Silence Poseidon warnings for ARM targets

This commit is contained in:
Robin Salen 2023-06-26 07:44:19 -04:00
parent 5b8740a729
commit bd3834c403
No known key found for this signature in database
GPG Key ID: FB87BACFB3CB2007

View File

@ -4,8 +4,8 @@
//! `poseidon_constants.sage` script in the `mir-protocol/hash-constants`
//! repository.
#[cfg(not(all(target_arch = "aarch64", target_feature = "neon")))]
use plonky2_field::types::Field;
use unroll::unroll_for_loops;
use crate::field::goldilocks_field::GoldilocksField;
use crate::hash::poseidon::{Poseidon, N_PARTIAL_ROUNDS};
@ -214,9 +214,9 @@ impl Poseidon for GoldilocksField {
0xdcedab70f40718ba, 0xe796d293a47a64cb, 0x80772dc2645b280b, ],
];
#[cfg(target_arch="x86_64")]
#[cfg(not(all(target_arch = "aarch64", target_feature = "neon")))]
#[inline(always)]
#[unroll_for_loops]
#[unroll::unroll_for_loops]
fn mds_layer(state: &[Self; 12]) -> [Self; 12] {
let mut result = [GoldilocksField::ZERO; 12];
@ -231,8 +231,8 @@ impl Poseidon for GoldilocksField {
state_l[r] = (s as u32) as u64;
}
let state_h = mds_multiply_freq(state_h);
let state_l = mds_multiply_freq(state_l);
let state_h = poseidon12_mds::mds_multiply_freq(state_h);
let state_l = poseidon12_mds::mds_multiply_freq(state_l);
for r in 0..12 {
let s = state_l[r] as u128 + ((state_h[r] as u128) << 32);
@ -307,137 +307,139 @@ impl Poseidon for GoldilocksField {
// MDS layer helper methods
// The following code has been adapted from winterfell/crypto/src/hash/mds/mds_f64_12x12.rs
// located at https://github.com/facebook/winterfell.
#[cfg(not(all(target_arch = "aarch64", target_feature = "neon")))]
mod poseidon12_mds {
const MDS_FREQ_BLOCK_ONE: [i64; 3] = [16, 32, 16];
const MDS_FREQ_BLOCK_TWO: [(i64, i64); 3] = [(2, -1), (-4, 1), (16, 1)];
const MDS_FREQ_BLOCK_THREE: [i64; 3] = [-1, -8, 2];
const MDS_FREQ_BLOCK_ONE: [i64; 3] = [16, 32, 16];
const MDS_FREQ_BLOCK_TWO: [(i64, i64); 3] = [(2, -1), (-4, 1), (16, 1)];
const MDS_FREQ_BLOCK_THREE: [i64; 3] = [-1, -8, 2];
/// Split 3 x 4 FFT-based MDS vector-multiplication with the Poseidon circulant MDS matrix.
#[inline(always)]
pub(crate) fn mds_multiply_freq(state: [u64; 12]) -> [u64; 12] {
let [s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] = state;
/// Split 3 x 4 FFT-based MDS vector-multiplication with the Poseidon circulant MDS matrix.
#[inline(always)]
fn mds_multiply_freq(state: [u64; 12]) -> [u64; 12] {
let [s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] = state;
let (u0, u1, u2) = fft4_real([s0, s3, s6, s9]);
let (u4, u5, u6) = fft4_real([s1, s4, s7, s10]);
let (u8, u9, u10) = fft4_real([s2, s5, s8, s11]);
let (u0, u1, u2) = fft4_real([s0, s3, s6, s9]);
let (u4, u5, u6) = fft4_real([s1, s4, s7, s10]);
let (u8, u9, u10) = fft4_real([s2, s5, s8, s11]);
// This where the multiplication in frequency domain is done. More precisely, and with
// the appropriate permuations in between, the sequence of
// 3-point FFTs --> multiplication by twiddle factors --> Hadamard multiplication -->
// 3 point iFFTs --> multiplication by (inverse) twiddle factors
// is "squashed" into one step composed of the functions "block1", "block2" and "block3".
