- Remove useless rotation gadgets

- rotate.rs -> select.rs
- Added `select()` and `select_ext`
- Optimize to use just one gate
This commit is contained in:
wborgeaud 2021-07-22 11:58:29 +02:00
parent 1d5cd4430e
commit b65e792ff3
4 changed files with 85 additions and 180 deletions

View File

@ -170,14 +170,12 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Exponentiate `base` to the power of `exponent`, given by its little-endian bits.
pub fn exp_from_bits(&mut self, base: Target, exponent_bits: &[Target]) -> Target {
let mut current = base;
let one_ext = self.one_extension();
let mut product = self.one();
let one = self.one();
let mut product = one;
for &bit in exponent_bits {
// TODO: Add base field select.
let current_ext = self.convert_to_ext(current);
let multiplicand = self.select(bit, current_ext, one_ext);
product = self.mul(product, multiplicand.0[0]);
let multiplicand = self.select(bit, current, one);
product = self.mul(product, multiplicand);
current = self.mul(current, current);
}
@ -189,14 +187,12 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Exponentiate `base` to the power of `2^bit_length-1-exponent`, given by its little-endian bits.
pub fn exp_from_complement_bits(&mut self, base: Target, exponent_bits: &[Target]) -> Target {
let mut current = base;
let one_ext = self.one_extension();
let mut product = self.one();
let one = self.one();
let mut product = one;
for &bit in exponent_bits {
let current_ext = self.convert_to_ext(current);
// TODO: Add base field select.
let multiplicand = self.select(bit, one_ext, current_ext);
product = self.mul(product, multiplicand.0[0]);
let multiplicand = self.select(bit, one, current);
product = self.mul(product, multiplicand);
current = self.mul(current, current);
}

View File

@ -5,6 +5,6 @@ pub mod insert;
pub mod interpolation;
pub mod polynomial;
pub mod range_check;
pub mod rotate;
pub mod select;
pub mod split_base;
pub(crate) mod split_join;

View File

@ -1,167 +0,0 @@
use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::target::Target;
use crate::util::log2_ceil;
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Selects `x` or `y` based on `b`, which is assumed to be binary.
/// In particular, this returns `if b { x } else { y }`.
/// Note: This does not range-check `b`.
// TODO: This uses 10 gates per call. If addends are added to `MulExtensionGate`, this will be
// reduced to 2 gates. We could also use a new degree 2 `SelectGate` for this.
// If `num_routed_wire` is larger than 26, we could batch two `select` in one gate.
pub fn select(
&mut self,
b: Target,
x: ExtensionTarget<D>,
y: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let b_y_minus_y = self.scalar_mul_sub_extension(b, y, y);
self.scalar_mul_sub_extension(b, x, b_y_minus_y)
}
/// Left-rotates an array `k` times if `b=1` else return the same array.
pub fn rotate_left_fixed(
&mut self,
b: Target,
k: usize,
v: &[ExtensionTarget<D>],
) -> Vec<ExtensionTarget<D>> {
let len = v.len();
debug_assert!(k < len, "Trying to rotate by more than the vector length.");
let mut res = Vec::new();
for i in 0..len {
res.push(self.select(b, v[(i + k) % len], v[i]));
}
res
}
/// Left-rotates an array `k` times if `b=1` else return the same array.
pub fn rotate_right_fixed(
&mut self,
b: Target,
k: usize,
v: &[ExtensionTarget<D>],
) -> Vec<ExtensionTarget<D>> {
let len = v.len();
debug_assert!(k < len, "Trying to rotate by more than the vector length.");
let mut res = Vec::new();
for i in 0..len {
res.push(self.select(b, v[(len + i - k) % len], v[i]));
}
res
}
/// Left-rotates an vector by the `Target` having bits given in little-endian by `num_rotation_bits`.
pub fn rotate_left_from_bits(
&mut self,
num_rotation_bits: &[Target],
v: &[ExtensionTarget<D>],
) -> Vec<ExtensionTarget<D>> {
let mut v = v.to_vec();
for i in 0..num_rotation_bits.len() {
v = self.rotate_left_fixed(num_rotation_bits[i], 1 << i, &v);
}
v
}
pub fn rotate_right_from_bits(
&mut self,
num_rotation_bits: &[Target],
v: &[ExtensionTarget<D>],
) -> Vec<ExtensionTarget<D>> {
let mut v = v.to_vec();
for i in 0..num_rotation_bits.len() {
v = self.rotate_right_fixed(num_rotation_bits[i], 1 << i, &v);
}
v
}
/// Left-rotates an array by `num_rotation`. Assumes that `num_rotation` is range-checked to be
/// less than `2^len_bits`.
pub fn rotate_left(
&mut self,
num_rotation: Target,
v: &[ExtensionTarget<D>],
) -> Vec<ExtensionTarget<D>> {
let len_bits = log2_ceil(v.len());
let bits = self.split_le(num_rotation, len_bits);
self.rotate_left_from_bits(&bits, v)
}
pub fn rotate_right(
&mut self,
num_rotation: Target,
v: &[ExtensionTarget<D>],
) -> Vec<ExtensionTarget<D>> {
let len_bits = log2_ceil(v.len());
let bits = self.split_le(num_rotation, len_bits);
self.rotate_right_from_bits(&bits, v)
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use super::*;
use crate::circuit_data::CircuitConfig;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::field::Field;
use crate::verifier::verify;
use crate::witness::PartialWitness;
fn real_rotate<const D: usize>(
num_rotation: usize,
v: &[ExtensionTarget<D>],
) -> Vec<ExtensionTarget<D>> {
let mut res = v.to_vec();
res.rotate_left(num_rotation);
res
}
fn test_rotate_given_len(len: usize) -> Result<()> {
type F = CrandallField;
type FF = QuarticCrandallField;
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, 4>::new(config);
let v = (0..len)
.map(|_| builder.constant_extension(FF::rand()))
.collect::<Vec<_>>();
for i in 0..len {
let it = builder.constant(F::from_canonical_usize(i));
let rotated = real_rotate(i, &v);
let purported_rotated = builder.rotate_left(it, &v);
for (x, y) in rotated.into_iter().zip(purported_rotated) {
builder.assert_equal_extension(x, y);
}
}
let data = builder.build();
let proof = data.prove(PartialWitness::new())?;
verify(proof, &data.verifier_only, &data.common)
}
#[test]
fn test_rotate() -> Result<()> {
for len in 1..5 {
test_rotate_given_len(len)?;
}
Ok(())
}
}

