -131,7 +135,7 @@ fn setup_frob_fp6_test(f: Fp6, n: usize) -> InterpreterMemoryInitialization {
#[test]
fn test_frob_fp6() -> Result<()> {
let mut rng = rand::thread_rng();
let f: Fp6 = rng.gen::<Fp6>();
let f: Fp6<BN254> = rng.gen::<Fp6<BN254>>();
for n in 1..4 {
let setup_frob = setup_frob_fp6_test(f, n);
let intrptr_frob: Interpreter = run_interpreter_with_memory(setup_frob).unwrap();
@ -142,7 +146,7 @@ fn test_frob_fp6() -> Result<()> {
Ok(())
}
fn setup_frob_fp12_test(ptr: usize, f: Fp12, n: usize) -> InterpreterMemoryInitialization {
fn setup_frob_fp12_test(ptr: usize, f: Fp12<BN254>, n: usize) -> InterpreterMemoryInitialization {
InterpreterMemoryInitialization {
label: String::from("test_frob_fp254_12_") + &(n.to_string()),
stack: vec![U256::from(ptr)],
@ -155,7 +159,7 @@ fn setup_frob_fp12_test(ptr: usize, f: Fp12, n: usize) -> InterpreterMemoryIniti
fn test_frob_fp12() -> Result<()> {
let ptr: usize = 200;
let mut rng = rand::thread_rng();
let f: Fp12 = rng.gen::<Fp12>();
let f: Fp12<BN254> = rng.gen::<Fp12<BN254>>();
for n in [1, 2, 3, 6] {
let setup_frob = setup_frob_fp12_test(ptr, f, n);
let intrptr_frob: Interpreter = run_interpreter_with_memory(setup_frob).unwrap();
@ -171,7 +175,7 @@ fn test_inv_fp12() -> Result<()> {
let ptr: usize = 200;
let inv: usize = 212;
let mut rng = rand::thread_rng();
let f: Fp12 = rng.gen::<Fp12>();
let f: Fp12<BN254> = rng.gen::<Fp12<BN254>>();
let setup = InterpreterMemoryInitialization {
label: "inv_fp254_12".to_string(),
@ -192,7 +196,7 @@ fn test_inv_fp12() -> Result<()> {
fn test_invariant_exponent() -> Result<()> {
let ptr: usize = 200;
let mut rng = rand::thread_rng();
let f: Fp12 = rng.gen::<Fp12>();
let f: Fp12<BN254> = rng.gen::<Fp12<BN254>>();
let setup = InterpreterMemoryInitialization {
label: "bn254_invariant_exponent".to_string(),
@ -213,8 +217,8 @@ fn test_invariant_exponent() -> Result<()> {
// The curve is cyclic with generator (1, 2)
pub const CURVE_GENERATOR: Curve = {
Curve {
x: Fp { val: U256::one() },
y: Fp {
x: BN254 { val: U256::one() },
y: BN254 {
val: U256([2, 0, 0, 0]),
},
}
@ -224,7 +228,7 @@ pub const CURVE_GENERATOR: Curve = {
pub const TWISTED_GENERATOR: TwistedCurve = {
TwistedCurve {
x: Fp2 {
re: Fp {
re: BN254 {
val: U256([
0x46debd5cd992f6ed,
0x674322d4f75edadd,
@ -232,7 +236,7 @@ pub const TWISTED_GENERATOR: TwistedCurve = {
0x1800deef121f1e76,
]),
},
im: Fp {
im: BN254 {
val: U256([
0x97e485b7aef312c2,
0xf1aa493335a9e712,
@ -242,7 +246,7 @@ pub const TWISTED_GENERATOR: TwistedCurve = {
},
},
y: Fp2 {
re: Fp {
re: BN254 {
val: U256([
0x4ce6cc0166fa7daa,
0xe3d1e7690c43d37b,
@ -250,7 +254,7 @@ pub const TWISTED_GENERATOR: TwistedCurve = {
0x12c85ea5db8c6deb,
]),
},
im: Fp {
im: BN254 {
val: U256([
0x55acdadcd122975b,
0xbc4b313370b38ef3,

