Merge pull request #148 from mir-protocol/random_access_gate

Random access gate
This commit is contained in:
Nicholas Ward 2021-08-03 12:07:39 -07:00 committed by GitHub
commit bb1c083e1e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 384 additions and 18 deletions

View File

@ -3,7 +3,7 @@ use anyhow::{ensure, Result};
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field_types::Field;
use crate::gates::gate::Gate;
use crate::hash::hash_types::{HashOut};
use crate::hash::hash_types::HashOut;
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;

View File

@ -326,7 +326,6 @@ mod tests {
use anyhow::Result;
use crate::field::crandall_field::CrandallField;
use crate::field::field_types::Field;
use crate::gates::gate::Gate;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};

View File

@ -59,13 +59,13 @@ impl<F: Extendable<D>, const D: usize> InsertionGate<F, D> {
/// An intermediate wire for a dummy variable used to show equality.
/// The prover sets this to 1/(x-y) if x != y, or to an arbitrary value if
/// x == y.
pub fn wires_equality_dummy_for_round_r(&self, r: usize) -> usize {
pub fn wire_equality_dummy_for_round_r(&self, r: usize) -> usize {
self.start_of_intermediate_wires() + r
}
// An intermediate wire for the "insert_here" variable (1 if the current index is the index at
/// which to insert the new value, 0 otherwise).
pub fn wires_insert_here_for_round_r(&self, r: usize) -> usize {
pub fn wire_insert_here_for_round_r(&self, r: usize) -> usize {
self.start_of_intermediate_wires() + (self.vec_size + 1) + r
}
}
@ -90,8 +90,8 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for InsertionGate<F, D> {
for r in 0..=self.vec_size {
let cur_index = F::Extension::from_canonical_usize(r);
let difference = cur_index - insertion_index;
let equality_dummy = vars.local_wires[self.wires_equality_dummy_for_round_r(r)];
let insert_here = vars.local_wires[self.wires_insert_here_for_round_r(r)];
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_round_r(r)];
let insert_here = vars.local_wires[self.wire_insert_here_for_round_r(r)];
// The two equality constraints.
constraints.push(difference * equality_dummy - (F::Extension::ONE - insert_here));
@ -128,8 +128,8 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for InsertionGate<F, D> {
for r in 0..=self.vec_size {
let cur_index = F::from_canonical_usize(r);
let difference = cur_index - insertion_index;
let equality_dummy = vars.local_wires[self.wires_equality_dummy_for_round_r(r)];
let insert_here = vars.local_wires[self.wires_insert_here_for_round_r(r)];
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_round_r(r)];
let insert_here = vars.local_wires[self.wire_insert_here_for_round_r(r)];
// The two equality constraints.
constraints.push(difference * equality_dummy - (F::ONE - insert_here));
@ -172,8 +172,8 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for InsertionGate<F, D> {
let cur_index = builder.constant_extension(cur_index_ext);
let difference = builder.sub_extension(cur_index, insertion_index);
let equality_dummy = vars.local_wires[self.wires_equality_dummy_for_round_r(r)];
let insert_here = vars.local_wires[self.wires_insert_here_for_round_r(r)];
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_round_r(r)];
let insert_here = vars.local_wires[self.wire_insert_here_for_round_r(r)];
// The two equality constraints.
let prod = builder.mul_extension(difference, equality_dummy);
@ -218,7 +218,7 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for InsertionGate<F, D> {
}
fn num_wires(&self) -> usize {
self.wires_insert_here_for_round_r(self.vec_size) + 1
self.wire_insert_here_for_round_r(self.vec_size) + 1
}
fn num_constants(&self) -> usize {
@ -304,9 +304,9 @@ impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for InsertionGenerator
for i in 0..=vec_size {
let output_wires = self.gate.wires_output_list_item(i).map(local_wire);
out_buffer.set_ext_wires(output_wires, new_vec[i]);
let equality_dummy_wire = local_wire(self.gate.wires_equality_dummy_for_round_r(i));
let equality_dummy_wire = local_wire(self.gate.wire_equality_dummy_for_round_r(i));
out_buffer.set_wire(equality_dummy_wire, equality_dummy_vals[i]);
let insert_here_wire = local_wire(self.gate.wires_insert_here_for_round_r(i));
let insert_here_wire = local_wire(self.gate.wire_insert_here_for_round_r(i));
out_buffer.set_wire(insert_here_wire, insert_here_vals[i]);
}
}
@ -340,10 +340,10 @@ mod tests {
assert_eq!(gate.wires_original_list_item(2), 13..17);
assert_eq!(gate.wires_output_list_item(0), 17..21);
assert_eq!(gate.wires_output_list_item(3), 29..33);
assert_eq!(gate.wires_equality_dummy_for_round_r(0), 33);
assert_eq!(gate.wires_equality_dummy_for_round_r(3), 36);
assert_eq!(gate.wires_insert_here_for_round_r(0), 37);
assert_eq!(gate.wires_insert_here_for_round_r(3), 40);
assert_eq!(gate.wire_equality_dummy_for_round_r(0), 33);
assert_eq!(gate.wire_equality_dummy_for_round_r(3), 36);
assert_eq!(gate.wire_insert_here_for_round_r(0), 37);
assert_eq!(gate.wire_insert_here_for_round_r(3), 40);
}
#[test]

