Simplify AVX2 Goldilocks (#399)

* Simplify AVX2 Goldilocks

* Fixes

* Lints

* Docs

* Minor doc

* Minor: typo
This commit is contained in:
Jakub Nabaglo 2021-12-20 13:41:42 -08:00 committed by GitHub
parent 2fc1a6156a
commit bbbb57caa6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 698 additions and 770 deletions

2
src/field/arch/mod.rs Normal file
View File

@ -0,0 +1,2 @@
#[cfg(target_arch = "x86_64")]
pub mod x86_64;

View File

@ -0,0 +1,692 @@
use core::arch::x86_64::*;
use std::fmt;
use std::fmt::{Debug, Formatter};
use std::iter::{Product, Sum};
use std::mem::transmute;
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use crate::field::field_types::{Field, PrimeField};
use crate::field::goldilocks_field::GoldilocksField;
use crate::field::packed_field::PackedField;
// Ideally `Avx2GoldilocksField` would wrap `__m256i`. Unfortunately, `__m256i` has an alignment of
// 32B, which would preclude us from casting `[GoldilocksField; 4]` (alignment 8B) to
// `Avx2GoldilocksField`. We need to ensure that `Avx2GoldilocksField` has the same alignment as
// `GoldilocksField`. Thus we wrap `[GoldilocksField; 4]` and use the `new` and `get` methods to
// convert to and from `__m256i`.
#[derive(Copy, Clone)]
#[repr(transparent)]
pub struct Avx2GoldilocksField(pub [GoldilocksField; 4]);
impl Avx2GoldilocksField {
#[inline]
fn new(x: __m256i) -> Self {
unsafe { transmute(x) }
}
#[inline]
fn get(&self) -> __m256i {
unsafe { transmute(*self) }
}
}
impl Add<Self> for Avx2GoldilocksField {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self::new(unsafe { add(self.get(), rhs.get()) })
}
}
impl Add<GoldilocksField> for Avx2GoldilocksField {
type Output = Self;
#[inline]
fn add(self, rhs: GoldilocksField) -> Self {
self + Self::from(rhs)
}
}
impl Add<Avx2GoldilocksField> for GoldilocksField {
type Output = Avx2GoldilocksField;
#[inline]
fn add(self, rhs: Self::Output) -> Self::Output {
Self::Output::from(self) + rhs
}
}
impl AddAssign<Self> for Avx2GoldilocksField {
#[inline]
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl AddAssign<GoldilocksField> for Avx2GoldilocksField {
#[inline]
fn add_assign(&mut self, rhs: GoldilocksField) {
*self = *self + rhs;
}
}
impl Debug for Avx2GoldilocksField {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "({:?})", self.get())
}
}
impl Default for Avx2GoldilocksField {
#[inline]
fn default() -> Self {
Self::ZERO
}
}
impl Div<GoldilocksField> for Avx2GoldilocksField {
type Output = Self;
#[inline]
fn div(self, rhs: GoldilocksField) -> Self {
self * rhs.inverse()
}
}
impl DivAssign<GoldilocksField> for Avx2GoldilocksField {
#[inline]
fn div_assign(&mut self, rhs: GoldilocksField) {
*self *= rhs.inverse();
}
}
impl From<GoldilocksField> for Avx2GoldilocksField {
fn from(x: GoldilocksField) -> Self {
Self([x; 4])
}
}
impl Mul<Self> for Avx2GoldilocksField {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self::new(unsafe { mul(self.get(), rhs.get()) })
}
}
impl Mul<GoldilocksField> for Avx2GoldilocksField {
type Output = Self;
#[inline]
fn mul(self, rhs: GoldilocksField) -> Self {
self * Self::from(rhs)
}
}
impl Mul<Avx2GoldilocksField> for GoldilocksField {
type Output = Avx2GoldilocksField;
#[inline]
fn mul(self, rhs: Avx2GoldilocksField) -> Self::Output {
Self::Output::from(self) * rhs
}
}
impl MulAssign<Self> for Avx2GoldilocksField {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl MulAssign<GoldilocksField> for Avx2GoldilocksField {
#[inline]
fn mul_assign(&mut self, rhs: GoldilocksField) {
*self = *self * rhs;
}
}
impl Neg for Avx2GoldilocksField {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self::new(unsafe { neg(self.get()) })
}
}
impl Product for Avx2GoldilocksField {
#[inline]
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.reduce(|x, y| x * y).unwrap_or(Self::ONE)
}
}
unsafe impl PackedField for Avx2GoldilocksField {
const WIDTH: usize = 4;
type Scalar = GoldilocksField;
const ZERO: Self = Self([<GoldilocksField as Field>::ZERO; 4]);
const ONE: Self = Self([<GoldilocksField as Field>::ONE; 4]);
#[inline]
fn from_arr(arr: [Self::Scalar; Self::WIDTH]) -> Self {
Self(arr)
}
#[inline]
fn as_arr(&self) -> [Self::Scalar; Self::WIDTH] {
self.0
}
#[inline]
fn from_slice(slice: &[Self::Scalar]) -> &Self {
assert_eq!(slice.len(), Self::WIDTH);
unsafe { &*slice.as_ptr().cast() }
}
#[inline]
fn from_slice_mut(slice: &mut [Self::Scalar]) -> &mut Self {
assert_eq!(slice.len(), Self::WIDTH);
unsafe { &mut *slice.as_mut_ptr().cast() }
}
#[inline]
fn as_slice(&self) -> &[Self::Scalar] {
&self.0[..]
}
#[inline]
fn as_slice_mut(&mut self) -> &mut [Self::Scalar] {
&mut self.0[..]
}
#[inline]
fn interleave(&self, other: Self, block_len: usize) -> (Self, Self) {
let (v0, v1) = (self.get(), other.get());
let (res0, res1) = match block_len {
1 => unsafe { interleave1(v0, v1) },
2 => unsafe { interleave2(v0, v1) },
4 => (v0, v1),
_ => panic!("unsupported block_len"),
};
(Self::new(res0), Self::new(res1))
}
#[inline]
fn square(&self) -> Self {
Self::new(unsafe { square(self.get()) })
}
}
impl Sub<Self> for Avx2GoldilocksField {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self::new(unsafe { sub(self.get(), rhs.get()) })
}
}
impl Sub<GoldilocksField> for Avx2GoldilocksField {
type Output = Self;
#[inline]
fn sub(self, rhs: GoldilocksField) -> Self {
self - Self::from(rhs)
}
}
impl Sub<Avx2GoldilocksField> for GoldilocksField {
type Output = Avx2GoldilocksField;
#[inline]
fn sub(self, rhs: Avx2GoldilocksField) -> Self::Output {
Self::Output::from(self) - rhs
}
}
impl SubAssign<Self> for Avx2GoldilocksField {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl SubAssign<GoldilocksField> for Avx2GoldilocksField {