View File

@ -0,0 +1,195 @@
use std::collections::HashSet;
use anyhow::Result;
use ethereum_types::{Address, U256};
use rand::{thread_rng, Rng};
use crate::cpu::kernel::aggregator::KERNEL;
use crate::cpu::kernel::constants::global_metadata::GlobalMetadata::{
AccessedAddressesLen, AccessedStorageKeysLen,
};
use crate::cpu::kernel::interpreter::Interpreter;
use crate::memory::segments::Segment::{AccessedAddresses, AccessedStorageKeys, GlobalMetadata};
use crate::witness::memory::MemoryAddress;
#[test]
fn test_insert_accessed_addresses() -> Result<()> {
let insert_accessed_addresses = KERNEL.global_labels["insert_accessed_addresses"];
let retaddr = 0xdeadbeefu32.into();
let mut rng = thread_rng();
let n = rng.gen_range(1..10);
let addresses = (0..n)
.map(|_| rng.gen::<Address>())
.collect::<HashSet<_>>()
.into_iter()
.collect::<Vec<Address>>();
let addr_in_list = addresses[rng.gen_range(0..n)];
let addr_not_in_list = rng.gen::<Address>();
assert!(
!addresses.contains(&addr_not_in_list),
"Cosmic luck or bad RNG?"
);
// Test for address already in list.
let initial_stack = vec![retaddr, U256::from(addr_in_list.0.as_slice())];
let mut interpreter = Interpreter::new_with_kernel(insert_accessed_addresses, initial_stack);
for i in 0..n {
let addr = U256::from(addresses[i].0.as_slice());
interpreter
.generation_state
.memory
.set(MemoryAddress::new(0, AccessedAddresses, i), addr);
}
interpreter.generation_state.memory.set(
MemoryAddress::new(0, GlobalMetadata, AccessedAddressesLen as usize),
U256::from(n),
);
interpreter.run()?;
assert_eq!(interpreter.stack(), &[U256::zero()]);
assert_eq!(
interpreter.generation_state.memory.get(MemoryAddress::new(
0,
GlobalMetadata,
AccessedAddressesLen as usize
)),
U256::from(n)
);
// Test for address not in list.
let initial_stack = vec![retaddr, U256::from(addr_not_in_list.0.as_slice())];
let mut interpreter = Interpreter::new_with_kernel(insert_accessed_addresses, initial_stack);
for i in 0..n {
let addr = U256::from(addresses[i].0.as_slice());
interpreter
.generation_state
.memory
.set(MemoryAddress::new(0, AccessedAddresses, i), addr);
}
interpreter.generation_state.memory.set(
MemoryAddress::new(0, GlobalMetadata, AccessedAddressesLen as usize),
U256::from(n),
);
interpreter.run()?;
assert_eq!(interpreter.stack(), &[U256::one()]);
assert_eq!(
interpreter.generation_state.memory.get(MemoryAddress::new(
0,
GlobalMetadata,
AccessedAddressesLen as usize
)),
U256::from(n + 1)
);
assert_eq!(
interpreter
.generation_state
.memory
.get(MemoryAddress::new(0, AccessedAddresses, n)),
U256::from(addr_not_in_list.0.as_slice())
);
Ok(())
}
#[test]
fn test_insert_accessed_storage_keys() -> Result<()> {
