Rewrite LPC code to be more PLONK-specific

This commit is contained in:
wborgeaud 2021-05-31 17:49:04 +02:00
parent 845382b472
commit abc0ca3bf1
6 changed files with 657 additions and 435 deletions

View File

@ -52,136 +52,136 @@ fn fri_l(codeword_len: usize, rate_log: usize, conjecture: bool) -> f64 {
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quadratic::QuadraticCrandallField;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::extension_field::{flatten, Extendable, FieldExtension};
use crate::field::fft::ifft;
use crate::field::field::Field;
use crate::fri::prover::fri_proof;
use crate::fri::verifier::verify_fri_proof;
use crate::merkle_tree::MerkleTree;
use crate::plonk_challenger::Challenger;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::util::reverse_index_bits_in_place;
use anyhow::Result;
use rand::rngs::ThreadRng;
use rand::Rng;
fn check_fri<F: Field + Extendable<D>, const D: usize>(
degree_log: usize,
rate_bits: usize,
reduction_arity_bits: Vec<usize>,
num_query_rounds: usize,
) -> Result<()> {
let n = 1 << degree_log;
let coeffs = PolynomialCoeffs::new(F::rand_vec(n)).lde(rate_bits);
let coset_lde = coeffs.clone().coset_fft(F::MULTIPLICATIVE_GROUP_GENERATOR);
let config = FriConfig {
num_query_rounds,
rate_bits,
proof_of_work_bits: 2,
reduction_arity_bits,
blinding: vec![false],
check_basefield: vec![false],
};
let tree = {
let mut leaves = coset_lde
.values
.iter()
.map(|&x| vec![x])
.collect::<Vec<_>>();
reverse_index_bits_in_place(&mut leaves);
MerkleTree::new(leaves, false)
};
let coset_lde = PolynomialValues::new(
coset_lde
.values
.into_iter()
.map(F::Extension::from)
.collect(),
);
let root = tree.root;
let mut challenger = Challenger::new();
let proof = fri_proof::<F, D>(
&[&tree],
&coeffs.to_extension::<D>(),
&coset_lde,
&mut challenger,
&config,
);
let mut challenger = Challenger::new();
verify_fri_proof(
degree_log,
&[],
F::Extension::ONE,
&[root],
&proof,
&mut challenger,
&config,
)?;
Ok(())
}
fn gen_arities(degree_log: usize, rng: &mut ThreadRng) -> Vec<usize> {
let mut arities = Vec::new();
let mut remaining = degree_log;
while remaining > 0 {
let arity = rng.gen_range(0, remaining + 1);
arities.push(arity);
remaining -= arity;
}
arities
}
fn check_fri_multi_params<F: Field + Extendable<D>, const D: usize>() -> Result<()> {
let mut rng = rand::thread_rng();
for degree_log in 1..6 {
for rate_bits in 0..3 {
for num_query_round in 0..4 {
for _ in 0..3 {
check_fri::<F, D>(
degree_log,
rate_bits,
gen_arities(degree_log, &mut rng),
num_query_round,
)?;
}
}
}
}
Ok(())
}
mod base {
use super::*;
#[test]
fn test_fri_multi_params() -> Result<()> {
check_fri_multi_params::<CrandallField, 1>()
}
}
mod quadratic {
use super::*;
#[test]
fn test_fri_multi_params() -> Result<()> {
check_fri_multi_params::<CrandallField, 2>()
}
}
mod quartic {
use super::*;
#[test]
fn test_fri_multi_params() -> Result<()> {
check_fri_multi_params::<CrandallField, 4>()
}
}
}
// #[cfg(test)]
// mod tests {
// use super::*;
// use crate::field::crandall_field::CrandallField;
// use crate::field::extension_field::quadratic::QuadraticCrandallField;
// use crate::field::extension_field::quartic::QuarticCrandallField;
// use crate::field::extension_field::{flatten, Extendable, FieldExtension};
// use crate::field::fft::ifft;
// use crate::field::field::Field;
// use crate::fri::prover::fri_proof;
// use crate::fri::verifier::verify_fri_proof;
// use crate::merkle_tree::MerkleTree;
// use crate::plonk_challenger::Challenger;
// use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
// use crate::util::reverse_index_bits_in_place;
// use anyhow::Result;
// use rand::rngs::ThreadRng;