#[inline]
fn sub_assign(&mut self, rhs: GoldilocksField) {
*self = *self - rhs;
}
}
impl Sum for Avx2GoldilocksField {
#[inline]
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.reduce(|x, y| x + y).unwrap_or(Self::ZERO)
}
}
// Resources:
// 1. Intel Intrinsics Guide for explanation of each intrinsic:
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/
// 2. uops.info lists micro-ops for each instruction: https://uops.info/table.html
// 3. Intel optimization manual for introduction to x86 vector extensions and best practices:
// https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
// Preliminary knowledge:
// 1. Vector code usually avoids branching. Instead of branches, we can do input selection with
// _mm256_blendv_epi8 or similar instruction. If all we're doing is conditionally zeroing a
// vector element then _mm256_and_si256 or _mm256_andnot_si256 may be used and are cheaper.
//
// 2. AVX does not support addition with carry but 128-bit (2-word) addition can be easily
// emulated. The method recognizes that for a + b overflowed iff (a + b) < a:
// i. res_lo = a_lo + b_lo
// ii. carry_mask = res_lo < a_lo
// iii. res_hi = a_hi + b_hi - carry_mask
// Notice that carry_mask is subtracted, not added. This is because AVX comparison instructions
// return -1 (all bits 1) for true and 0 for false.
//
// 3. AVX does not have unsigned 64-bit comparisons. Those can be emulated with signed comparisons
// by recognizing that a <u b iff a + (1 << 63) <s b + (1 << 63), where the addition wraps around
// and the comparisons are unsigned and signed respectively. The shift function adds/subtracts
// 1 << 63 to enable this trick.
// Example: addition with carry.
// i. a_lo_s = shift(a_lo)
// ii. res_lo_s = a_lo_s + b_lo
// iii. carry_mask = res_lo_s <s a_lo_s
// iv. res_lo = shift(res_lo_s)
// v. res_hi = a_hi + b_hi - carry_mask
// The suffix _s denotes a value that has been shifted by 1 << 63. The result of addition is
// shifted if exactly one of the operands is shifted, as is the case on line ii. Line iii.
// performs a signed comparison res_lo_s <s a_lo_s on shifted values to emulate unsigned
// comparison res_lo <u a_lo on unshifted values. Finally, line iv. reverses the shift so the
// result can be returned.
// When performing a chain of calculations, we can often save instructions by letting the shift
// propagate through and only undoing it when necessary. For example, to compute the addition of
// three two-word (128-bit) numbers we can do:
// i. a_lo_s = shift(a_lo)
// ii. tmp_lo_s = a_lo_s + b_lo
// iii. tmp_carry_mask = tmp_lo_s <s a_lo_s
// iv. tmp_hi = a_hi + b_hi - tmp_carry_mask
// v. res_lo_s = tmp_lo_s + c_lo
// vi. res_carry_mask = res_lo_s <s tmp_lo_s
// vii. res_lo = shift(res_lo_s)
// viii. res_hi = tmp_hi + c_hi - res_carry_mask
// Notice that the above 3-value addition still only requires two calls to shift, just like our
// 2-value addition.
const SIGN_BIT: __m256i = unsafe { transmute([i64::MIN; 4]) };
const SHIFTED_FIELD_ORDER: __m256i =
unsafe { transmute([GoldilocksField::ORDER ^ (i64::MIN as u64); 4]) };
const EPSILON: __m256i = unsafe { transmute([GoldilocksField::ORDER.wrapping_neg(); 4]) };
/// Add 2^63 with overflow. Needed to emulate unsigned comparisons (see point 3. in
/// packed_prime_field.rs).
#[inline]
pub unsafe fn shift(x: __m256i) -> __m256i {
_mm256_xor_si256(x, SIGN_BIT)
}
/// Convert to canonical representation.
/// The argument is assumed to be shifted by 1 << 63 (i.e. x_s = x + 1<<63, where x is the field
/// value). The returned value is similarly shifted by 1 << 63 (i.e. we return y_s = y + (1<<63),
/// where 0 <= y < FIELD_ORDER).
#[inline]
unsafe fn canonicalize_s(x_s: __m256i) -> __m256i {
// If x >= FIELD_ORDER then corresponding mask bits are all 0; otherwise all 1.
let mask = _mm256_cmpgt_epi64(SHIFTED_FIELD_ORDER, x_s);
// wrapback_amt is -FIELD_ORDER if mask is 0; otherwise 0.
let wrapback_amt = _mm256_andnot_si256(mask, EPSILON);
_mm256_add_epi64(x_s, wrapback_amt)
}
/// Addition u64 + u64 -> u64. Assumes that x + y < 2^64 + FIELD_ORDER. The second argument is
/// pre-shifted by 1 << 63. The result is similarly shifted.
#[inline]
unsafe fn add_no_double_overflow_64_64s_s(x: __m256i, y_s: __m256i) -> __m256i {
let res_wrapped_s = _mm256_add_epi64(x, y_s);
let mask = _mm256_cmpgt_epi64(y_s, res_wrapped_s); // -1 if overflowed else 0.
let wrapback_amt = _mm256_srli_epi64::<32>(mask); // -FIELD_ORDER if overflowed else 0.
let res_s = _mm256_add_epi64(res_wrapped_s, wrapback_amt);
res_s
}
#[inline]
unsafe fn add(x: __m256i, y: __m256i) -> __m256i {
let y_s = shift(y);
let res_s = add_no_double_overflow_64_64s_s(x, canonicalize_s(y_s));
shift(res_s)
}
#[inline]
unsafe fn sub(x: __m256i, y: __m256i) -> __m256i {
let mut y_s = shift(y);
y_s = canonicalize_s(y_s);
let x_s = shift(x);
let mask = _mm256_cmpgt_epi64(y_s, x_s); // -1 if sub will underflow (y > x) else 0.
let wrapback_amt = _mm256_srli_epi64::<32>(mask); // -FIELD_ORDER if underflow else 0.
let res_wrapped = _mm256_sub_epi64(x_s, y_s);
let res = _mm256_sub_epi64(res_wrapped, wrapback_amt);
res
}
#[inline]
unsafe fn neg(y: __m256i) -> __m256i {
let y_s = shift(y);
_mm256_sub_epi64(SHIFTED_FIELD_ORDER, canonicalize_s(y_s))
}
/// Full 64-bit by 64-bit multiplication. This emulated multiplication is 1.33x slower than the
/// scalar instruction, but may be worth it if we want our data to live in vector registers.
#[inline]
unsafe fn mul64_64(x: __m256i, y: __m256i) -> (__m256i, __m256i) {
// We want to move the high 32 bits to the low position. The multiplication instruction ignores