let insert_accessed_storage_keys = KERNEL.global_labels["insert_accessed_storage_keys"];
let retaddr = 0xdeadbeefu32.into();
let mut rng = thread_rng();
let n = rng.gen_range(1..10);
let storage_keys = (0..n)
.map(|_| (rng.gen::<Address>(), U256(rng.gen())))
.collect::<HashSet<_>>()
.into_iter()
.collect::<Vec<(Address, U256)>>();
let storage_key_in_list = storage_keys[rng.gen_range(0..n)];
let storage_key_not_in_list = (rng.gen::<Address>(), U256(rng.gen()));
assert!(
!storage_keys.contains(&storage_key_not_in_list),
"Cosmic luck or bad RNG?"
);
// Test for storage key already in list.
let initial_stack = vec![
retaddr,
storage_key_in_list.1,
U256::from(storage_key_in_list.0 .0.as_slice()),
];
let mut interpreter = Interpreter::new_with_kernel(insert_accessed_storage_keys, initial_stack);
for i in 0..n {
let addr = U256::from(storage_keys[i].0 .0.as_slice());
interpreter
.generation_state
.memory
.set(MemoryAddress::new(0, AccessedStorageKeys, 2 * i), addr);
interpreter.generation_state.memory.set(
MemoryAddress::new(0, AccessedStorageKeys, 2 * i + 1),
storage_keys[i].1,
);
}
interpreter.generation_state.memory.set(
MemoryAddress::new(0, GlobalMetadata, AccessedStorageKeysLen as usize),
U256::from(2 * n),
);
interpreter.run()?;
assert_eq!(interpreter.stack(), &[U256::zero()]);
assert_eq!(
interpreter.generation_state.memory.get(MemoryAddress::new(
0,
GlobalMetadata,
AccessedStorageKeysLen as usize
)),
U256::from(2 * n)
);
// Test for storage key not in list.
let initial_stack = vec![
retaddr,
storage_key_not_in_list.1,
U256::from(storage_key_not_in_list.0 .0.as_slice()),
];
let mut interpreter = Interpreter::new_with_kernel(insert_accessed_storage_keys, initial_stack);
for i in 0..n {
let addr = U256::from(storage_keys[i].0 .0.as_slice());
interpreter
.generation_state
.memory
.set(MemoryAddress::new(0, AccessedStorageKeys, 2 * i), addr);
interpreter.generation_state.memory.set(
MemoryAddress::new(0, AccessedStorageKeys, 2 * i + 1),
storage_keys[i].1,
);
}
interpreter.generation_state.memory.set(
MemoryAddress::new(0, GlobalMetadata, AccessedStorageKeysLen as usize),
U256::from(2 * n),
);
interpreter.run()?;
assert_eq!(interpreter.stack(), &[U256::one()]);
assert_eq!(
interpreter.generation_state.memory.get(MemoryAddress::new(
0,
GlobalMetadata,
AccessedStorageKeysLen as usize
)),
U256::from(2 * (n + 1))
);
assert_eq!(
interpreter
.generation_state
.memory
.get(MemoryAddress::new(0, AccessedStorageKeys, 2 * n,)),
U256::from(storage_key_not_in_list.0 .0.as_slice())
);
assert_eq!(
interpreter.generation_state.memory.get(MemoryAddress::new(
0,
AccessedStorageKeys,
2 * n + 1,
)),
storage_key_not_in_list.1
);
Ok(())
}