// use rand::Rng;
//
// fn check_fri<F: Field + Extendable<D>, const D: usize>(
// degree_log: usize,
// rate_bits: usize,
// reduction_arity_bits: Vec<usize>,
// num_query_rounds: usize,
// ) -> Result<()> {
// let n = 1 << degree_log;
// let coeffs = PolynomialCoeffs::new(F::rand_vec(n)).lde(rate_bits);
// let coset_lde = coeffs.clone().coset_fft(F::MULTIPLICATIVE_GROUP_GENERATOR);
// let config = FriConfig {
// num_query_rounds,
// rate_bits,
// proof_of_work_bits: 2,
// reduction_arity_bits,
// blinding: vec![false],
// check_basefield: vec![false],
// };
// let tree = {
// let mut leaves = coset_lde
// .values
// .iter()
// .map(|&x| vec![x])
// .collect::<Vec<_>>();
// reverse_index_bits_in_place(&mut leaves);
// MerkleTree::new(leaves, false)
// };
// let coset_lde = PolynomialValues::new(
// coset_lde
// .values
// .into_iter()
// .map(F::Extension::from)
// .collect(),
// );
// let root = tree.root;
// let mut challenger = Challenger::new();
// let proof = fri_proof::<F, D>(
// &[&tree],
// &coeffs.to_extension::<D>(),
// &coset_lde,
// &mut challenger,
// &config,
// );
//
// let mut challenger = Challenger::new();
// verify_fri_proof(
// degree_log,
// &[],
// F::Extension::ONE,
// &[root],
// &proof,
// &mut challenger,
// &config,
// )?;
//
// Ok(())
// }
//
// fn gen_arities(degree_log: usize, rng: &mut ThreadRng) -> Vec<usize> {
// let mut arities = Vec::new();
// let mut remaining = degree_log;
// while remaining > 0 {
// let arity = rng.gen_range(0, remaining + 1);
// arities.push(arity);
// remaining -= arity;
// }
// arities
// }
//
// fn check_fri_multi_params<F: Field + Extendable<D>, const D: usize>() -> Result<()> {
// let mut rng = rand::thread_rng();
// for degree_log in 1..6 {
// for rate_bits in 0..3 {
// for num_query_round in 0..4 {
// for _ in 0..3 {
// check_fri::<F, D>(
// degree_log,
// rate_bits,
// gen_arities(degree_log, &mut rng),
// num_query_round,
// )?;
// }
// }
// }
// }
// Ok(())
// }
//
// mod base {
// use super::*;
//
// #[test]
// fn test_fri_multi_params() -> Result<()> {
// check_fri_multi_params::<CrandallField, 1>()
// }
// }
//
// mod quadratic {
// use super::*;
//
// #[test]
// fn test_fri_multi_params() -> Result<()> {
// check_fri_multi_params::<CrandallField, 2>()
// }
// }
//
// mod quartic {
// use super::*;
//
// #[test]
// fn test_fri_multi_params() -> Result<()> {
// check_fri_multi_params::<CrandallField, 4>()
// }
// }
// }

View File

@ -5,9 +5,10 @@ use crate::fri::FriConfig;
use crate::hash::hash_n_to_1;
use crate::merkle_proofs::verify_merkle_proof;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::reduce_with_powers;
use crate::polynomial::commitment::SALT_SIZE;
use crate::polynomial::polynomial::PolynomialCoeffs;
use crate::proof::{FriInitialTreeProof, FriProof, FriQueryRound, Hash};
use crate::proof::{FriInitialTreeProof, FriProof, FriQueryRound, Hash, OpeningSet};
use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place};
use anyhow::{ensure, Result};
@ -65,8 +66,10 @@ fn fri_verify_proof_of_work<F: Field + Extendable<D>, const D: usize>(
pub fn verify_fri_proof<F: Field + Extendable<D>, const D: usize>(
purported_degree_log: usize,
// Point-evaluation pairs for polynomial commitments.
points: &[(F::Extension, F::Extension)],
// Openings of the PLONK polynomials.
os: &OpeningSet<F, D>,
// Point at which the PLONK polynomials are opened.
zeta: F::Extension,
// Scaling factor to combine polynomials.
alpha: F::Extension,
initial_merkle_roots: &[Hash<F>],
@ -108,11 +111,10 @@ pub fn verify_fri_proof<F: Field + Extendable<D>, const D: usize>(
"Number of reductions should be non-zero."