// the high 32 bits, so it's ok to just duplicate it into the low position. This duplication can
// be done on port 5; bitshifts run on ports 0 and 1, competing with multiplication.
// This instruction is only provided for 32-bit floats, not integers. Idk why Intel makes the
// distinction; the casts are free and it guarantees that the exact bit pattern is preserved.
// Using a swizzle instruction of the wrong domain (float vs int) does not increase latency
// since Haswell.
let x_hi = _mm256_castps_si256(_mm256_movehdup_ps(_mm256_castsi256_ps(x)));
let y_hi = _mm256_castps_si256(_mm256_movehdup_ps(_mm256_castsi256_ps(y)));
// All four pairwise multiplications
let mul_ll = _mm256_mul_epu32(x, y);
let mul_lh = _mm256_mul_epu32(x, y_hi);
let mul_hl = _mm256_mul_epu32(x_hi, y);
let mul_hh = _mm256_mul_epu32(x_hi, y_hi);
// Bignum addition
// Extract high 32 bits of mul_ll and add to mul_hl. This cannot overflow.
let mul_ll_hi = _mm256_srli_epi64::<32>(mul_ll);
let t0 = _mm256_add_epi64(mul_hl, mul_ll_hi);
// Extract low 32 bits of t0 and add to mul_lh. Again, this cannot overflow.
// Also, extract high 32 bits of t0 and add to mul_hh.
let t0_lo = _mm256_and_si256(t0, EPSILON);
let t0_hi = _mm256_srli_epi64::<32>(t0);
let t1 = _mm256_add_epi64(mul_lh, t0_lo);
let t2 = _mm256_add_epi64(mul_hh, t0_hi);
// Lastly, extract the high 32 bits of t1 and add to t2.
let t1_hi = _mm256_srli_epi64::<32>(t1);
let res_hi = _mm256_add_epi64(t2, t1_hi);
// Form res_lo by combining the low half of mul_ll with the low half of t1 (shifted into high
// position).
let t1_lo = _mm256_castps_si256(_mm256_moveldup_ps(_mm256_castsi256_ps(t1)));
let res_lo = _mm256_blend_epi32::<0xaa>(mul_ll, t1_lo);
(res_hi, res_lo)
}
/// Full 64-bit squaring. This routine is 1.2x faster than the scalar instruction.
#[inline]
unsafe fn square64(x: __m256i) -> (__m256i, __m256i) {
// Get high 32 bits of x. See comment in mul64_64_s.
let x_hi = _mm256_castps_si256(_mm256_movehdup_ps(_mm256_castsi256_ps(x)));
// All pairwise multiplications.
let mul_ll = _mm256_mul_epu32(x, x);
let mul_lh = _mm256_mul_epu32(x, x_hi);
let mul_hh = _mm256_mul_epu32(x_hi, x_hi);
// Bignum addition, but mul_lh is shifted by 33 bits (not 32).
let mul_ll_hi = _mm256_srli_epi64::<33>(mul_ll);
let t0 = _mm256_add_epi64(mul_lh, mul_ll_hi);
let t0_hi = _mm256_srli_epi64::<31>(t0);
let res_hi = _mm256_add_epi64(mul_hh, t0_hi);
// Form low result by adding the mul_ll and the low 31 bits of mul_lh (shifted to the high
// position).
let mul_lh_lo = _mm256_slli_epi64::<33>(mul_lh);
let res_lo = _mm256_add_epi64(mul_ll, mul_lh_lo);
(res_hi, res_lo)
}
/// Goldilocks addition of a "small" number. `x_s` is pre-shifted by 2**63. `y` is assumed to be <=
/// `0xffffffff00000000`. The result is shifted by 2**63.
#[inline]
unsafe fn add_small_64s_64_s(x_s: __m256i, y: __m256i) -> __m256i {
let res_wrapped_s = _mm256_add_epi64(x_s, y);
// 32-bit compare is faster than 64-bit. It's safe as long as x > res_wrapped iff x >> 32 >
// res_wrapped >> 32. The case of x >> 32 > res_wrapped >> 32 is trivial and so is <. The case
// where x >> 32 = res_wrapped >> 32 remains. If x >> 32 = res_wrapped >> 32, then y >> 32 =
// 0xffffffff and the addition of the low 32 bits generated a carry. This can never occur if y
// <= 0xffffffff00000000: if y >> 32 = 0xffffffff, then no carry can occur.
let mask = _mm256_cmpgt_epi32(x_s, res_wrapped_s); // -1 if overflowed else 0.
// The mask contains 0xffffffff in the high 32 bits if wraparound occured and 0 otherwise.
let wrapback_amt = _mm256_srli_epi64::<32>(mask); // -FIELD_ORDER if overflowed else 0.
let res_s = _mm256_add_epi64(res_wrapped_s, wrapback_amt);
res_s
}
/// Goldilocks subtraction of a "small" number. `x_s` is pre-shifted by 2**63. `y` is assumed to be
/// <= `0xffffffff00000000`. The result is shifted by 2**63.
#[inline]
unsafe fn sub_small_64s_64_s(x_s: __m256i, y: __m256i) -> __m256i {
let res_wrapped_s = _mm256_sub_epi64(x_s, y);
// 32-bit compare is faster than 64-bit. It's safe as long as res_wrapped > x iff res_wrapped >>
// 32 > x >> 32. The case of res_wrapped >> 32 > x >> 32 is trivial and so is <. The case where
// res_wrapped >> 32 = x >> 32 remains. If res_wrapped >> 32 = x >> 32, then y >> 32 =
// 0xffffffff and the subtraction of the low 32 bits generated a borrow. This can never occur if
// y <= 0xffffffff00000000: if y >> 32 = 0xffffffff, then no borrow can occur.
let mask = _mm256_cmpgt_epi32(res_wrapped_s, x_s); // -1 if underflowed else 0.
// The mask contains 0xffffffff in the high 32 bits if wraparound occured and 0 otherwise.
let wrapback_amt = _mm256_srli_epi64::<32>(mask); // -FIELD_ORDER if underflowed else 0.
let res_s = _mm256_sub_epi64(res_wrapped_s, wrapback_amt);
res_s
}
#[inline]
unsafe fn reduce128(x: (__m256i, __m256i)) -> __m256i {
let (hi0, lo0) = x;
let lo0_s = shift(lo0);
let hi_hi0 = _mm256_srli_epi64::<32>(hi0);
let lo1_s = sub_small_64s_64_s(lo0_s, hi_hi0);
let t1 = _mm256_mul_epu32(hi0, EPSILON);
let lo2_s = add_small_64s_64_s(lo1_s, t1);
let lo2 = shift(lo2_s);
lo2
}
/// Multiply two integers modulo FIELD_ORDER.
#[inline]
unsafe fn mul(x: __m256i, y: __m256i) -> __m256i {
reduce128(mul64_64(x, y))
}
/// Square an integer modulo FIELD_ORDER.
#[inline]
unsafe fn square(x: __m256i) -> __m256i {
reduce128(square64(x))
}
#[inline]
unsafe fn interleave1(x: __m256i, y: __m256i) -> (__m256i, __m256i) {
let a = _mm256_unpacklo_epi64(x, y);
let b = _mm256_unpackhi_epi64(x, y);
(a, b)
}
#[inline]
unsafe fn interleave2(x: __m256i, y: __m256i) -> (__m256i, __m256i) {
let y_lo = _mm256_castsi256_si128(y); // This has 0 cost.
