Merge pull request #11 from mir-protocol/arithmetic

Basic arithmetic methods
This commit is contained in:
Daniel Lubarov 2021-04-21 14:20:02 -07:00 committed by GitHub
commit b49e629e26
2 changed files with 168 additions and 30 deletions

View File

@ -1,4 +1,4 @@
use std::collections::HashSet;
use std::collections::{HashSet, HashMap};
use std::time::Instant;
use log::info;
@ -30,6 +30,9 @@ pub struct CircuitBuilder<F: Field> {
/// Generators used to generate the witness.
generators: Vec<Box<dyn WitnessGenerator<F>>>,
constants_to_targets: HashMap<F, Target>,
targets_to_constants: HashMap<Target, F>,
}
impl<F: Field> CircuitBuilder<F> {
@ -40,6 +43,8 @@ impl<F: Field> CircuitBuilder<F> {
gate_instances: Vec::new(),
virtual_target_index: 0,
generators: Vec::new(),
constants_to_targets: HashMap::new(),
targets_to_constants: HashMap::new(),
}
}
@ -139,14 +144,28 @@ impl<F: Field> CircuitBuilder<F> {
/// Returns a routable target with the given constant value.
pub fn constant(&mut self, c: F) -> Target {
if let Some(&target) = self.constants_to_targets.get(&c) {
// We already have a wire for this constant.
return target;
}
let gate = self.add_gate(ConstantGate::get(), vec![c]);
Target::Wire(Wire { gate, input: ConstantGate::WIRE_OUTPUT })
let target = Target::Wire(Wire { gate, input: ConstantGate::WIRE_OUTPUT });
self.constants_to_targets.insert(c, target);
self.targets_to_constants.insert(target, c);
target
}
pub fn constants(&mut self, constants: &[F]) -> Vec<Target> {
constants.iter().map(|&c| self.constant(c)).collect()
}
/// If the given target is a constant (i.e. it was created by the `constant(F)` method), returns
/// its constant value. Otherwise, returns `None`.
pub fn target_as_constant(&self, target: Target) -> Option<F> {
self.targets_to_constants.get(&target).cloned()
}
fn blind_and_pad(&mut self) {
// TODO: Blind.