View File

@ -12,6 +12,7 @@ pub mod insertion;
pub mod interpolation;
pub(crate) mod noop;
pub(crate) mod public_input;
pub mod random_access;
pub mod reducing;
#[cfg(test)]

View File

@ -56,7 +56,6 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for NoopGate {
#[cfg(test)]
mod tests {
use crate::field::crandall_field::CrandallField;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};

367
src/gates/random_access.rs Normal file
View File

@ -0,0 +1,367 @@
use std::convert::TryInto;
use std::marker::PhantomData;
use std::ops::Range;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field_types::Field;
use crate::gates::gate::Gate;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// A gate for checking that a particular value in a list matches a given
#[derive(Clone, Debug)]
pub(crate) struct RandomAccessGate<F: Extendable<D>, const D: usize> {
pub vec_size: usize,
_phantom: PhantomData<F>,
}
impl<F: Extendable<D>, const D: usize> RandomAccessGate<F, D> {
pub fn new(vec_size: usize) -> Self {
Self {
vec_size,
_phantom: PhantomData,
}
}
pub fn wires_access_index(&self) -> usize {
0
}
pub fn wires_claimed_element(&self) -> Range<usize> {
1..D + 1
}
pub fn wires_list_item(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.vec_size);
let start = (i + 1) * D + 1;
start..start + D
}
fn start_of_intermediate_wires(&self) -> usize {
(self.vec_size + 1) * D + 1
}
/// An intermediate wire for a dummy variable used to show equality.
/// The prover sets this to 1/(x-y) if x != y, or to an arbitrary value if
/// x == y.
pub fn wire_equality_dummy_for_index(&self, i: usize) -> usize {
debug_assert!(i < self.vec_size);
self.start_of_intermediate_wires() + i
}
/// An intermediate wire for the "index_matches" variable (1 if the current index is the index at
/// which to compare, 0 otherwise).
pub fn wire_index_matches_for_index(&self, i: usize) -> usize {
debug_assert!(i < self.vec_size);
self.start_of_intermediate_wires() + self.vec_size + i
}
}
impl<F: Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGate<F, D> {
fn id(&self) -> String {
format!("{:?}<D={}>", self, D)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let access_index = vars.local_wires[self.wires_access_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext_algebra(self.wires_list_item(i)))
.collect::<Vec<_>>();
let claimed_element = vars.get_local_ext_algebra(self.wires_claimed_element());
let mut constraints = Vec::new();
for i in 0..self.vec_size {
let cur_index = F::Extension::from_canonical_usize(i);
let difference = cur_index - access_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i)];
// The two index equality constraints.
constraints.push(difference * equality_dummy - (F::Extension::ONE - index_matches));
constraints.push(index_matches * difference);
// Value equality constraint.
constraints.extend(
((list_items[i] - claimed_element) * index_matches.into()).to_basefield_array(),
);
}
constraints
}
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
let access_index = vars.local_wires[self.wires_access_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext(self.wires_list_item(i)))
.collect::<Vec<_>>();
let claimed_element = vars.get_local_ext(self.wires_claimed_element());
let mut constraints = Vec::new();
for i in 0..self.vec_size {
let cur_index = F::from_canonical_usize(i);
let difference = cur_index - access_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i)];
// The two equality constraints.
constraints.push(difference * equality_dummy - (F::ONE - index_matches));
constraints.push(index_matches * difference);
// Value equality constraint.
constraints.extend(
((list_items[i] - claimed_element) * index_matches.into()).to_basefield_array(),
);
}
constraints
}
fn eval_unfiltered_recursively(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let access_index = vars.local_wires[self.wires_access_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext_algebra(self.wires_list_item(i)))
.collect::<Vec<_>>();
let claimed_element = vars.get_local_ext_algebra(self.wires_claimed_element());
let mut constraints = Vec::new();
for i in 0..self.vec_size {
let cur_index_ext = F::Extension::from_canonical_usize(i);
let cur_index = builder.constant_extension(cur_index_ext);
let difference = builder.sub_extension(cur_index, access_index);
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i)];
// The two equality constraints.
let prod = builder.mul_extension(difference, equality_dummy);
let one = builder.constant_extension(F::Extension::ONE);
let not_index_matches = builder.sub_extension(one, index_matches);
let first_equality_constraint = builder.sub_extension(prod, not_index_matches);
constraints.push(first_equality_constraint);
let second_equality_constraint = builder.mul_extension(index_matches, difference);
constraints.push(second_equality_constraint);
// Output constraint.
let diff = builder.sub_ext_algebra(list_items[i], claimed_element);
let conditional_diff = builder.scalar_mul_ext_algebra(index_matches, diff);
constraints.extend(conditional_diff.to_ext_target_array());