// 1 places y_lo in the high half of x; 0 would place it in the lower half.
let a = _mm256_inserti128_si256::<1>(x, y_lo);
// NB: _mm256_permute2x128_si256 could be used here as well but _mm256_inserti128_si256 has
// lower latency on Zen 3 processors.
// Each nibble of the constant has the following semantics:
// 0 => src1[low 128 bits]
// 1 => src1[high 128 bits]
// 2 => src2[low 128 bits]
// 3 => src2[high 128 bits]
// The low (resp. high) nibble chooses the low (resp. high) 128 bits of the result.
let b = _mm256_permute2x128_si256::<0x31>(x, y);
(a, b)
}
#[cfg(test)]
mod tests {
use crate::field::arch::x86_64::avx2_goldilocks_field::Avx2GoldilocksField;
use crate::field::field_types::PrimeField;
use crate::field::goldilocks_field::GoldilocksField;
use crate::field::packed_field::PackedField;
fn test_vals_a() -> [GoldilocksField; 4] {
[
GoldilocksField::from_noncanonical_u64(14479013849828404771),
GoldilocksField::from_noncanonical_u64(9087029921428221768),
GoldilocksField::from_noncanonical_u64(2441288194761790662),
GoldilocksField::from_noncanonical_u64(5646033492608483824),
]
}
fn test_vals_b() -> [GoldilocksField; 4] {
[
GoldilocksField::from_noncanonical_u64(17891926589593242302),
GoldilocksField::from_noncanonical_u64(11009798273260028228),
GoldilocksField::from_noncanonical_u64(2028722748960791447),
GoldilocksField::from_noncanonical_u64(7929433601095175579),
]
}
#[test]
fn test_add() {
let a_arr = test_vals_a();
let b_arr = test_vals_b();
let packed_a = Avx2GoldilocksField::from_arr(a_arr);
let packed_b = Avx2GoldilocksField::from_arr(b_arr);
let packed_res = packed_a + packed_b;
let arr_res = packed_res.as_arr();
let expected = a_arr.iter().zip(b_arr).map(|(&a, b)| a + b);
for (exp, res) in expected.zip(arr_res) {
assert_eq!(res, exp);
}
}
#[test]
fn test_mul() {
let a_arr = test_vals_a();
let b_arr = test_vals_b();
let packed_a = Avx2GoldilocksField::from_arr(a_arr);
let packed_b = Avx2GoldilocksField::from_arr(b_arr);
let packed_res = packed_a * packed_b;
let arr_res = packed_res.as_arr();
let expected = a_arr.iter().zip(b_arr).map(|(&a, b)| a * b);
for (exp, res) in expected.zip(arr_res) {
assert_eq!(res, exp);
}
}
#[test]
fn test_square() {
let a_arr = test_vals_a();
let packed_a = Avx2GoldilocksField::from_arr(a_arr);
let packed_res = packed_a.square();
let arr_res = packed_res.as_arr();
let expected = a_arr.iter().map(|&a| a.square());
for (exp, res) in expected.zip(arr_res) {
assert_eq!(res, exp);
}
}
#[test]
fn test_neg() {
let a_arr = test_vals_a();
let packed_a = Avx2GoldilocksField::from_arr(a_arr);
let packed_res = -packed_a;
let arr_res = packed_res.as_arr();
let expected = a_arr.iter().map(|&a| -a);
for (exp, res) in expected.zip(arr_res) {
assert_eq!(res, exp);
}
}
#[test]
fn test_sub() {
let a_arr = test_vals_a();
let b_arr = test_vals_b();
let packed_a = Avx2GoldilocksField::from_arr(a_arr);
let packed_b = Avx2GoldilocksField::from_arr(b_arr);
let packed_res = packed_a - packed_b;
let arr_res = packed_res.as_arr();
let expected = a_arr.iter().zip(b_arr).map(|(&a, b)| a - b);
for (exp, res) in expected.zip(arr_res) {
assert_eq!(res, exp);
}
}
#[test]
fn test_interleave_is_involution() {
let a_arr = test_vals_a();
let b_arr = test_vals_b();
let packed_a = Avx2GoldilocksField::from_arr(a_arr);
let packed_b = Avx2GoldilocksField::from_arr(b_arr);
{
// Interleave, then deinterleave.
let (x, y) = packed_a.interleave(packed_b, 1);
let (res_a, res_b) = x.interleave(y, 1);
assert_eq!(res_a.as_arr(), a_arr);
assert_eq!(res_b.as_arr(), b_arr);
}
{
let (x, y) = packed_a.interleave(packed_b, 2);
let (res_a, res_b) = x.interleave(y, 2);
assert_eq!(res_a.as_arr(), a_arr);
assert_eq!(res_b.as_arr(), b_arr);
}
{
let (x, y) = packed_a.interleave(packed_b, 4);
let (res_a, res_b) = x.interleave(y, 4);
assert_eq!(res_a.as_arr(), a_arr);
assert_eq!(res_b.as_arr(), b_arr);
}
}
#[test]
fn test_interleave() {
let in_a: [GoldilocksField; 4] = [
GoldilocksField::from_noncanonical_u64(00),
GoldilocksField::from_noncanonical_u64(01),
GoldilocksField::from_noncanonical_u64(02),
GoldilocksField::from_noncanonical_u64(03),
];
let in_b: [GoldilocksField; 4] = [
GoldilocksField::from_noncanonical_u64(10),
GoldilocksField::from_noncanonical_u64(11),
GoldilocksField::from_noncanonical_u64(12),
GoldilocksField::from_noncanonical_u64(13),
];
let int1_a: [GoldilocksField; 4] = [
GoldilocksField::from_noncanonical_u64(00),
GoldilocksField::from_noncanonical_u64(10),
GoldilocksField::from_noncanonical_u64(02),
GoldilocksField::from_noncanonical_u64(12),
];
let int1_b: [GoldilocksField; 4] = [
GoldilocksField::from_noncanonical_u64(01),
GoldilocksField::from_noncanonical_u64(11),
GoldilocksField::from_noncanonical_u64(03),
GoldilocksField::from_noncanonical_u64(13),
];
let int2_a: [GoldilocksField; 4] = [
GoldilocksField::from_noncanonical_u64(00),
GoldilocksField::from_noncanonical_u64(01),
GoldilocksField::from_noncanonical_u64(10),
GoldilocksField::from_noncanonical_u64(11),
];
let int2_b: [GoldilocksField; 4] = [
GoldilocksField::from_noncanonical_u64(02),
GoldilocksField::from_noncanonical_u64(03),
GoldilocksField::from_noncanonical_u64(12),
GoldilocksField::from_noncanonical_u64(13),
];
let packed_a = Avx2GoldilocksField::from_arr(in_a);
let packed_b = Avx2GoldilocksField::from_arr(in_b);
{
let (x1, y1) = packed_a.interleave(packed_b, 1);
assert_eq!(x1.as_arr(), int1_a);
assert_eq!(y1.as_arr(), int1_b);
}
{
let (x2, y2) = packed_a.interleave(packed_b, 2);
assert_eq!(x2.as_arr(), int2_a);
assert_eq!(y2.as_arr(), int2_b);
}
{
let (x4, y4) = packed_a.interleave(packed_b, 4);
assert_eq!(x4.as_arr(), in_a);
assert_eq!(y4.as_arr(), in_b);
}
}
}

