mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-03 06:13:07 +00:00
Merge pull request #11 from mir-protocol/arithmetic
Basic arithmetic methods
This commit is contained in:
commit
b49e629e26
@ -1,4 +1,4 @@
|
||||
use std::collections::HashSet;
|
||||
use std::collections::{HashSet, HashMap};
|
||||
use std::time::Instant;
|
||||
|
||||
use log::info;
|
||||
@ -30,6 +30,9 @@ pub struct CircuitBuilder<F: Field> {
|
||||
|
||||
/// Generators used to generate the witness.
|
||||
generators: Vec<Box<dyn WitnessGenerator<F>>>,
|
||||
|
||||
constants_to_targets: HashMap<F, Target>,
|
||||
targets_to_constants: HashMap<Target, F>,
|
||||
}
|
||||
|
||||
impl<F: Field> CircuitBuilder<F> {
|
||||
@ -40,6 +43,8 @@ impl<F: Field> CircuitBuilder<F> {
|
||||
gate_instances: Vec::new(),
|
||||
virtual_target_index: 0,
|
||||
generators: Vec::new(),
|
||||
constants_to_targets: HashMap::new(),
|
||||
targets_to_constants: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
@ -139,14 +144,28 @@ impl<F: Field> CircuitBuilder<F> {
|
||||
|
||||
/// Returns a routable target with the given constant value.
|
||||
pub fn constant(&mut self, c: F) -> Target {
|
||||
if let Some(&target) = self.constants_to_targets.get(&c) {
|
||||
// We already have a wire for this constant.
|
||||
return target;
|
||||
}
|
||||
|
||||
let gate = self.add_gate(ConstantGate::get(), vec![c]);
|
||||
Target::Wire(Wire { gate, input: ConstantGate::WIRE_OUTPUT })
|
||||
let target = Target::Wire(Wire { gate, input: ConstantGate::WIRE_OUTPUT });
|
||||
self.constants_to_targets.insert(c, target);
|
||||
self.targets_to_constants.insert(target, c);
|
||||
target
|
||||
}
|
||||
|
||||
pub fn constants(&mut self, constants: &[F]) -> Vec<Target> {
|
||||
constants.iter().map(|&c| self.constant(c)).collect()
|
||||
}
|
||||
|
||||
/// If the given target is a constant (i.e. it was created by the `constant(F)` method), returns
|
||||
/// its constant value. Otherwise, returns `None`.
|
||||
pub fn target_as_constant(&self, target: Target) -> Option<F> {
|
||||
self.targets_to_constants.get(&target).cloned()
|
||||
}
|
||||
|
||||
fn blind_and_pad(&mut self) {
|
||||
// TODO: Blind.
|
||||
|
||||
|
||||
@ -3,6 +3,8 @@ use crate::field::field::Field;
|
||||
use crate::target::Target;
|
||||
use crate::gates::arithmetic::ArithmeticGate;
|
||||
use crate::wire::Wire;
|
||||
use crate::generator::SimpleGenerator;
|
||||
use crate::witness::PartialWitness;
|
||||
|
||||
impl<F: Field> CircuitBuilder<F> {
|
||||
pub fn neg(&mut self, x: Target) -> Target {
|
||||
@ -10,29 +12,99 @@ impl<F: Field> CircuitBuilder<F> {
|
||||
self.mul(x, neg_one)
|
||||
}
|
||||
|
||||
pub fn add(&mut self, x: Target, y: Target) -> Target {
|
||||
let zero = self.zero();
|
||||
let one = self.one();
|
||||
if x == zero {
|
||||
return y;
|
||||
}
|
||||
if y == zero {
|
||||
return x;
|
||||
/// Computes `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`.
|
||||
pub fn arithmetic(
|
||||
&mut self,
|
||||
const_0: F,
|
||||
multiplicand_0: Target,
|
||||
multiplicand_1: Target,
|
||||
const_1: F,
|
||||
addend: Target,
|
||||
) -> Target {
|
||||
// See if we can determine the result without adding an `ArithmeticGate`.