);
let interpolant = interpolant(points);
for round_proof in &proof.query_round_proofs {
fri_verifier_query_round(
&interpolant,
points,
os,
zeta,
alpha,
initial_merkle_roots,
&proof,
@ -139,48 +141,128 @@ fn fri_verify_initial_proof<F: Field>(
Ok(())
}
// fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
// proof: &FriInitialTreeProof<F>,
// alpha: F::Extension,
// opening_set: &OpeningSet<F, D>,
// zeta: F::Extension,
// subgroup_x: F,
// config: &FriConfig,
// ) -> F::Extension {
// let e = proof
// .evals_proofs
// .iter()
// .enumerate()
// .flat_map(|(i, (v, _))| &v[..v.len() - if config.blinding[i] { SALT_SIZE } else { 0 }])
// .rev()
// .fold(F::Extension::ZERO, |acc, &e| alpha * acc + e.into());
// let numerator = e - interpolant.eval(subgroup_x.into());
// let denominator = points
// .iter()
// .map(|&(x, _)| F::Extension::from_basefield(subgroup_x) - x)
// .product();
// let quotient = numerator / denominator;
// let quotient = if config.check_basefield[0] {
// let alpha_conj = alpha.frobenius();
// let comp_conj = proof
// .evals_proofs
// .iter()
// .enumerate()
// .flat_map(|(i, (v, _))| &v[..v.len() - if config.blinding[i] { SALT_SIZE } else { 0 }])
// .rev()
// .fold(F::Extension::ZERO, |acc, &e| alpha_conj * acc + e.into());
// let numerator = comp_conj - points[0].1.frobenius();
// let denominator = F::Extension::from_basefield(subgroup_x) - points[0].0.frobenius();
// quotient + (numerator / denominator) * alpha.exp(proof.evals_proofs[0].0.len() as u64)
// } else {
// quotient
// };
// quotient
// }
fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
proof: &FriInitialTreeProof<F>,
alpha: F::Extension,
interpolant: &PolynomialCoeffs<F::Extension>,
points: &[(F::Extension, F::Extension)],
os: &OpeningSet<F, D>,
zeta: F::Extension,
subgroup_x: F,
config: &FriConfig,
) -> F::Extension {
let e = proof
.evals_proofs
let degree_log = proof.evals_proofs[0].1.siblings.len() - config.rate_bits;
let mut cur_alpha = F::Extension::ONE;
let mut poly_count = 0;
let mut e = F::Extension::ZERO;
let ev = [0, 1, 4]
.iter()
.map(|&i| &proof.evals_proofs[i])
.enumerate()
.flat_map(|(i, (v, _))| &v[..v.len() - if config.blinding[i] { SALT_SIZE } else { 0 }])
.flat_map(|(j, (v, _))| &v[..v.len() - if config.blinding[j] { SALT_SIZE } else { 0 }])
.rev()
.fold(F::Extension::ZERO, |acc, &e| alpha * acc + e.into());
let numerator = e - interpolant.eval(subgroup_x.into());
let denominator = points
.fold(F::Extension::ZERO, |acc, &e| {
poly_count += 1;
alpha * acc + e.into()
});
let composition_eval = [&os.constants, &os.plonk_sigmas, &os.quotient_polys]
.iter()
.map(|&(x, _)| F::Extension::from_basefield(subgroup_x) - x)
.product();
let quotient = numerator / denominator;
let quotient = if config.check_basefield[0] {
let alpha_conj = alpha.frobenius();
let comp_conj = proof
.evals_proofs
.iter()
.enumerate()
.flat_map(|(i, (v, _))| &v[..v.len() - if config.blinding[i] { SALT_SIZE } else { 0 }])
.rev()
.fold(F::Extension::ZERO, |acc, &e| alpha_conj * acc + e.into());
let numerator = comp_conj - points[0].1.frobenius();
let denominator = F::Extension::from_basefield(subgroup_x) - points[0].0.frobenius();
quotient + (numerator / denominator) * alpha.exp(proof.evals_proofs[0].0.len() as u64)
} else {
quotient
};
quotient
.flat_map(|v| v.iter())
.rev()
.fold(F::Extension::ZERO, |acc, &e| acc * alpha + e);
let numerator = ev - composition_eval;
let denominator = F::Extension::from_basefield(subgroup_x) - zeta;
e += cur_alpha * numerator / denominator;
cur_alpha = alpha.exp(poly_count);
dbg!(e);
let ev = proof.evals_proofs[3].0
[..proof.evals_proofs[3].0.len() - if config.blinding[3] { SALT_SIZE } else { 0 }]
.iter()
.rev()
.fold(F::Extension::ZERO, |acc, &e| {
poly_count += 1;
alpha * acc + e.into()
});
let zeta_right = F::Extension::primitive_root_of_unity(degree_log) * zeta;
dbg!(degree_log);
let zs_interpol = interpolant(&[