View File

@ -0,0 +1,2 @@
#[cfg(target_feature = "avx2")]
pub mod avx2_goldilocks_field;

View File

@ -1,3 +1,4 @@
pub(crate) mod arch;
pub(crate) mod batch_util;
pub(crate) mod cosets;
pub mod extension_field;
@ -11,9 +12,6 @@ pub(crate) mod packed_field;
pub mod secp256k1_base;
pub mod secp256k1_scalar;
#[cfg(target_feature = "avx2")]
pub(crate) mod packed_avx2;
#[cfg(test)]
mod field_testing;
#[cfg(test)]

View File

@ -14,5 +14,5 @@ impl<F: Field> Packable for F {
#[cfg(target_feature = "avx2")]
impl Packable for crate::field::goldilocks_field::GoldilocksField {
type Packing = crate::field::packed_avx2::PackedGoldilocksAvx2;
type Packing = crate::field::arch::x86_64::avx2_goldilocks_field::Avx2GoldilocksField;
}

View File

@ -1,452 +0,0 @@
use core::arch::x86_64::*;
use std::fmt;
use std::fmt::{Debug, Formatter};
use std::iter::{Product, Sum};
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use crate::field::field_types::PrimeField;
use crate::field::packed_avx2::common::{
add_no_canonicalize_64_64s_s, epsilon, field_order, shift, ReducibleAvx2,
};
use crate::field::packed_field::PackedField;
// Avx2PrimeField wraps an array of four u64s, with the new and get methods to convert that
// array to and from __m256i, which is the type we actually operate on. This indirection is a
// terrible trick to change Avx2PrimeField's alignment.
// We'd like to be able to cast slices of PrimeField to slices of Avx2PrimeField. Rust
// aligns __m256i to 32 bytes but PrimeField has a lower alignment. That alignment extends to
// Avx2PrimeField and it appears that it cannot be lowered with #[repr(C, blah)]. It is
// important for Rust not to assume 32-byte alignment, so we cannot wrap __m256i directly.
// There are two versions of vectorized load/store instructions on x86: aligned (vmovaps and
// friends) and unaligned (vmovups etc.). The difference between them is that aligned loads and
// stores are permitted to segfault on unaligned accesses. Historically, the aligned instructions
// were faster, and although this is no longer the case, compilers prefer the aligned versions if
// they know that the address is aligned. Using aligned instructions on unaligned addresses leads to
// bugs that can be frustrating to diagnose. Hence, we can't have Rust assuming alignment, and
// therefore Avx2PrimeField wraps [F; 4] and not __m256i.
#[derive(Copy, Clone)]
#[repr(transparent)]
pub struct Avx2PrimeField<F: ReducibleAvx2>(pub [F; 4]);
impl<F: ReducibleAvx2> Avx2PrimeField<F> {
#[inline]
fn new(x: __m256i) -> Self {
let mut obj = Self([F::ZERO; 4]);
let ptr = (&mut obj.0).as_mut_ptr().cast::<__m256i>();
unsafe {
_mm256_storeu_si256(ptr, x);
}
obj
}
#[inline]
fn get(&self) -> __m256i {
let ptr = (&self.0).as_ptr().cast::<__m256i>();
unsafe { _mm256_loadu_si256(ptr) }
}
}
impl<F: ReducibleAvx2> Add<Self> for Avx2PrimeField<F> {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
Self::new(unsafe { add::<F>(self.get(), rhs.get()) })
}
}
impl<F: ReducibleAvx2> Add<F> for Avx2PrimeField<F> {
type Output = Self;
#[inline]
fn add(self, rhs: F) -> Self {
self + Self::from(rhs)
}
}
impl<F: ReducibleAvx2> Add<Avx2PrimeField<F>> for <Avx2PrimeField<F> as PackedField>::Scalar {
type Output = Avx2PrimeField<F>;
#[inline]
fn add(self, rhs: Self::Output) -> Self::Output {
Self::Output::from(self) + rhs
}
}
impl<F: ReducibleAvx2> AddAssign<Self> for Avx2PrimeField<F> {
#[inline]
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<F: ReducibleAvx2> AddAssign<F> for Avx2PrimeField<F> {
#[inline]
fn add_assign(&mut self, rhs: F) {
*self = *self + rhs;
}
}
impl<F: ReducibleAvx2> Debug for Avx2PrimeField<F> {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "({:?})", self.get())
}
}
impl<F: ReducibleAvx2> Default for Avx2PrimeField<F> {
#[inline]
fn default() -> Self {
Self::ZERO
}
}
impl<F: ReducibleAvx2> Div<F> for Avx2PrimeField<F> {
type Output = Self;
#[inline]
fn div(self, rhs: F) -> Self {
self * rhs.inverse()
}
}
impl<F: ReducibleAvx2> DivAssign<F> for Avx2PrimeField<F> {
#[inline]
fn div_assign(&mut self, rhs: F) {
*self *= rhs.inverse();
}
}
impl<F: ReducibleAvx2> From<F> for Avx2PrimeField<F> {
fn from(x: F) -> Self {
Self([x; 4])
}
}
impl<F: ReducibleAvx2> Mul<Self> for Avx2PrimeField<F> {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self::new(unsafe { mul::<F>(self.get(), rhs.get()) })
}
}
impl<F: ReducibleAvx2> Mul<F> for Avx2PrimeField<F> {
type Output = Self;
#[inline]
fn mul(self, rhs: F) -> Self {
self * Self::from(rhs)
}
}
impl<F: ReducibleAvx2> Mul<Avx2PrimeField<F>> for <Avx2PrimeField<F> as PackedField>::Scalar {
type Output = Avx2PrimeField<F>;
#[inline]
fn mul(self, rhs: Avx2PrimeField<F>) -> Self::Output {
Self::Output::from(self) * rhs
}
}
impl<F: ReducibleAvx2> MulAssign<Self> for Avx2PrimeField<F> {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<F: ReducibleAvx2> MulAssign<F> for Avx2PrimeField<F> {
#[inline]
fn mul_assign(&mut self, rhs: F) {
*self = *self * rhs;
}
}
impl<F: ReducibleAvx2> Neg for Avx2PrimeField<F> {
type Output = Self;
#[inline]
fn neg(self) -> Self {
Self::new(unsafe { neg::<F>(self.get()) })
}
}
impl<F: ReducibleAvx2> Product for Avx2PrimeField<F> {
#[inline]
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.reduce(|x, y| x * y).unwrap_or(Self::ONE)
}
}
unsafe impl<F: ReducibleAvx2> PackedField for Avx2PrimeField<F> {
const WIDTH: usize = 4;
type Scalar = F;
const ZERO: Self = Self([F::ZERO; 4]);
const ONE: Self = Self([F::ONE; 4]);
#[inline]
fn from_arr(arr: [Self::Scalar; Self::WIDTH]) -> Self {
Self(arr)
}
#[inline]
fn as_arr(&self) -> [Self::Scalar; Self::WIDTH] {
self.0
}
#[inline]
fn from_slice(slice: &[Self::Scalar]) -> &Self {
assert_eq!(slice.len(), Self::WIDTH);
unsafe { &*slice.as_ptr().cast() }
}
#[inline]
fn from_slice_mut(slice: &mut [Self::Scalar]) -> &mut Self {
assert_eq!(slice.len(), Self::WIDTH);
unsafe { &mut *slice.as_mut_ptr().cast() }
}
#[inline]
fn as_slice(&self) -> &[Self::Scalar] {
&self.0[..]
}
#[inline]
fn as_slice_mut(&mut self) -> &mut [Self::Scalar] {
&mut self.0[..]
}
#[inline]
fn interleave(&self, other: Self, block_len: usize) -> (Self, Self) {
let (v0, v1) = (self.get(), other.get());
let (res0, res1) = match block_len {
1 => unsafe { interleave1(v0, v1) },
2 => unsafe { interleave2(v0, v1) },
4 => (v0, v1),
_ => panic!("unsupported block_len"),
};
(Self::new(res0), Self::new(res1))
}
#[inline]
fn square(&self) -> Self {
Self::new(unsafe { square::<F>(self.get()) })
}
}
impl<F: ReducibleAvx2> Sub<Self> for Avx2PrimeField<F> {
type Output = Self;
#[inline]
fn sub(self, rhs: Self) -> Self {
Self::new(unsafe { sub::<F>(self.get(), rhs.get()) })
}
}
impl<F: ReducibleAvx2> Sub<F> for Avx2PrimeField<F> {
type Output = Self;
#[inline]
fn sub(self, rhs: F) -> Self {
self - Self::from(rhs)
}
}
impl<F: ReducibleAvx2> Sub<Avx2PrimeField<F>> for <Avx2PrimeField<F> as PackedField>::Scalar {
type Output = Avx2PrimeField<F>;
#[inline]
fn sub(self, rhs: Avx2PrimeField<F>) -> Self::Output {
Self::Output::from(self) - rhs
}
}
impl<F: ReducibleAvx2> SubAssign<Self> for Avx2PrimeField<F> {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<F: ReducibleAvx2> SubAssign<F> for Avx2PrimeField<F> {
#[inline]
fn sub_assign(&mut self, rhs: F) {
*self = *self - rhs;
}
}
impl<F: ReducibleAvx2> Sum for Avx2PrimeField<F> {
#[inline]
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.reduce(|x, y| x + y).unwrap_or(Self::ZERO)
}
}
// Resources:
// 1. Intel Intrinsics Guide for explanation of each intrinsic:
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/
// 2. uops.info lists micro-ops for each instruction: https://uops.info/table.html
// 3. Intel optimization manual for introduction to x86 vector extensions and best practices:
// https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-optimization-reference-manual.html
// Preliminary knowledge:
// 1. Vector code usually avoids branching. Instead of branches, we can do input selection with
// _mm256_blendv_epi8 or similar instruction. If all we're doing is conditionally zeroing a
// vector element then _mm256_and_si256 or _mm256_andnot_si256 may be used and are cheaper.
//
// 2. AVX does not support addition with carry but 128-bit (2-word) addition can be easily
// emulated. The method recognizes that for a + b overflowed iff (a + b) < a:
// i. res_lo = a_lo + b_lo
// ii. carry_mask = res_lo < a_lo
// iii. res_hi = a_hi + b_hi - carry_mask
// Notice that carry_mask is subtracted, not added. This is because AVX comparison instructions
// return -1 (all bits 1) for true and 0 for false.
//
// 3. AVX does not have unsigned 64-bit comparisons. Those can be emulated with signed comparisons
// by recognizing that a <u b iff a + (1 << 63) <s b + (1 << 63), where the addition wraps around
// and the comparisons are unsigned and signed respectively. The shift function adds/subtracts
// 1 << 63 to enable this trick.
// Example: addition with carry.
// i. a_lo_s = shift(a_lo)
// ii. res_lo_s = a_lo_s + b_lo
// iii. carry_mask = res_lo_s <s a_lo_s
// iv. res_lo = shift(res_lo_s)
// v. res_hi = a_hi + b_hi - carry_mask
// The suffix _s denotes a value that has been shifted by 1 << 63. The result of addition is
// shifted if exactly one of the operands is shifted, as is the case on line ii. Line iii.
// performs a signed comparison res_lo_s <s a_lo_s on shifted values to emulate unsigned
// comparison res_lo <u a_lo on unshifted values. Finally, line iv. reverses the shift so the
// result can be returned.
// When performing a chain of calculations, we can often save instructions by letting the shift
// propagate through and only undoing it when necessary. For example, to compute the addition of
// three two-word (128-bit) numbers we can do:
// i. a_lo_s = shift(a_lo)
// ii. tmp_lo_s = a_lo_s + b_lo
// iii. tmp_carry_mask = tmp_lo_s <s a_lo_s
// iv. tmp_hi = a_hi + b_hi - tmp_carry_mask
// v. res_lo_s = tmp_lo_s + c_lo
// vi. res_carry_mask = res_lo_s <s tmp_lo_s
// vii. res_lo = shift(res_lo_s)
// viii. res_hi = tmp_hi + c_hi - res_carry_mask
// Notice that the above 3-value addition still only requires two calls to shift, just like our
// 2-value addition.
/// Convert to canonical representation.
/// The argument is assumed to be shifted by 1 << 63 (i.e. x_s = x + 1<<63, where x is the field
/// value). The returned value is similarly shifted by 1 << 63 (i.e. we return y_s = y + (1<<63),
/// where 0 <= y < FIELD_ORDER).
#[inline]
unsafe fn canonicalize_s<F: PrimeField>(x_s: __m256i) -> __m256i {
// If x >= FIELD_ORDER then corresponding mask bits are all 0; otherwise all 1.
let mask = _mm256_cmpgt_epi64(shift(field_order::<F>()), x_s);
// wrapback_amt is -FIELD_ORDER if mask is 0; otherwise 0.
let wrapback_amt = _mm256_andnot_si256(mask, epsilon::<F>());
_mm256_add_epi64(x_s, wrapback_amt)
}
#[inline]
unsafe fn add<F: PrimeField>(x: __m256i, y: __m256i) -> __m256i {
let y_s = shift(y);
let res_s = add_no_canonicalize_64_64s_s::<F>(x, canonicalize_s::<F>(y_s));
shift(res_s)
}
#[inline]
unsafe fn sub<F: PrimeField>(x: __m256i, y: __m256i) -> __m256i {
let mut y_s = shift(y);
y_s = canonicalize_s::<F>(y_s);
let x_s = shift(x);
let mask = _mm256_cmpgt_epi64(y_s, x_s); // -1 if sub will underflow (y > x) else 0.
let wrapback_amt = _mm256_and_si256(mask, epsilon::<F>()); // -FIELD_ORDER if underflow else 0.
let res_wrapped = _mm256_sub_epi64(x_s, y_s);
let res = _mm256_sub_epi64(res_wrapped, wrapback_amt);
res
}
#[inline]
unsafe fn neg<F: PrimeField>(y: __m256i) -> __m256i {
let y_s = shift(y);
_mm256_sub_epi64(shift(field_order::<F>()), canonicalize_s::<F>(y_s))
}
/// Full 64-bit by 64-bit multiplication. This emulated multiplication is 1.33x slower than the
/// scalar instruction, but may be worth it if we want our data to live in vector registers.
#[inline]
unsafe fn mul64_64(x: __m256i, y: __m256i) -> (__m256i, __m256i) {
// We want to move the high 32 bits to the low position. The multiplication instruction ignores
// the high 32 bits, so it's ok to just duplicate it into the low position. This duplication can
// be done on port 5; bitshifts run on ports 0 and 1, competing with multiplication.
// This instruction is only provided for 32-bit floats, not integers. Idk why Intel makes the
// distinction; the casts are free and it guarantees that the exact bit pattern is preserved.
// Using a swizzle instruction of the wrong domain (float vs int) does not increase latency
// since Haswell.
let x_hi = _mm256_castps_si256(_mm256_movehdup_ps(_mm256_castsi256_ps(x)));
let y_hi = _mm256_castps_si256(_mm256_movehdup_ps(_mm256_castsi256_ps(y)));
// All four pairwise multiplications
let mul_ll = _mm256_mul_epu32(x, y);
let mul_lh = _mm256_mul_epu32(x, y_hi);
let mul_hl = _mm256_mul_epu32(x_hi, y);
let mul_hh = _mm256_mul_epu32(x_hi, y_hi);
// Bignum addition
// Extract high 32 bits of mul_ll and add to mul_hl. This cannot overflow.
let mul_ll_hi = _mm256_srli_epi64::<32>(mul_ll);
let t0 = _mm256_add_epi64(mul_hl, mul_ll_hi);
// Extract low 32 bits of t0 and add to mul_lh. Again, this cannot overflow.
// Also, extract high 32 bits of t0 and add to mul_hh.
let t0_lo = _mm256_and_si256(t0, _mm256_set1_epi64x(u32::MAX.into()));
let t0_hi = _mm256_srli_epi64::<32>(t0);
let t1 = _mm256_add_epi64(mul_lh, t0_lo);
let t2 = _mm256_add_epi64(mul_hh, t0_hi);
// Lastly, extract the high 32 bits of t1 and add to t2.
let t1_hi = _mm256_srli_epi64::<32>(t1);
let res_hi = _mm256_add_epi64(t2, t1_hi);
// Form res_lo by combining the low half of mul_ll with the low half of t1 (shifted into high
// position).
let t1_lo = _mm256_castps_si256(_mm256_moveldup_ps(_mm256_castsi256_ps(t1)));
let res_lo = _mm256_blend_epi32::<0xaa>(mul_ll, t1_lo);
(res_hi, res_lo)
}
/// Full 64-bit squaring. This routine is 1.2x faster than the scalar instruction.
#[inline]
unsafe fn square64(x: __m256i) -> (__m256i, __m256i) {
// Get high 32 bits of x. See comment in mul64_64_s.
let x_hi = _mm256_castps_si256(_mm256_movehdup_ps(_mm256_castsi256_ps(x)));
// All pairwise multiplications.
let mul_ll = _mm256_mul_epu32(x, x);
let mul_lh = _mm256_mul_epu32(x, x_hi);
let mul_hh = _mm256_mul_epu32(x_hi, x_hi);
// Bignum addition, but mul_lh is shifted by 33 bits (not 32).
let mul_ll_hi = _mm256_srli_epi64::<33>(mul_ll);
let t0 = _mm256_add_epi64(mul_lh, mul_ll_hi);
let t0_hi = _mm256_srli_epi64::<31>(t0);
let res_hi = _mm256_add_epi64(mul_hh, t0_hi);
// Form low result by adding the mul_ll and the low 31 bits of mul_lh (shifted to the high
// position).
let mul_lh_lo = _mm256_slli_epi64::<33>(mul_lh);
let res_lo = _mm256_add_epi64(mul_ll, mul_lh_lo);
(res_hi, res_lo)
}
/// Multiply two integers modulo FIELD_ORDER.
#[inline]
unsafe fn mul<F: ReducibleAvx2>(x: __m256i, y: __m256i) -> __m256i {
F::reduce128(mul64_64(x, y))
}
/// Square an integer modulo FIELD_ORDER.
#[inline]
unsafe fn square<F: ReducibleAvx2>(x: __m256i) -> __m256i {
F::reduce128(square64(x))
}
#[inline]
unsafe fn interleave1(x: __m256i, y: __m256i) -> (__m256i, __m256i) {
let a = _mm256_unpacklo_epi64(x, y);
let b = _mm256_unpackhi_epi64(x, y);
(a, b)
}
#[inline]
unsafe fn interleave2(x: __m256i, y: __m256i) -> (__m256i, __m256i) {
let y_lo = _mm256_castsi256_si128(y); // This has 0 cost.
// 1 places y_lo in the high half of x; 0 would place it in the lower half.
let a = _mm256_inserti128_si256::<1>(x, y_lo);
// NB: _mm256_permute2x128_si256 could be used here as well but _mm256_inserti128_si256 has
// lower latency on Zen 3 processors.
// Each nibble of the constant has the following semantics:
// 0 => src1[low 128 bits]
// 1 => src1[high 128 bits]
// 2 => src2[low 128 bits]
// 3 => src2[high 128 bits]
// The low (resp. high) nibble chooses the low (resp. high) 128 bits of the result.
let b = _mm256_permute2x128_si256::<0x31>(x, y);
(a, b)
}