|
||||
if let Some(result) = self.arithmetic_special_cases(
|
||||
const_0, multiplicand_0, multiplicand_1, const_1, addend) {
|
||||
return result;
|
||||
}
|
||||
|
||||
let gate = self.add_gate(ArithmeticGate::new(), vec![F::ONE, F::ONE]);
|
||||
let gate = self.add_gate(ArithmeticGate::new(), vec![const_0, const_1]);
|
||||
|
||||
let wire_multiplicand_0 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_0 };
|
||||
let wire_multiplicand_1 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_1 };
|
||||
let wire_addend = Wire { gate, input: ArithmeticGate::WIRE_ADDEND };
|
||||
let wire_output = Wire { gate, input: ArithmeticGate::WIRE_OUTPUT };
|
||||
|
||||
self.route(x, Target::Wire(wire_multiplicand_0));
|
||||
self.route(one, Target::Wire(wire_multiplicand_1));
|
||||
self.route(y, Target::Wire(wire_addend));
|
||||
self.route(multiplicand_0, Target::Wire(wire_multiplicand_0));
|
||||
self.route(multiplicand_1, Target::Wire(wire_multiplicand_1));
|
||||
self.route(addend, Target::Wire(wire_addend));
|
||||
Target::Wire(wire_output)
|
||||
}
|
||||
|
||||
/// Checks for special cases where the value of
|
||||
/// `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`
|
||||
/// can be determined without adding an `ArithmeticGate`.
|
||||
fn arithmetic_special_cases(
|
||||
&mut self,
|
||||
const_0: F,
|
||||
multiplicand_0: Target,
|
||||
multiplicand_1: Target,
|
||||
const_1: F,
|
||||
addend: Target,
|
||||
) -> Option<Target> {
|
||||
let zero = self.zero();
|
||||
|
||||
let mul_0_const = self.target_as_constant(multiplicand_0);
|
||||
let mul_1_const = self.target_as_constant(multiplicand_1);
|
||||
let addend_const = self.target_as_constant(addend);
|
||||
|
||||
let first_term_zero = const_0 == F::ZERO || multiplicand_0 == zero || multiplicand_1 == zero;
|
||||
let second_term_zero = const_1 == F::ZERO || addend == zero;
|
||||
|
||||
// If both terms are constant, return their (constant) sum.
|
||||
let first_term_const = if first_term_zero {
|
||||
Some(F::ZERO)
|
||||
} else if let (Some(x), Some(y)) = (mul_0_const, mul_1_const) {
|
||||
Some(const_0 * x * y)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
let second_term_const = if second_term_zero {
|
||||
Some(F::ZERO)
|
||||
} else {
|
||||
addend_const.map(|x| const_1 * x)
|
||||
};
|
||||
if let (Some(x), Some(y)) = (first_term_const, second_term_const) {
|
||||
return Some(self.constant(x + y));
|
||||
}
|
||||
|
||||
if first_term_zero {
|
||||
if const_1.is_one() {
|
||||
return Some(addend);
|
||||
}
|
||||
}
|
||||
|
||||
if second_term_zero {
|
||||
if let Some(x) = mul_0_const {
|
||||
if (const_0 * x).is_one() {
|
||||
return Some(multiplicand_1);
|
||||
}
|
||||
}
|
||||
if let Some(x) = mul_1_const {
|
||||
if (const_1 * x).is_one() {
|
||||
return Some(multiplicand_0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
pub fn add(&mut self, x: Target, y: Target) -> Target {
|
||||
let one = self.one();
|
||||
// x + y = 1 * x * 1 + 1 * y
|
||||
self.arithmetic(F::ONE, x, one, F::ONE, y)
|
||||
}
|
||||
|
||||
pub fn add_many(&mut self, terms: &[Target]) -> Target {
|
||||
let mut sum = self.zero();
|
||||
for term in terms {
|
||||
@ -42,22 +114,14 @@ impl<F: Field> CircuitBuilder<F> {
|
||||
}
|
||||
|
||||
pub fn sub(&mut self, x: Target, y: Target) -> Target {
|
||||
let zero = self.zero();
|
||||
if x == zero {
|
||||
return y;
|
||||
}
|
||||
if y == zero {
|
||||
return x;
|
||||
}
|
||||
|
||||
// TODO: Inefficient impl for now.