(zeta, reduce_with_powers(&os.plonk_zs, alpha)),
(zeta_right, reduce_with_powers(&os.plonk_zs_right, alpha)),
]);
let numerator = ev - zs_interpol.eval(subgroup_x.into());
let denominator = (F::Extension::from_basefield(subgroup_x) - zeta)
* (F::Extension::from_basefield(subgroup_x) - zeta_right);
e += cur_alpha * numerator / denominator;
dbg!(e);
dbg!(cur_alpha);
cur_alpha = alpha.exp(poly_count);
let ev = proof.evals_proofs[2].0
[..proof.evals_proofs[2].0.len() - if config.blinding[2] { SALT_SIZE } else { 0 }]
.iter()
.rev()
.fold(F::Extension::ZERO, |acc, &e| {
poly_count += 1;
alpha * acc + e.into()
});
let zeta_frob = zeta.frobenius();
let wire_evals_frob = os.wires.iter().map(|e| e.frobenius()).collect::<Vec<_>>();
let wires_interpol = interpolant(&[
(zeta, reduce_with_powers(&os.wires, alpha)),
(zeta_frob, reduce_with_powers(&wire_evals_frob, alpha)),
]);
let numerator = ev - wires_interpol.eval(subgroup_x.into());
let denominator = (F::Extension::from_basefield(subgroup_x) - zeta)
* (F::Extension::from_basefield(subgroup_x) - zeta_frob);
e += cur_alpha * numerator / denominator;
cur_alpha = alpha.exp(poly_count);
e
}
fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
interpolant: &PolynomialCoeffs<F::Extension>,
points: &[(F::Extension, F::Extension)],
os: &OpeningSet<F, D>,
zeta: F::Extension,
alpha: F::Extension,
initial_merkle_roots: &[Hash<F>],
proof: &FriProof<F, D>,
@ -211,8 +293,8 @@ fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
fri_combine_initial(
&round_proof.initial_trees_proof,
alpha,
interpolant,
points,
os,
zeta,
subgroup_x,
config,
)

View File

@ -2,7 +2,7 @@ use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field::Field;
use crate::hash::{permute, SPONGE_RATE, SPONGE_WIDTH};
use crate::proof::{Hash, HashTarget};
use crate::proof::{Hash, HashTarget, OpeningSet};
use crate::target::Target;
/// Observes prover messages, and generates challenges by hashing the transcript.
@ -61,6 +61,30 @@ impl<F: Field> Challenger<F> {
}
}
pub fn observe_opening_set<const D: usize>(&mut self, os: &OpeningSet<F, D>)
where
F: Extendable<D>,
{
let OpeningSet {
constants,
plonk_sigmas,
wires,
plonk_zs,
plonk_zs_right,
quotient_polys,
} = os;
for v in &[
constants,
plonk_sigmas,
wires,
plonk_zs,
plonk_zs_right,
quotient_polys,
] {
self.observe_extension_elements(v);
}
}
pub fn observe_hash(&mut self, hash: &Hash<F>) {
self.observe_elements(&hash.elements)
}

View File

@ -10,7 +10,7 @@ use crate::merkle_tree::MerkleTree;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::{reduce_polys_with_powers, reduce_with_powers};
use crate::polynomial::polynomial::PolynomialCoeffs;
use crate::proof::{FriProof, Hash, OpeningSet};
use crate::proof::{FriInitialTreeProof, FriProof, Hash, OpeningSet};
use crate::timed;
use crate::util::{log2_strict, reverse_index_bits_in_place, transpose};
@ -164,91 +164,282 @@ impl<F: Field> ListPolynomialCommitment<F> {
)
}
pub fn batch_open<const D: usize>(
commitments: &[&Self],
points: &[F::Extension],
// pub fn batch_open<const D: usize>(
// commitments: &[&Self],
// opening_config: &OpeningConfig<F, D>,
// fri_config: &FriConfig,
// challenger: &mut Challenger<F>,
// ) -> (OpeningProof<F, D>, Vec<Vec<Vec<Vec<F::Extension>>>>)
// where
// F: Extendable<D>,
// {
// let degree = commitments[0].degree;
// assert_eq!(fri_config.blinding.len(), commitments.len());
// for (i, commitment) in commitments.iter().enumerate() {
// assert_eq!(commitment.rate_bits, fri_config.rate_bits, "Invalid rate.");
// assert_eq!(
// commitment.blinding, fri_config.blinding[i],
// "Invalid blinding paramater."
// );
// assert_eq!(
// commitment.degree, degree,
// "Trying to open polynomial commitments of different degrees."
// );
// }
// for &p in opening_config.points.iter().flat_map(|(v, _)| v) {
// assert_ne!(
// p.exp(degree as u64),
// F::Extension::ONE,
// "Opening point is in the subgroup."