View File

@ -1,53 +0,0 @@
use core::arch::x86_64::*;
use crate::field::field_types::PrimeField;
pub trait ReducibleAvx2: PrimeField {
unsafe fn reduce128(x: (__m256i, __m256i)) -> __m256i;
}
const SIGN_BIT: u64 = 1 << 63;
#[inline]
unsafe fn sign_bit() -> __m256i {
_mm256_set1_epi64x(SIGN_BIT as i64)
}
/// Add 2^63 with overflow. Needed to emulate unsigned comparisons (see point 3. in
/// packed_prime_field.rs).
#[inline]
pub unsafe fn shift(x: __m256i) -> __m256i {
_mm256_xor_si256(x, sign_bit())
}
#[inline]
pub unsafe fn field_order<F: PrimeField>() -> __m256i {
_mm256_set1_epi64x(F::ORDER as i64)
}
#[inline]
pub unsafe fn epsilon<F: PrimeField>() -> __m256i {
_mm256_set1_epi64x(0u64.wrapping_sub(F::ORDER) as i64)
}
/// Addition u64 + u64 -> u64. Assumes that x + y < 2^64 + FIELD_ORDER. The second argument is
/// pre-shifted by 1 << 63. The result is similarly shifted.
#[inline]
pub unsafe fn add_no_canonicalize_64_64s_s<F: PrimeField>(x: __m256i, y_s: __m256i) -> __m256i {
let res_wrapped_s = _mm256_add_epi64(x, y_s);
let mask = _mm256_cmpgt_epi64(y_s, res_wrapped_s); // -1 if overflowed else 0.
let wrapback_amt = _mm256_and_si256(mask, epsilon::<F>()); // -FIELD_ORDER if overflowed else 0.
let res_s = _mm256_add_epi64(res_wrapped_s, wrapback_amt);
res_s
}
/// Subtraction u64 - u64 -> u64. Assumes that double overflow cannot occur. The first argument is
/// pre-shifted by 1 << 63 and the result is similarly shifted.
#[inline]
pub unsafe fn sub_no_canonicalize_64s_64_s<F: PrimeField>(x_s: __m256i, y: __m256i) -> __m256i {
let res_wrapped_s = _mm256_sub_epi64(x_s, y);
let mask = _mm256_cmpgt_epi64(res_wrapped_s, x_s); // -1 if overflowed else 0.
let wrapback_amt = _mm256_and_si256(mask, epsilon::<F>()); // -FIELD_ORDER if overflowed else 0.
let res_s = _mm256_sub_epi64(res_wrapped_s, wrapback_amt);
res_s
}

View File

@ -1,22 +0,0 @@
use core::arch::x86_64::*;
use crate::field::goldilocks_field::GoldilocksField;
use crate::field::packed_avx2::common::{
add_no_canonicalize_64_64s_s, epsilon, shift, sub_no_canonicalize_64s_64_s, ReducibleAvx2,
};
/// Reduce a u128 modulo FIELD_ORDER. The input is (u64, u64), pre-shifted by 2^63. The result is
/// similarly shifted.
impl ReducibleAvx2 for GoldilocksField {
#[inline]
unsafe fn reduce128(x: (__m256i, __m256i)) -> __m256i {
let (hi0, lo0) = x;
let lo0_s = shift(lo0);
let hi_hi0 = _mm256_srli_epi64(hi0, 32);
let lo1_s = sub_no_canonicalize_64s_64_s::<GoldilocksField>(lo0_s, hi_hi0);
let t1 = _mm256_mul_epu32(hi0, epsilon::<GoldilocksField>());
let lo2_s = add_no_canonicalize_64_64s_s::<GoldilocksField>(t1, lo1_s);
let lo2 = shift(lo2_s);
lo2
}
}