|
||||
let neg_y = self.neg(y);
|
||||
self.add(x, neg_y)
|
||||
let one = self.one();
|
||||
// x - y = 1 * x * 1 + (-1) * y
|
||||
self.arithmetic(F::ONE, x, one, F::NEG_ONE, y)
|
||||
}
|
||||
|
||||
pub fn mul(&mut self, x: Target, y: Target) -> Target {
|
||||
// TODO: Check if one operand is 0 or 1.
|
||||
todo!()
|
||||
// x * y = 1 * x * y + 0 * x
|
||||
self.arithmetic(F::ONE, x, y, F::ZERO, x)
|
||||
}
|
||||
|
||||
pub fn mul_many(&mut self, terms: &[Target]) -> Target {
|
||||
@ -68,8 +132,63 @@ impl<F: Field> CircuitBuilder<F> {
|
||||
product
|
||||
}
|
||||
|
||||
pub fn div(&mut self, x: Target, y: Target) -> Target {
|
||||
// TODO: Check if one operand is 0 or 1.
|
||||
todo!()
|
||||
/// Computes `q = x / y` by witnessing `q` and requiring that `q * y = x`. This can be unsafe in
|
||||
/// some cases, as it allows `0 / 0 = <anything>`.
|
||||
pub fn div_unsafe(&mut self, x: Target, y: Target) -> Target {
|
||||
// Check for special cases where we can determine the result without an `ArithmeticGate`.
|
||||
let zero = self.zero();
|
||||
let one = self.one();
|
||||
if x == zero {
|
||||
return zero;
|
||||
}
|
||||
if y == one {
|
||||
return x;
|
||||
}
|
||||
if let (Some(x_const), Some(y_const)) = (self.target_as_constant(x), self.target_as_constant(y)) {
|
||||
return self.constant(x_const / y_const);
|
||||
}
|
||||
|
||||
// Add an `ArithmeticGate` to compute `q * y`.
|
||||
let gate = self.add_gate(ArithmeticGate::new(), vec![F::ONE, F::ZERO]);
|
||||
|
||||
let wire_multiplicand_0 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_0 };
|
||||
let wire_multiplicand_1 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_1 };
|
||||
let wire_addend = Wire { gate, input: ArithmeticGate::WIRE_ADDEND };
|
||||
let wire_output = Wire { gate, input: ArithmeticGate::WIRE_OUTPUT };
|
||||
|
||||
let q = Target::Wire(wire_multiplicand_0);
|
||||
self.add_generator(QuotientGenerator {
|
||||
numerator: x,
|
||||
denominator: y,
|
||||
quotient: q,
|
||||
});
|
||||
|
||||
self.route(y, Target::Wire(wire_multiplicand_1));
|
||||
|
||||
// This can be anything, since the whole second term has a weight of zero.
|
||||
self.route(zero, Target::Wire(wire_addend));
|
||||
|
||||
let q_y = Target::Wire(wire_output);
|
||||
self.assert_equal(q_y, x);
|
||||
|
||||
q
|
||||
}
|
||||
}
|
||||
|
||||
struct QuotientGenerator {
|
||||
numerator: Target,
|
||||
denominator: Target,
|
||||
quotient: Target,
|
||||
}
|
||||
|
||||
impl<F: Field> SimpleGenerator<F> for QuotientGenerator {
|
||||
fn dependencies(&self) -> Vec<Target> {
|
||||
vec![self.numerator, self.denominator]
|
||||
}
|
||||
|
||||
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
|
||||
let num = witness.get_target(self.numerator);
|
||||
let den = witness.get_target(self.denominator);
|
||||
PartialWitness::singleton_target(self.quotient, num / den)
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user