76
src/gadgets/select.rs Normal file
View File

@ -0,0 +1,76 @@
use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::gates::arithmetic::ArithmeticExtensionGate;
use crate::target::Target;
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Selects `x` or `y` based on `b`, which is assumed to be binary, i.e., this returns `if b { x } else { y }`.
/// This expression is gotten as `bx - (by-y)`, which can be computed with a single `ArithmeticExtensionGate`.
/// Note: This does not range-check `b`.
pub fn select_ext(
&mut self,
b: Target,
x: ExtensionTarget<D>,
y: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let b_ext = self.convert_to_ext(b);
let gate = self.num_gates();
// Holds `by - y`.
let first_out =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_first_output());
self.double_arithmetic_extension(F::ONE, F::NEG_ONE, b_ext, y, y, b_ext, x, first_out)
.1
}
/// See `select_ext`.
pub fn select(&mut self, b: Target, x: Target, y: Target) -> Target {
let x_ext = self.convert_to_ext(x);
let y_ext = self.convert_to_ext(y);
self.select_ext(b, x_ext, y_ext).to_target_array()[0]
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use super::*;
use crate::circuit_data::CircuitConfig;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::field::Field;
use crate::verifier::verify;
use crate::witness::PartialWitness;
#[test]
fn test_select() -> Result<()> {
type F = CrandallField;
type FF = QuarticCrandallField;
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, 4>::new(config);
let mut pw = PartialWitness::new();
let (x, y) = (FF::rand(), FF::rand());
let xt = builder.add_virtual_extension_target();
let yt = builder.add_virtual_extension_target();
let truet = builder.add_virtual_target();
let falset = builder.add_virtual_target();
pw.set_extension_target(xt, x);
pw.set_extension_target(yt, y);
pw.set_target(truet, F::ONE);
pw.set_target(falset, F::ZERO);
let should_be_x = builder.select_ext(truet, xt, yt);
let should_be_y = builder.select_ext(falset, xt, yt);
builder.assert_equal_extension(should_be_x, xt);
builder.assert_equal_extension(should_be_y, yt);
let data = builder.build();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
}