View File

@ -1,6 +1,9 @@
use std::str::FromStr;
use anyhow::Result;
use ethereum_types::U256;
use ethereum_types::{H256, U256};
use hex_literal::hex;
use keccak_hash::keccak;
use crate::cpu::kernel::aggregator::KERNEL;
use crate::cpu::kernel::interpreter::Interpreter;
@ -24,22 +27,89 @@ fn test_get_create_address() -> Result<()> {
Ok(())
}
struct Create2TestCase {
code_hash: H256,
salt: U256,
sender: U256,
expected_addr: U256,
}
/// Taken from https://eips.ethereum.org/EIPS/eip-1014
fn create2_test_cases() -> Vec<Create2TestCase> {
vec![
Create2TestCase {
code_hash: keccak(hex!("00")),
salt: U256::zero(),
sender: U256::zero(),
expected_addr: U256::from_str("0x4D1A2e2bB4F88F0250f26Ffff098B0b30B26BF38").unwrap(),
},
Create2TestCase {
code_hash: keccak(hex!("00")),
salt: U256::zero(),
sender: U256::from_str("0xdeadbeef00000000000000000000000000000000").unwrap(),
expected_addr: U256::from_str("0xB928f69Bb1D91Cd65274e3c79d8986362984fDA3").unwrap(),
},
Create2TestCase {
code_hash: keccak(hex!("00")),
salt: U256::from_str(
"0x000000000000000000000000feed000000000000000000000000000000000000",
)
.unwrap(),
sender: U256::from_str("0xdeadbeef00000000000000000000000000000000").unwrap(),
expected_addr: U256::from_str("0xD04116cDd17beBE565EB2422F2497E06cC1C9833").unwrap(),
},
Create2TestCase {
code_hash: keccak(hex!("deadbeef")),
salt: U256::zero(),
sender: U256::zero(),
expected_addr: U256::from_str("0x70f2b2914A2a4b783FaEFb75f459A580616Fcb5e").unwrap(),
},
Create2TestCase {
code_hash: keccak(hex!("deadbeef")),
salt: U256::from_str(
"0x00000000000000000000000000000000000000000000000000000000cafebabe",
)
.unwrap(),
sender: U256::from_str("0x00000000000000000000000000000000deadbeef").unwrap(),
expected_addr: U256::from_str("0x60f3f640a8508fC6a86d45DF051962668E1e8AC7").unwrap(),
},
Create2TestCase {
code_hash: keccak(hex!("deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef")),
salt: U256::from_str(
"0x00000000000000000000000000000000000000000000000000000000cafebabe",
)
.unwrap(),
sender: U256::from_str("0x00000000000000000000000000000000deadbeef").unwrap(),
expected_addr: U256::from_str("0x1d8bfDC5D46DC4f61D6b6115972536eBE6A8854C").unwrap(),
},
Create2TestCase {
code_hash: keccak(hex!("")),
salt: U256::zero(),
sender: U256::zero(),
expected_addr: U256::from_str("0xE33C0C7F7df4809055C3ebA6c09CFe4BaF1BD9e0").unwrap(),
},
]
}
#[test]
fn test_get_create2_address() -> Result<()> {
let get_create2_address = KERNEL.global_labels["get_create2_address"];
// TODO: Replace with real data once we have a real implementation.
let retaddr = 0xdeadbeefu32.into();
let code_hash = 0.into();
let salt = 5.into();
let sender = 0.into();
let expected_addr = 123.into();
let initial_stack = vec![retaddr, code_hash, salt, sender];
let mut interpreter = Interpreter::new_with_kernel(get_create2_address, initial_stack);
interpreter.run()?;
for Create2TestCase {
code_hash,
salt,
sender,
expected_addr,
} in create2_test_cases()
{
let initial_stack = vec![retaddr, salt, U256::from(code_hash.0), sender];
let mut interpreter = Interpreter::new_with_kernel(get_create2_address, initial_stack);
interpreter.run()?;
assert_eq!(interpreter.stack(), &[expected_addr]);
assert_eq!(interpreter.stack(), &[expected_addr]);
}
Ok(())
}

View File

@ -1,3 +1,4 @@
mod access_lists;
mod create_addresses;
mod intrinsic_gas;
mod jumpdest_analysis;

View File

@ -1,6 +1,7 @@
mod account_code;
mod balance;
mod bignum;
mod bls381;
mod bn254;
mod core;
mod ecc;