View File

@ -3,6 +3,8 @@ use crate::field::field::Field;
use crate::target::Target;
use crate::gates::arithmetic::ArithmeticGate;
use crate::wire::Wire;
use crate::generator::SimpleGenerator;
use crate::witness::PartialWitness;
impl<F: Field> CircuitBuilder<F> {
pub fn neg(&mut self, x: Target) -> Target {
@ -10,29 +12,99 @@ impl<F: Field> CircuitBuilder<F> {
self.mul(x, neg_one)
}
pub fn add(&mut self, x: Target, y: Target) -> Target {
let zero = self.zero();
let one = self.one();
if x == zero {
return y;
}
if y == zero {
return x;
/// Computes `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`.
pub fn arithmetic(
&mut self,
const_0: F,
multiplicand_0: Target,
multiplicand_1: Target,
const_1: F,
addend: Target,
) -> Target {
// See if we can determine the result without adding an `ArithmeticGate`.
if let Some(result) = self.arithmetic_special_cases(
const_0, multiplicand_0, multiplicand_1, const_1, addend) {
return result;
}
let gate = self.add_gate(ArithmeticGate::new(), vec![F::ONE, F::ONE]);
let gate = self.add_gate(ArithmeticGate::new(), vec![const_0, const_1]);
let wire_multiplicand_0 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_0 };
let wire_multiplicand_1 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_1 };
let wire_addend = Wire { gate, input: ArithmeticGate::WIRE_ADDEND };
let wire_output = Wire { gate, input: ArithmeticGate::WIRE_OUTPUT };
self.route(x, Target::Wire(wire_multiplicand_0));
self.route(one, Target::Wire(wire_multiplicand_1));
self.route(y, Target::Wire(wire_addend));
self.route(multiplicand_0, Target::Wire(wire_multiplicand_0));
self.route(multiplicand_1, Target::Wire(wire_multiplicand_1));
self.route(addend, Target::Wire(wire_addend));
Target::Wire(wire_output)
}
/// Checks for special cases where the value of
/// `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`
/// can be determined without adding an `ArithmeticGate`.
fn arithmetic_special_cases(
&mut self,
const_0: F,
multiplicand_0: Target,
multiplicand_1: Target,
const_1: F,
addend: Target,
) -> Option<Target> {
let zero = self.zero();
let mul_0_const = self.target_as_constant(multiplicand_0);
let mul_1_const = self.target_as_constant(multiplicand_1);
let addend_const = self.target_as_constant(addend);
let first_term_zero = const_0 == F::ZERO || multiplicand_0 == zero || multiplicand_1 == zero;
let second_term_zero = const_1 == F::ZERO || addend == zero;
// If both terms are constant, return their (constant) sum.
let first_term_const = if first_term_zero {
Some(F::ZERO)
} else if let (Some(x), Some(y)) = (mul_0_const, mul_1_const) {
Some(const_0 * x * y)
} else {
None
};
let second_term_const = if second_term_zero {
Some(F::ZERO)
} else {
addend_const.map(|x| const_1 * x)
};
if let (Some(x), Some(y)) = (first_term_const, second_term_const) {
return Some(self.constant(x + y));
}
if first_term_zero {
if const_1.is_one() {
return Some(addend);
}
}
if second_term_zero {
if let Some(x) = mul_0_const {
if (const_0 * x).is_one() {
return Some(multiplicand_1);
}
}
if let Some(x) = mul_1_const {
if (const_1 * x).is_one() {
return Some(multiplicand_0);
}
}
}
None
}
pub fn add(&mut self, x: Target, y: Target) -> Target {
let one = self.one();
// x + y = 1 * x * 1 + 1 * y
self.arithmetic(F::ONE, x, one, F::ONE, y)
}
pub fn add_many(&mut self, terms: &[Target]) -> Target {
let mut sum = self.zero();
for term in terms {
@ -42,22 +114,14 @@ impl<F: Field> CircuitBuilder<F> {
}
pub fn sub(&mut self, x: Target, y: Target) -> Target {
let zero = self.zero();
if x == zero {
return y;
}
if y == zero {
return x;
}
// TODO: Inefficient impl for now.
let neg_y = self.neg(y);
self.add(x, neg_y)
let one = self.one();
// x - y = 1 * x * 1 + (-1) * y
self.arithmetic(F::ONE, x, one, F::NEG_ONE, y)
}
pub fn mul(&mut self, x: Target, y: Target) -> Target {
// TODO: Check if one operand is 0 or 1.
todo!()
// x * y = 1 * x * y + 0 * x
self.arithmetic(F::ONE, x, y, F::ZERO, x)
}
pub fn mul_many(&mut self, terms: &[Target]) -> Target {
@ -68,8 +132,63 @@ impl<F: Field> CircuitBuilder<F> {
product
}
pub fn div(&mut self, x: Target, y: Target) -> Target {
// TODO: Check if one operand is 0 or 1.
todo!()
/// Computes `q = x / y` by witnessing `q` and requiring that `q * y = x`. This can be unsafe in
/// some cases, as it allows `0 / 0 = <anything>`.
pub fn div_unsafe(&mut self, x: Target, y: Target) -> Target {
// Check for special cases where we can determine the result without an `ArithmeticGate`.
let zero = self.zero();
let one = self.one();
if x == zero {
return zero;
}
if y == one {
return x;
}
if let (Some(x_const), Some(y_const)) = (self.target_as_constant(x), self.target_as_constant(y)) {
return self.constant(x_const / y_const);
}
// Add an `ArithmeticGate` to compute `q * y`.
let gate = self.add_gate(ArithmeticGate::new(), vec![F::ONE, F::ZERO]);
let wire_multiplicand_0 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_0 };
let wire_multiplicand_1 = Wire { gate, input: ArithmeticGate::WIRE_MULTIPLICAND_1 };
let wire_addend = Wire { gate, input: ArithmeticGate::WIRE_ADDEND };
let wire_output = Wire { gate, input: ArithmeticGate::WIRE_OUTPUT };
let q = Target::Wire(wire_multiplicand_0);
self.add_generator(QuotientGenerator {
numerator: x,
denominator: y,
quotient: q,
});
self.route(y, Target::Wire(wire_multiplicand_1));
// This can be anything, since the whole second term has a weight of zero.
self.route(zero, Target::Wire(wire_addend));
let q_y = Target::Wire(wire_output);
self.assert_equal(q_y, x);
q
}
}
struct QuotientGenerator {
numerator: Target,
denominator: Target,
quotient: Target,
}
impl<F: Field> SimpleGenerator<F> for QuotientGenerator {
fn dependencies(&self) -> Vec<Target> {
vec![self.numerator, self.denominator]
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
let num = witness.get_target(self.numerator);
let den = witness.get_target(self.denominator);
PartialWitness::singleton_target(self.quotient, num / den)
}
}