}
constraints
}
fn generators(
&self,
gate_index: usize,
_local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = RandomAccessGenerator::<F, D> {
gate_index,
gate: self.clone(),
};
vec![Box::new(gen)]
}
fn num_wires(&self) -> usize {
self.wire_index_matches_for_index(self.vec_size - 1) + 1
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
2
}
fn num_constraints(&self) -> usize {
self.vec_size * (2 + D)
}
}
#[derive(Debug)]
struct RandomAccessGenerator<F: Extendable<D>, const D: usize> {
gate_index: usize,
gate: RandomAccessGate<F, D>,
}
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for RandomAccessGenerator<F, D> {
fn dependencies(&self) -> Vec<Target> {
let local_target = |input| Target::wire(self.gate_index, input);
let local_targets = |inputs: Range<usize>| inputs.map(local_target);
let mut deps = Vec::new();
deps.push(local_target(self.gate.wires_access_index()));
deps.extend(local_targets(self.gate.wires_claimed_element()));
for i in 0..self.gate.vec_size {
deps.extend(local_targets(self.gate.wires_list_item(i)));
}
deps
}
fn run_once(&self, witness: &PartialWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |input| Wire {
gate: self.gate_index,
input,
};
let get_local_wire = |input| witness.get_wire(local_wire(input));
let get_local_ext = |wire_range: Range<usize>| {
debug_assert_eq!(wire_range.len(), D);
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
let arr = values.try_into().unwrap();
F::Extension::from_basefield_array(arr)
};
// Compute the new vector and the values for equality_dummy and index_matches
let vec_size = self.gate.vec_size;
let access_index_f = get_local_wire(self.gate.wires_access_index());
let access_index = access_index_f.to_canonical_u64() as usize;
debug_assert!(
access_index < vec_size,
"Access index {} is larger than the vector size {}",
access_index,
vec_size
);
for i in 0..vec_size {
let equality_dummy_wire = local_wire(self.gate.wire_equality_dummy_for_index(i));
let index_matches_wire = local_wire(self.gate.wire_index_matches_for_index(i));
if i == access_index {
out_buffer.set_wire(equality_dummy_wire, F::ONE);
out_buffer.set_wire(index_matches_wire, F::ONE);
} else {
out_buffer.set_wire(
equality_dummy_wire,
(F::from_canonical_usize(i) - F::from_canonical_usize(access_index)).inverse(),
);
out_buffer.set_wire(index_matches_wire, F::ZERO);
}
}
}
}
#[cfg(test)]
mod tests {
use std::marker::PhantomData;
use anyhow::Result;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::field_types::Field;
use crate::gates::gate::Gate;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::gates::random_access::RandomAccessGate;
use crate::hash::hash_types::HashOut;
use crate::plonk::vars::EvaluationVars;
#[test]
fn wire_indices() {
let gate = RandomAccessGate::<CrandallField, 4> {
vec_size: 3,
_phantom: PhantomData,
};
assert_eq!(gate.wires_access_index(), 0);
assert_eq!(gate.wires_claimed_element(), 1..5);
assert_eq!(gate.wires_list_item(0), 5..9);
assert_eq!(gate.wires_list_item(2), 13..17);
assert_eq!(gate.wire_equality_dummy_for_index(0), 17);
assert_eq!(gate.wire_equality_dummy_for_index(2), 19);
assert_eq!(gate.wire_index_matches_for_index(0), 20);
assert_eq!(gate.wire_index_matches_for_index(2), 22);
}
#[test]
fn low_degree() {
test_low_degree::<CrandallField, _, 4>(RandomAccessGate::new(4));
}
#[test]
fn eval_fns() -> Result<()> {
test_eval_fns::<CrandallField, _, 4>(RandomAccessGate::new(4))
}
#[test]
fn test_gate_constraint() {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
/// Returns the local wires for a random access gate given the vector, element to compare,
/// and index.
fn get_wires(list: Vec<FF>, access_index: usize, claimed_element: FF) -> Vec<FF> {
let vec_size = list.len();
let mut v = Vec::new();
v.push(F::from_canonical_usize(access_index));
v.extend(claimed_element.0);
for j in 0..vec_size {
v.extend(list[j].0);
}
let mut equality_dummy_vals = Vec::new();
let mut index_matches_vals = Vec::new();
for i in 0..vec_size {
if i == access_index {
equality_dummy_vals.push(F::ONE);
index_matches_vals.push(F::ONE);
} else {
equality_dummy_vals.push(
(F::from_canonical_usize(i) - F::from_canonical_usize(access_index))
.inverse(),
);
index_matches_vals.push(F::ZERO);
}
}
v.extend(equality_dummy_vals);
v.extend(index_matches_vals);
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
}
let list = vec![FF::rand(); 3];
let access_index = 1;
let gate = RandomAccessGate::<F, D> {
vec_size: 3,
_phantom: PhantomData,
};
let good_claimed_element = list[access_index];
let good_vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(list.clone(), access_index, good_claimed_element),
public_inputs_hash: &HashOut::rand(),
};
let bad_claimed_element = FF::rand();
let bad_vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(list, access_index, bad_claimed_element),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(good_vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
assert!(
!gate.eval_unfiltered(bad_vars).iter().all(|x| x.is_zero()),
"Gate constraints are satisfied but shouold not be."
);
}
}