1225
evm/src/extension_tower.rs Normal file

File diff suppressed because it is too large Load Diff

View File

@ -2,13 +2,13 @@ use std::mem::transmute;
use std::str::FromStr;
use anyhow::{bail, Error};
use ethereum_types::{BigEndianHash, H256, U256};
use ethereum_types::{BigEndianHash, H256, U256, U512};
use itertools::Itertools;
use plonky2::field::types::Field;
use crate::bn254_arithmetic::Fp12;
use crate::extension_tower::{FieldExt, Fp12, BLS381, BN254};
use crate::generation::prover_input::EvmField::{
Bn254Base, Bn254Scalar, Secp256k1Base, Secp256k1Scalar,
Bls381Base, Bls381Scalar, Bn254Base, Bn254Scalar, Secp256k1Base, Secp256k1Scalar,
};
use crate::generation::prover_input::FieldOp::{Inverse, Sqrt};
use crate::generation::state::GenerationState;
@ -33,6 +33,7 @@ impl<F: Field> GenerationState<F> {
match input_fn.0[0].as_str() {
"end_of_txns" => self.run_end_of_txns(),
"ff" => self.run_ff(input_fn),
"sf" => self.run_sf(input_fn),
"ffe" => self.run_ffe(input_fn),
"mpt" => self.run_mpt(),
"rlp" => self.run_rlp(),
@ -60,6 +61,26 @@ impl<F: Field> GenerationState<F> {
field.op(op, x)
}
/// Special finite field operations.
fn run_sf(&self, input_fn: &ProverInputFn) -> U256 {
let field = EvmField::from_str(input_fn.0[1].as_str()).unwrap();
let inputs: [U256; 4] = match field {
Bls381Base => std::array::from_fn(|i| {
stack_peek(self, i).expect("Insufficient number of items on stack")
}),
_ => todo!(),
};
match input_fn.0[2].as_str() {
"add_lo" => field.add_lo(inputs),
"add_hi" => field.add_hi(inputs),
"mul_lo" => field.mul_lo(inputs),
"mul_hi" => field.mul_hi(inputs),
"sub_lo" => field.sub_lo(inputs),
"sub_hi" => field.sub_hi(inputs),
_ => todo!(),
}
}
/// Finite field extension operations.
fn run_ffe(&self, input_fn: &ProverInputFn) -> U256 {
let field = EvmField::from_str(input_fn.0[1].as_str()).unwrap();
@ -70,16 +91,12 @@ impl<F: Field> GenerationState<F> {
.unwrap()
.parse::<usize>()
.unwrap();
let ptr = stack_peek(self, 11 - n).expect("Empty stack").as_usize();
let ptr = stack_peek(self, 11 - n)
.expect("Insufficient number of items on stack")
.as_usize();
let f: [U256; 12] = match field {
Bn254Base => {
let mut f: [U256; 12] = [U256::zero(); 12];
for i in 0..12 {
f[i] = kernel_peek(self, BnPairing, ptr + i);
}
f
}
Bn254Base => std::array::from_fn(|i| kernel_peek(self, BnPairing, ptr + i)),
_ => todo!(),
};
field.field_extension_inverse(n, f)
@ -193,6 +210,8 @@ impl<F: Field> GenerationState<F> {
}
enum EvmField {
Bls381Base,
Bls381Scalar,
Bn254Base,
Bn254Scalar,
Secp256k1Base,
@ -209,6 +228,8 @@ impl FromStr for EvmField {
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(match s {
"bls381_base" => Bls381Base,
"bls381_scalar" => Bls381Scalar,
"bn254_base" => Bn254Base,
"bn254_scalar" => Bn254Scalar,
"secp256k1_base" => Secp256k1Base,
@ -233,6 +254,8 @@ impl FromStr for FieldOp {
impl EvmField {
fn order(&self) -> U256 {
match self {
EvmField::Bls381Base => todo!(),
EvmField::Bls381Scalar => todo!(),
EvmField::Bn254Base => {
U256::from_str("0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47")
.unwrap()
@ -273,8 +296,56 @@ impl EvmField {
modexp(x, q, n)
}
fn add_lo(&self, inputs: [U256; 4]) -> U256 {
let [y1, x0, x1, y0] = inputs;
let x = U512::from(x0) + (U512::from(x1) << 256);
let y = U512::from(y0) + (U512::from(y1) << 256);
let z = BLS381 { val: x } + BLS381 { val: y };
z.lo()
}
fn add_hi(&self, inputs: [U256; 4]) -> U256 {
let [x0, x1, y0, y1] = inputs;
let x = U512::from(x0) + (U512::from(x1) << 256);
let y = U512::from(y0) + (U512::from(y1) << 256);
let z = BLS381 { val: x } + BLS381 { val: y };
z.hi()
}
fn mul_lo(&self, inputs: [U256; 4]) -> U256 {
let [y1, x0, x1, y0] = inputs;
let x = U512::from(x0) + (U512::from(x1) << 256);
let y = U512::from(y0) + (U512::from(y1) << 256);
let z = BLS381 { val: x } * BLS381 { val: y };
z.lo()
}
fn mul_hi(&self, inputs: [U256; 4]) -> U256 {
let [x0, x1, y0, y1] = inputs;
let x = U512::from(x0) + (U512::from(x1) << 256);
let y = U512::from(y0) + (U512::from(y1) << 256);
let z = BLS381 { val: x } * BLS381 { val: y };
z.hi()
}
fn sub_lo(&self, inputs: [U256; 4]) -> U256 {
let [y1, x0, x1, y0] = inputs;
let x = U512::from(x0) + (U512::from(x1) << 256);
let y = U512::from(y0) + (U512::from(y1) << 256);
let z = BLS381 { val: x } - BLS381 { val: y };
z.lo()
}
fn sub_hi(&self, inputs: [U256; 4]) -> U256 {
let [x0, x1, y0, y1] = inputs;
let x = U512::from(x0) + (U512::from(x1) << 256);
let y = U512::from(y0) + (U512::from(y1) << 256);
let z = BLS381 { val: x } - BLS381 { val: y };
z.hi()
}
fn field_extension_inverse(&self, n: usize, f: [U256; 12]) -> U256 {
let f: Fp12 = unsafe { transmute(f) };
let f: Fp12<BN254> = unsafe { transmute(f) };
let f_inv: [U256; 12] = unsafe { transmute(f.inv()) };
f_inv[n]
}