// );
// }
//
// let evaluations = opening_config
// .points
// .iter()
// .map(|(xs, is)| {
// xs.iter()
// .map(|&x| {
// is.iter()
// .map(|&i| {
// commitments[i]
// .polynomials
// .iter()
// .map(|p| p.to_extension().eval(x))
// .collect::<Vec<_>>()
// })
// .collect::<Vec<_>>()
// })
// .collect::<Vec<_>>()
// })
// .collect::<Vec<_>>();
// for evals_per_point_vec in &evaluations {
// for evals_per_point in evals_per_point_vec {
// for evals in evals_per_point {
// challenger.observe_extension_elements(evals);
// }
// }
// }
//
// let alpha = challenger.get_extension_challenge();
// let mut cur_alpha = F::Extension::ONE;
//
// // Final low-degree polynomial that goes into FRI.
// let mut final_poly = PolynomialCoeffs::empty();
//
// for ((ps, is), evals) in opening_config.points.iter().zip(&evaluations) {
// let mut poly_count = 0;
// // Scale polynomials by `alpha`.
// let composition_poly = is
// .iter()
// .flat_map(|&i| &commitments[i].polynomials)
// .rev()
// .fold(PolynomialCoeffs::zero(degree), |acc, p| {
// poly_count += 1;
// &(&acc * alpha) + &p.to_extension()
// });
// // Scale evaluations by `alpha`.
// let composition_evals = &evals
// .iter()
// .map(|v| {
// v.iter()
// .flatten()
// .rev()
// .fold(F::Extension::ZERO, |acc, &e| acc * alpha + e)
// })
// .collect::<Vec<_>>();
//
// let quotient = Self::compute_quotient(ps, &composition_evals, &composition_poly);
// final_poly = &final_poly + &(&quotient * cur_alpha);
// cur_alpha *= alpha.exp(poly_count);
// }
//
// for &i in &opening_config.check_base_field {
// let commitment = commitments[i];
// let x = opening_config
// .points
// .iter()
// .find(|(xs, is)| is.contains(&i))
// .expect("Polynomial is never opened.")
// .0[0];
// let x_conj = x.frobenius();
// let mut poly_count = 0;
// let poly = commitment.polynomials.iter().rev().fold(
// PolynomialCoeffs::zero(degree),
// |acc, p| {
// poly_count += 1;
// &(&acc * alpha) + &p.to_extension()
// },
// );
// let e = poly.eval(x_conj);
// let quotient = Self::compute_quotient(&[x_conj], &[e], &poly);
// final_poly = &final_poly + &(&quotient * cur_alpha);
// cur_alpha *= alpha.exp(poly_count);
// }
//
// let lde_final_poly = final_poly.lde(fri_config.rate_bits);
// let lde_final_values = lde_final_poly
// .clone()
// .coset_fft(F::Extension::from_basefield(
// F::MULTIPLICATIVE_GROUP_GENERATOR,
// ));
//
// let fri_proof = fri_proof(
// &commitments
// .par_iter()
// .map(|c| &c.merkle_tree)
// .collect::<Vec<_>>(),
// &lde_final_poly,
// &lde_final_values,
// challenger,
// &fri_config,
// );
//
// (
// OpeningProof {
// fri_proof,
// quotient_degree: final_poly.len(),
// },
// evaluations,
// )
// }
pub fn open_plonk<const D: usize>(
commitments: &[&Self; 5],
zeta: F::Extension,
degree_log: usize,
challenger: &mut Challenger<F>,
config: &FriConfig,
) -> (OpeningProof<F, D>, Vec<Vec<Vec<F::Extension>>>)
) -> (OpeningProof<F, D>, OpeningSet<F, D>)
where
F: Extendable<D>,
{
let degree = commitments[0].degree;
assert_eq!(config.blinding.len(), commitments.len());
for (i, commitment) in commitments.iter().enumerate() {
assert_eq!(commitment.rate_bits, config.rate_bits, "Invalid rate.");
assert_eq!(
commitment.blinding, config.blinding[i],
"Invalid blinding paramater."
);
assert_eq!(
commitment.degree, degree,
"Trying to open polynomial commitments of different degrees."
);
}
for p in points {
let g = F::Extension::primitive_root_of_unity(degree_log);
dbg!(degree_log);
for &p in &[zeta, g * zeta] {
assert_ne!(
p.exp(degree as u64),
p.exp(1 << degree_log as u64),
F::Extension::ONE,
"Opening point is in the subgroup."