// The expressions in the aforementioned functions are the result of explicit computations
// combined with the Karatsuba trick for the multiplication of complex numbers.
// This where the multiplication in frequency domain is done. More precisely, and with
// the appropriate permuations in between, the sequence of
// 3-point FFTs --> multiplication by twiddle factors --> Hadamard multiplication -->
// 3 point iFFTs --> multiplication by (inverse) twiddle factors
// is "squashed" into one step composed of the functions "block1", "block2" and "block3".
// The expressions in the aforementioned functions are the result of explicit computations
// combined with the Karatsuba trick for the multiplication of complex numbers.
let [v0, v4, v8] = block1([u0, u4, u8], MDS_FREQ_BLOCK_ONE);
let [v1, v5, v9] = block2([u1, u5, u9], MDS_FREQ_BLOCK_TWO);
let [v2, v6, v10] = block3([u2, u6, u10], MDS_FREQ_BLOCK_THREE);
// The 4th block is not computed as it is similar to the 2nd one, up to complex conjugation.
let [v0, v4, v8] = block1([u0, u4, u8], MDS_FREQ_BLOCK_ONE);
let [v1, v5, v9] = block2([u1, u5, u9], MDS_FREQ_BLOCK_TWO);
let [v2, v6, v10] = block3([u2, u6, u10], MDS_FREQ_BLOCK_THREE);
// The 4th block is not computed as it is similar to the 2nd one, up to complex conjugation.
let [s0, s3, s6, s9] = ifft4_real_unreduced((v0, v1, v2));
let [s1, s4, s7, s10] = ifft4_real_unreduced((v4, v5, v6));
let [s2, s5, s8, s11] = ifft4_real_unreduced((v8, v9, v10));
let [s0, s3, s6, s9] = ifft4_real_unreduced((v0, v1, v2));
let [s1, s4, s7, s10] = ifft4_real_unreduced((v4, v5, v6));
let [s2, s5, s8, s11] = ifft4_real_unreduced((v8, v9, v10));
[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
}
[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
}
#[inline(always)]
fn block1(x: [i64; 3], y: [i64; 3]) -> [i64; 3] {
let [x0, x1, x2] = x;
let [y0, y1, y2] = y;
let z0 = x0 * y0 + x1 * y2 + x2 * y1;
let z1 = x0 * y1 + x1 * y0 + x2 * y2;
let z2 = x0 * y2 + x1 * y1 + x2 * y0;
/// Real 2-FFT over u64 integers.
#[inline(always)]
fn fft2_real(x: [u64; 2]) -> [i64; 2] {
[(x[0] as i64 + x[1] as i64), (x[0] as i64 - x[1] as i64)]
}
[z0, z1, z2]
}
/// Real 2-iFFT over u64 integers.
/// Division by two to complete the inverse FFT is not performed here.
#[inline(always)]
fn ifft2_real_unreduced(y: [i64; 2]) -> [u64; 2] {
[(y[0] + y[1]) as u64, (y[0] - y[1]) as u64]
}
#[inline(always)]
fn block2(x: [(i64, i64); 3], y: [(i64, i64); 3]) -> [(i64, i64); 3] {
let [(x0r, x0i), (x1r, x1i), (x2r, x2i)] = x;
let [(y0r, y0i), (y1r, y1i), (y2r, y2i)] = y;
let x0s = x0r + x0i;
let x1s = x1r + x1i;
let x2s = x2r + x2i;
let y0s = y0r + y0i;
let y1s = y1r + y1i;
let y2s = y2r + y2i;
/// Real 4-FFT over u64 integers.