View File

@ -8,12 +8,12 @@
pub mod all_stark;
pub mod arithmetic;
pub mod bn254_arithmetic;
pub mod bn254_pairing;
pub mod config;
pub mod constraint_consumer;
pub mod cpu;
pub mod cross_table_lookup;
pub mod extension_tower;
pub mod fixed_recursive_verifier;
pub mod generation;
mod get_challenges;

View File

@ -44,10 +44,14 @@ pub enum Segment {
BnWnafB = 20,
BnTableQ = 21,
BnPairing = 22,
/// List of addresses that have been accessed in the current transaction.
AccessedAddresses = 23,
/// List of storage keys that have been accessed in the current transaction.
AccessedStorageKeys = 24,
}
impl Segment {
pub(crate) const COUNT: usize = 23;
pub(crate) const COUNT: usize = 25;
pub(crate) fn all() -> [Self; Self::COUNT] {
[
@ -74,6 +78,8 @@ impl Segment {
Self::BnWnafB,
Self::BnTableQ,
Self::BnPairing,
Self::AccessedAddresses,
Self::AccessedStorageKeys,
]
}
@ -103,6 +109,8 @@ impl Segment {
Segment::BnWnafB => "SEGMENT_KERNEL_BN_WNAF_B",
Segment::BnTableQ => "SEGMENT_KERNEL_BN_TABLE_Q",
Segment::BnPairing => "SEGMENT_KERNEL_BN_PAIRING",
Segment::AccessedAddresses => "SEGMENT_ACCESSED_ADDRESSES",
Segment::AccessedStorageKeys => "SEGMENT_ACCESSED_STORAGE_KEYS",
}
}
@ -132,6 +140,8 @@ impl Segment {
Segment::BnWnafB => 8,
Segment::BnTableQ => 256,
Segment::BnPairing => 256,
Segment::AccessedAddresses => 256,
Segment::AccessedStorageKeys => 256,
}
}
}

View File

@ -11,7 +11,9 @@ use crate::cpu::membus::NUM_GP_CHANNELS;
use crate::cpu::simple_logic::eq_iszero::generate_pinv_diff;
use crate::generation::state::GenerationState;
use crate::memory::segments::Segment;
use crate::witness::errors::MemoryError::{ContextTooLarge, SegmentTooLarge, VirtTooLarge};
use crate::witness::errors::ProgramError;
use crate::witness::errors::ProgramError::MemoryError;
use crate::witness::memory::{MemoryAddress, MemoryOp};
use crate::witness::util::{
keccak_sponge_log, mem_read_gp_with_log_and_fill, mem_write_gp_log_and_fill,
@ -632,9 +634,15 @@ pub(crate) fn generate_mstore_general<F: Field>(
stack_pop_with_log_and_fill::<4, _>(state, &mut row)?;
let address = MemoryAddress {
context: context.as_usize(),
segment: segment.as_usize(),
virt: virt.as_usize(),
context: context
.try_into()
.map_err(|_| MemoryError(ContextTooLarge { context }))?,
segment: segment
.try_into()
.map_err(|_| MemoryError(SegmentTooLarge { segment }))?,
virt: virt
.try_into()
.map_err(|_| MemoryError(VirtTooLarge { virt }))?,
};
let log_write = mem_write_gp_log_and_fill(4, address, state, &mut row, val);