);
}
let evaluations = points
.par_iter()
.map(|&x| {
commitments
.iter()
.map(move |c| {
c.polynomials
.iter()
.map(|p| p.to_extension().eval(x))
.collect::<Vec<_>>()
})
.collect::<Vec<_>>()
})
.collect::<Vec<_>>();
for evals_per_point in &evaluations {
for evals in evals_per_point {
challenger.observe_extension_elements(evals);
}
}
let os = OpeningSet::new(
zeta,
g,
commitments[0],
commitments[1],
commitments[2],
commitments[3],
commitments[4],
);
challenger.observe_opening_set(&os);
let alpha = challenger.get_extension_challenge();
dbg!(alpha);
let mut cur_alpha = F::Extension::ONE;
// Scale polynomials by `alpha`.
let composition_poly = commitments
// Final low-degree polynomial that goes into FRI.
let mut final_poly = PolynomialCoeffs::empty();
// Count the total number of polynomials accumulated into `final_poly`.
let mut poly_count = 0;
let composition_poly = [0, 1, 4]
.iter()
.flat_map(|c| &c.polynomials)
.flat_map(|&i| &commitments[i].polynomials)
.rev()
.fold(PolynomialCoeffs::zero(degree), |acc, p| {
.fold(PolynomialCoeffs::empty(), |acc, p| {
poly_count += 1;
&(&acc * alpha) + &p.to_extension()
});
// Scale evaluations by `alpha`.
let composition_evals = &evaluations
.par_iter()
.map(|v| {
v.iter()
.flatten()
.rev()
.fold(F::Extension::ZERO, |acc, &e| acc * alpha + e)
})
.collect::<Vec<_>>();
let composition_eval = [&os.constants, &os.plonk_sigmas, &os.quotient_polys]
.iter()
.flat_map(|v| v.iter())
.rev()
.fold(F::Extension::ZERO, |acc, &e| acc * alpha + e);
let quotient = Self::compute_quotient(points, &composition_evals, &composition_poly);
let quotient = Self::compute_quotient(&[zeta], &[composition_eval], &composition_poly);
final_poly = &final_poly + &(&quotient * cur_alpha);
{
let lde_final_poly = final_poly.lde(config.rate_bits);
let lde_final_values = lde_final_poly
.clone()
.coset_fft(F::Extension::from_basefield(
F::MULTIPLICATIVE_GROUP_GENERATOR,
));
dbg!(lde_final_values);
}
cur_alpha = alpha.exp(poly_count);
let lde_quotient = PolynomialCoeffs::from(quotient.clone()).lde(config.rate_bits);
let lde_quotient_values = lde_quotient.clone().coset_fft(F::Extension::from_basefield(
F::MULTIPLICATIVE_GROUP_GENERATOR,
));
let zs_composition_poly =
commitments[3]
.polynomials
.iter()
.rev()
.fold(PolynomialCoeffs::empty(), |acc, p| {
poly_count += 1;
&(&acc * alpha) + &p.to_extension()
});
let zs_composition_evals = [
reduce_with_powers(&os.plonk_zs, alpha),
reduce_with_powers(&os.plonk_zs_right, alpha),
];
let zs_quotient = Self::compute_quotient(
&[zeta, g * zeta],
&zs_composition_evals,
&zs_composition_poly,
);
final_poly = &final_poly + &(&zs_quotient * cur_alpha);
{
let lde_final_poly = final_poly.lde(config.rate_bits);
let lde_final_values = lde_final_poly
.clone()
.coset_fft(F::Extension::from_basefield(
F::MULTIPLICATIVE_GROUP_GENERATOR,
));
dbg!(lde_final_values);
dbg!(cur_alpha);
}
cur_alpha = alpha.exp(poly_count);
let wires_composition_poly =
commitments[2]
.polynomials
.iter()
.rev()
.fold(PolynomialCoeffs::empty(), |acc, p| {
poly_count += 1;
&(&acc * alpha) + &p.to_extension()
});
let wire_evals_frob = os.wires.iter().map(|e| e.frobenius()).collect::<Vec<_>>();
let wires_composition_evals = [
reduce_with_powers(&os.wires, alpha),
reduce_with_powers(&wire_evals_frob, alpha),
];
let wires_quotient = Self::compute_quotient(
&[zeta, zeta.frobenius()],
&wires_composition_evals,
&wires_composition_poly,
);
final_poly = &final_poly + &(&wires_quotient * cur_alpha);
dbg!(final_poly.coeffs.len());