#[inline(always)]
fn fft4_real(x: [u64; 4]) -> (i64, (i64, i64), i64) {
let [z0, z2] = fft2_real([x[0], x[2]]);
let [z1, z3] = fft2_real([x[1], x[3]]);
let y0 = z0 + z1;
let y1 = (z2, -z3);
let y2 = z0 - z1;
(y0, y1, y2)
}
// Compute x0y0 ix1y2 ix2y1 using Karatsuba for complex numbers multiplication
let m0 = (x0r * y0r, x0i * y0i);
let m1 = (x1r * y2r, x1i * y2i);
let m2 = (x2r * y1r, x2i * y1i);
let z0r = (m0.0 - m0.1) + (x1s * y2s - m1.0 - m1.1) + (x2s * y1s - m2.0 - m2.1);
let z0i = (x0s * y0s - m0.0 - m0.1) + (-m1.0 + m1.1) + (-m2.0 + m2.1);
let z0 = (z0r, z0i);
/// Real 4-iFFT over u64 integers.
/// Division by four to complete the inverse FFT is not performed here.
#[inline(always)]
fn ifft4_real_unreduced(y: (i64, (i64, i64), i64)) -> [u64; 4] {
let z0 = y.0 + y.2;
let z1 = y.0 - y.2;
let z2 = y.1 .0;
let z3 = -y.1 .1;
// Compute x0y1 + x1y0 ix2y2 using Karatsuba for complex numbers multiplication
let m0 = (x0r * y1r, x0i * y1i);
let m1 = (x1r * y0r, x1i * y0i);
let m2 = (x2r * y2r, x2i * y2i);
let z1r = (m0.0 - m0.1) + (m1.0 - m1.1) + (x2s * y2s - m2.0 - m2.1);
let z1i = (x0s * y1s - m0.0 - m0.1) + (x1s * y0s - m1.0 - m1.1) + (-m2.0 + m2.1);
let z1 = (z1r, z1i);
let [x0, x2] = ifft2_real_unreduced([z0, z2]);
let [x1, x3] = ifft2_real_unreduced([z1, z3]);
// Compute x0y2 + x1y1 + x2y0 using Karatsuba for complex numbers multiplication
let m0 = (x0r * y2r, x0i * y2i);
let m1 = (x1r * y1r, x1i * y1i);
let m2 = (x2r * y0r, x2i * y0i);
let z2r = (m0.0 - m0.1) + (m1.0 - m1.1) + (m2.0 - m2.1);
let z2i = (x0s * y2s - m0.0 - m0.1) + (x1s * y1s - m1.0 - m1.1) + (x2s * y0s - m2.0 - m2.1);
let z2 = (z2r, z2i);
[x0, x1, x2, x3]
}
[z0, z1, z2]
}
#[inline(always)]
fn block1(x: [i64; 3], y: [i64; 3]) -> [i64; 3] {
let [x0, x1, x2] = x;
let [y0, y1, y2] = y;
let z0 = x0 * y0 + x1 * y2 + x2 * y1;
let z1 = x0 * y1 + x1 * y0 + x2 * y2;
let z2 = x0 * y2 + x1 * y1 + x2 * y0;
#[inline(always)]
fn block3(x: [i64; 3], y: [i64; 3]) -> [i64; 3] {
let [x0, x1, x2] = x;
let [y0, y1, y2] = y;
let z0 = x0 * y0 - x1 * y2 - x2 * y1;
let z1 = x0 * y1 + x1 * y0 - x2 * y2;
let z2 = x0 * y2 + x1 * y1 + x2 * y0;
[z0, z1, z2]
}
[z0, z1, z2]
}
#[inline(always)]
fn block2(x: [(i64, i64); 3], y: [(i64, i64); 3]) -> [(i64, i64); 3] {
let [(x0r, x0i), (x1r, x1i), (x2r, x2i)] = x;
let [(y0r, y0i), (y1r, y1i), (y2r, y2i)] = y;
let x0s = x0r + x0i;
let x1s = x1r + x1i;
let x2s = x2r + x2i;
let y0s = y0r + y0i;
let y1s = y1r + y1i;
let y2s = y2r + y2i;
/// Real 2-FFT over u64 integers.