View File

@ -1,239 +0,0 @@
mod avx2_prime_field;
mod common;
mod goldilocks;
use avx2_prime_field::Avx2PrimeField;
use crate::field::goldilocks_field::GoldilocksField;
pub type PackedGoldilocksAvx2 = Avx2PrimeField<GoldilocksField>;
#[cfg(test)]
mod tests {
use crate::field::goldilocks_field::GoldilocksField;
use crate::field::packed_avx2::avx2_prime_field::Avx2PrimeField;
use crate::field::packed_avx2::common::ReducibleAvx2;
use crate::field::packed_field::PackedField;
fn test_vals_a<F: ReducibleAvx2>() -> [F; 4] {
[
F::from_noncanonical_u64(14479013849828404771),
F::from_noncanonical_u64(9087029921428221768),
F::from_noncanonical_u64(2441288194761790662),
F::from_noncanonical_u64(5646033492608483824),
]
}
fn test_vals_b<F: ReducibleAvx2>() -> [F; 4] {
[
F::from_noncanonical_u64(17891926589593242302),
F::from_noncanonical_u64(11009798273260028228),
F::from_noncanonical_u64(2028722748960791447),
F::from_noncanonical_u64(7929433601095175579),
]
}
fn test_add<F: ReducibleAvx2>()
where
[(); Avx2PrimeField::<F>::WIDTH]:,
{
let a_arr = test_vals_a::<F>();
let b_arr = test_vals_b::<F>();
let packed_a = Avx2PrimeField::<F>::from_arr(a_arr);
let packed_b = Avx2PrimeField::<F>::from_arr(b_arr);
let packed_res = packed_a + packed_b;
let arr_res = packed_res.as_arr();
let expected = a_arr.iter().zip(b_arr).map(|(&a, b)| a + b);
for (exp, res) in expected.zip(arr_res) {
assert_eq!(res, exp);
}
}
fn test_mul<F: ReducibleAvx2>()
where
[(); Avx2PrimeField::<F>::WIDTH]:,
{
let a_arr = test_vals_a::<F>();
let b_arr = test_vals_b::<F>();
let packed_a = Avx2PrimeField::<F>::from_arr(a_arr);
let packed_b = Avx2PrimeField::<F>::from_arr(b_arr);
let packed_res = packed_a * packed_b;
let arr_res = packed_res.as_arr();
let expected = a_arr.iter().zip(b_arr).map(|(&a, b)| a * b);
for (exp, res) in expected.zip(arr_res) {
assert_eq!(res, exp);
}
}
fn test_square<F: ReducibleAvx2>()
where
[(); Avx2PrimeField::<F>::WIDTH]:,
{
let a_arr = test_vals_a::<F>();
let packed_a = Avx2PrimeField::<F>::from_arr(a_arr);
let packed_res = packed_a.square();
let arr_res = packed_res.as_arr();
let expected = a_arr.iter().map(|&a| a.square());
for (exp, res) in expected.zip(arr_res) {
assert_eq!(res, exp);
}
}
fn test_neg<F: ReducibleAvx2>()
where
[(); Avx2PrimeField::<F>::WIDTH]:,
{
let a_arr = test_vals_a::<F>();
let packed_a = Avx2PrimeField::<F>::from_arr(a_arr);
let packed_res = -packed_a;
let arr_res = packed_res.as_arr();
let expected = a_arr.iter().map(|&a| -a);
for (exp, res) in expected.zip(arr_res) {
assert_eq!(res, exp);
}
}
fn test_sub<F: ReducibleAvx2>()
where
[(); Avx2PrimeField::<F>::WIDTH]:,
{
let a_arr = test_vals_a::<F>();
let b_arr = test_vals_b::<F>();
let packed_a = Avx2PrimeField::<F>::from_arr(a_arr);
let packed_b = Avx2PrimeField::<F>::from_arr(b_arr);
let packed_res = packed_a - packed_b;
let arr_res = packed_res.as_arr();
let expected = a_arr.iter().zip(b_arr).map(|(&a, b)| a - b);
for (exp, res) in expected.zip(arr_res) {
assert_eq!(res, exp);
}
}
fn test_interleave_is_involution<F: ReducibleAvx2>()
where
[(); Avx2PrimeField::<F>::WIDTH]:,
{
let a_arr = test_vals_a::<F>();
let b_arr = test_vals_b::<F>();
let packed_a = Avx2PrimeField::<F>::from_arr(a_arr);
let packed_b = Avx2PrimeField::<F>::from_arr(b_arr);
{
// Interleave, then deinterleave.
let (x, y) = packed_a.interleave(packed_b, 1);
let (res_a, res_b) = x.interleave(y, 1);
assert_eq!(res_a.as_arr(), a_arr);
assert_eq!(res_b.as_arr(), b_arr);
}
{
let (x, y) = packed_a.interleave(packed_b, 2);
let (res_a, res_b) = x.interleave(y, 2);
assert_eq!(res_a.as_arr(), a_arr);
assert_eq!(res_b.as_arr(), b_arr);
}
{
let (x, y) = packed_a.interleave(packed_b, 4);
let (res_a, res_b) = x.interleave(y, 4);
assert_eq!(res_a.as_arr(), a_arr);
assert_eq!(res_b.as_arr(), b_arr);
}
}
fn test_interleave<F: ReducibleAvx2>()
where
[(); Avx2PrimeField::<F>::WIDTH]:,
{
let in_a: [F; 4] = [
F::from_noncanonical_u64(00),
F::from_noncanonical_u64(01),
F::from_noncanonical_u64(02),
F::from_noncanonical_u64(03),
];
let in_b: [F; 4] = [
F::from_noncanonical_u64(10),
F::from_noncanonical_u64(11),
F::from_noncanonical_u64(12),
F::from_noncanonical_u64(13),
];
let int1_a: [F; 4] = [
F::from_noncanonical_u64(00),
F::from_noncanonical_u64(10),
F::from_noncanonical_u64(02),
F::from_noncanonical_u64(12),
];
let int1_b: [F; 4] = [
F::from_noncanonical_u64(01),
F::from_noncanonical_u64(11),
F::from_noncanonical_u64(03),
F::from_noncanonical_u64(13),
];
let int2_a: [F; 4] = [
F::from_noncanonical_u64(00),
F::from_noncanonical_u64(01),
F::from_noncanonical_u64(10),
F::from_noncanonical_u64(11),
];
let int2_b: [F; 4] = [
F::from_noncanonical_u64(02),
F::from_noncanonical_u64(03),
F::from_noncanonical_u64(12),
F::from_noncanonical_u64(13),
];
let packed_a = Avx2PrimeField::<F>::from_arr(in_a);
let packed_b = Avx2PrimeField::<F>::from_arr(in_b);
{
let (x1, y1) = packed_a.interleave(packed_b, 1);
assert_eq!(x1.as_arr(), int1_a);
assert_eq!(y1.as_arr(), int1_b);
}
{
let (x2, y2) = packed_a.interleave(packed_b, 2);
assert_eq!(x2.as_arr(), int2_a);
assert_eq!(y2.as_arr(), int2_b);
}
{
let (x4, y4) = packed_a.interleave(packed_b, 4);
assert_eq!(x4.as_arr(), in_a);
assert_eq!(y4.as_arr(), in_b);
}
}
#[test]
fn test_add_goldilocks() {
test_add::<GoldilocksField>();
}
#[test]
fn test_mul_goldilocks() {
test_mul::<GoldilocksField>();
}
#[test]
fn test_square_goldilocks() {
test_square::<GoldilocksField>();
}
#[test]
fn test_neg_goldilocks() {
test_neg::<GoldilocksField>();
}
#[test]
fn test_sub_goldilocks() {
test_sub::<GoldilocksField>();
}
#[test]
fn test_interleave_is_involution_goldilocks() {
test_interleave_is_involution::<GoldilocksField>();
}
#[test]
fn test_interleave_goldilocks() {
test_interleave::<GoldilocksField>();
}
}