let lde_final_poly = final_poly.lde(config.rate_bits);
let lde_final_values = lde_final_poly
.clone()
.coset_fft(F::Extension::from_basefield(
F::MULTIPLICATIVE_GROUP_GENERATOR,
));
let fri_proof = fri_proof(
&commitments
.par_iter()
.map(|c| &c.merkle_tree)
.collect::<Vec<_>>(),
&lde_quotient,
&lde_quotient_values,
&lde_final_poly,
&lde_final_values,
challenger,
&config,
);
@ -256,38 +447,12 @@ impl<F: Field> ListPolynomialCommitment<F> {
(
OpeningProof {
fri_proof,
quotient_degree: quotient.len(),
quotient_degree: final_poly.len(),
},
evaluations,
os,
)
}
pub fn batch_open_plonk<const D: usize>(
commitments: &[&Self; 5],
points: &[F::Extension],
challenger: &mut Challenger<F>,
config: &FriConfig,
) -> (OpeningProof<F, D>, Vec<OpeningSet<F::Extension>>)
where
F: Extendable<D>,
{
let (op, mut evaluations) = Self::batch_open(commitments, points, challenger, config);
let opening_sets = evaluations
.par_iter_mut()
.map(|evals| {
evals.reverse();
OpeningSet {
constants: evals.pop().unwrap(),
plonk_sigmas: evals.pop().unwrap(),
wires: evals.pop().unwrap(),
plonk_zs: evals.pop().unwrap(),
quotient_polys: evals.pop().unwrap(),
}
})
.collect();
(op, opening_sets)
}
/// Given `points=(x_i)`, `evals=(y_i)` and `poly=P` with `P(x_i)=y_i`, computes the polynomial
/// `Q=(P-I)/Z` where `I` interpolates `(x_i, y_i)` and `Z` is the vanishing polynomial on `(x_i)`.
fn compute_quotient<const D: usize>(
@ -305,6 +470,7 @@ impl<F: Field> ListPolynomialCommitment<F> {
.collect::<Vec<_>>();
debug_assert!(pairs.iter().all(|&(x, e)| poly.eval(x) == e));
dbg!(&pairs);
let interpolant = interpolant(&pairs);
let denominator = points.iter().fold(PolynomialCoeffs::one(), |acc, &x| {
&acc * &PolynomialCoeffs::new(vec![-x, F::Extension::ONE])
@ -326,39 +492,21 @@ pub struct OpeningProof<F: Field + Extendable<D>, const D: usize> {
impl<F: Field + Extendable<D>, const D: usize> OpeningProof<F, D> {
pub fn verify(
&self,
points: &[F::Extension],
evaluations: &[Vec<Vec<F::Extension>>],
zeta: F::Extension,
os: &OpeningSet<F, D>,
merkle_roots: &[Hash<F>],
challenger: &mut Challenger<F>,
fri_config: &FriConfig,
) -> Result<()> {
for evals_per_point in evaluations {
for evals in evals_per_point {
challenger.observe_extension_elements(evals);
}
}
challenger.observe_opening_set(os);
let alpha = challenger.get_extension_challenge();
let scaled_evals = evaluations
.par_iter()
.map(|v| {
v.iter()
.flatten()
.rev()
.fold(F::Extension::ZERO, |acc, &e| acc * alpha + e)
})
.collect::<Vec<_>>();
let pairs = points
.iter()
.zip(&scaled_evals)
.map(|(&x, &e)| (x, e))
.collect::<Vec<_>>();
dbg!(alpha);
verify_fri_proof(
log2_strict(self.quotient_degree),
&pairs,
&os,
zeta,
alpha,
merkle_roots,
&self.fri_proof,
@ -375,182 +523,143 @@ mod tests {
use crate::field::crandall_field::CrandallField;
use super::*;
use std::convert::TryInto;
fn gen_random_test_case<F: Field + Extendable<D>, const D: usize>(
k: usize,
degree_log: usize,
num_points: usize,
) -> (Vec<PolynomialCoeffs<F>>, Vec<F::Extension>) {
) -> Vec<PolynomialCoeffs<F>> {
let degree = 1 << degree_log;
let polys = (0..k)
(0..k)
.map(|_| PolynomialCoeffs::new(F::rand_vec(degree)))
.collect();
let mut points = F::Extension::rand_vec(num_points);
while points.iter().any(|&x| x.exp(degree as u64).is_one()) {
points = F::Extension::rand_vec(num_points);
.collect()
}
fn gen_random_point<F: Field + Extendable<D>, const D: usize>(
degree_log: usize,
) -> F::Extension {
let degree = 1 << degree_log;
let mut point = F::Extension::rand();
while point.exp(degree as u64).is_one() {