#[inline(always)]
pub(crate) fn fft2_real(x: [u64; 2]) -> [i64; 2] {
[(x[0] as i64 + x[1] as i64), (x[0] as i64 - x[1] as i64)]
}
// Compute x0y0 ix1y2 ix2y1 using Karatsuba for complex numbers multiplication
let m0 = (x0r * y0r, x0i * y0i);
let m1 = (x1r * y2r, x1i * y2i);
let m2 = (x2r * y1r, x2i * y1i);
let z0r = (m0.0 - m0.1) + (x1s * y2s - m1.0 - m1.1) + (x2s * y1s - m2.0 - m2.1);
let z0i = (x0s * y0s - m0.0 - m0.1) + (-m1.0 + m1.1) + (-m2.0 + m2.1);
let z0 = (z0r, z0i);
/// Real 2-iFFT over u64 integers.
/// Division by two to complete the inverse FFT is not performed here.
#[inline(always)]
pub(crate) fn ifft2_real_unreduced(y: [i64; 2]) -> [u64; 2] {
[(y[0] + y[1]) as u64, (y[0] - y[1]) as u64]
}
// Compute x0y1 + x1y0 ix2y2 using Karatsuba for complex numbers multiplication
let m0 = (x0r * y1r, x0i * y1i);
let m1 = (x1r * y0r, x1i * y0i);
let m2 = (x2r * y2r, x2i * y2i);
let z1r = (m0.0 - m0.1) + (m1.0 - m1.1) + (x2s * y2s - m2.0 - m2.1);
let z1i = (x0s * y1s - m0.0 - m0.1) + (x1s * y0s - m1.0 - m1.1) + (-m2.0 + m2.1);
let z1 = (z1r, z1i);
/// Real 4-FFT over u64 integers.
#[inline(always)]
pub(crate) fn fft4_real(x: [u64; 4]) -> (i64, (i64, i64), i64) {
let [z0, z2] = fft2_real([x[0], x[2]]);
let [z1, z3] = fft2_real([x[1], x[3]]);
let y0 = z0 + z1;
let y1 = (z2, -z3);
let y2 = z0 - z1;
(y0, y1, y2)
}
// Compute x0y2 + x1y1 + x2y0 using Karatsuba for complex numbers multiplication
let m0 = (x0r * y2r, x0i * y2i);
let m1 = (x1r * y1r, x1i * y1i);
let m2 = (x2r * y0r, x2i * y0i);
let z2r = (m0.0 - m0.1) + (m1.0 - m1.1) + (m2.0 - m2.1);
let z2i = (x0s * y2s - m0.0 - m0.1) + (x1s * y1s - m1.0 - m1.1) + (x2s * y0s - m2.0 - m2.1);
let z2 = (z2r, z2i);
/// Real 4-iFFT over u64 integers.
/// Division by four to complete the inverse FFT is not performed here.
#[inline(always)]
pub(crate) fn ifft4_real_unreduced(y: (i64, (i64, i64), i64)) -> [u64; 4] {
let z0 = y.0 + y.2;
let z1 = y.0 - y.2;
let z2 = y.1 .0;
let z3 = -y.1 .1;
[z0, z1, z2]
}
let [x0, x2] = ifft2_real_unreduced([z0, z2]);
let [x1, x3] = ifft2_real_unreduced([z1, z3]);
#[inline(always)]
fn block3(x: [i64; 3], y: [i64; 3]) -> [i64; 3] {
let [x0, x1, x2] = x;
let [y0, y1, y2] = y;
let z0 = x0 * y0 - x1 * y2 - x2 * y1;
let z1 = x0 * y1 + x1 * y0 - x2 * y2;
let z2 = x0 * y2 + x1 * y1 + x2 * y0;
[z0, z1, z2]
[x0, x1, x2, x3]
}
}
#[cfg(test)]