point = F::Extension::rand();
}
(polys, points)
}
fn check_polynomial_commitment<F: Field + Extendable<D>, const D: usize>() -> Result<()> {
let k = 10;
let degree_log = 11;
let num_points = 3;
let fri_config = FriConfig {
proof_of_work_bits: 2,
rate_bits: 2,
reduction_arity_bits: vec![3, 2, 1, 2],
num_query_rounds: 3,
blinding: vec![false],
check_basefield: vec![true],
};
let (polys, points) = gen_random_test_case::<F, D>(k, degree_log, num_points);
let lpc = ListPolynomialCommitment::new(polys, fri_config.rate_bits, false);
let (proof, evaluations) = lpc.open::<D>(&points, &mut Challenger::new(), &fri_config);
proof.verify(
&points,
&evaluations.into_iter().map(|e| vec![e]).collect::<Vec<_>>(),
&[lpc.merkle_tree.root],
&mut Challenger::new(),
&fri_config,
)
}
fn check_polynomial_commitment_blinding<F: Field + Extendable<D>, const D: usize>() -> Result<()>
{
let k = 10;
let degree_log = 11;
let num_points = 3;
let fri_config = FriConfig {
proof_of_work_bits: 2,
rate_bits: 2,
reduction_arity_bits: vec![3, 2, 1, 2],
num_query_rounds: 3,
blinding: vec![true],
check_basefield: vec![false],
};
let (polys, points) = gen_random_test_case::<F, D>(k, degree_log, num_points);
let lpc = ListPolynomialCommitment::new(polys, fri_config.rate_bits, true);
let (proof, evaluations) = lpc.open::<D>(&points, &mut Challenger::new(), &fri_config);
proof.verify(
&points,
&evaluations.into_iter().map(|e| vec![e]).collect::<Vec<_>>(),
&[lpc.merkle_tree.root],
&mut Challenger::new(),
&fri_config,
)
point
}
fn check_batch_polynomial_commitment<F: Field + Extendable<D>, const D: usize>() -> Result<()> {
let k0 = 10;
let k1 = 3;
let k2 = 7;
let degree_log = 11;
let num_points = 5;
let ks = [1, 2, 3, 5, 8];
let degree_log = 2;
let fri_config = FriConfig {
proof_of_work_bits: 2,
rate_bits: 2,
reduction_arity_bits: vec![2, 3, 1, 2],
rate_bits: 1,
// reduction_arity_bits: vec![2, 3, 1, 2],
reduction_arity_bits: vec![1],
num_query_rounds: 3,
blinding: vec![false, false, false],
blinding: vec![false, false, false, false, false],
check_basefield: vec![false, false, false],
};
let (polys0, _) = gen_random_test_case::<F, D>(k0, degree_log, num_points);
let (polys1, _) = gen_random_test_case::<F, D>(k1, degree_log, num_points);
let (polys2, points) = gen_random_test_case::<F, D>(k2, degree_log, num_points);
let lpc0 = ListPolynomialCommitment::new(polys0, fri_config.rate_bits, false);
let lpc1 = ListPolynomialCommitment::new(polys1, fri_config.rate_bits, false);
let lpc2 = ListPolynomialCommitment::new(polys2, fri_config.rate_bits, false);
let lpcs = ks
.iter()
.map(|&k| {
ListPolynomialCommitment::<F>::new(
gen_random_test_case(k, degree_log),
fri_config.rate_bits,
false,
)
})
.collect::<Vec<_>>();
let (proof, evaluations) = ListPolynomialCommitment::batch_open::<D>(
&[&lpc0, &lpc1, &lpc2],
&points,
let zeta = gen_random_point::<F, D>(degree_log);
let (proof, os) = ListPolynomialCommitment::open_plonk::<D>(
&[&lpcs[0], &lpcs[1], &lpcs[2], &lpcs[3], &lpcs[4]],
zeta,
degree_log,
&mut Challenger::new(),
&fri_config,
);
let os = OpeningSet::new(
zeta,
F::Extension::primitive_root_of_unity(degree_log),
&lpcs[0],
&lpcs[1],
&lpcs[2],
&lpcs[3],
&lpcs[4],
);
proof.verify(
&points,
&evaluations,
zeta,
&os,
&[
lpc0.merkle_tree.root,
lpc1.merkle_tree.root,
lpc2.merkle_tree.root,
lpcs[0].merkle_tree.root,
lpcs[1].merkle_tree.root,
lpcs[2].merkle_tree.root,
lpcs[3].merkle_tree.root,
lpcs[4].merkle_tree.root,
],
&mut Challenger::new(),
&fri_config,
)
}
fn check_batch_polynomial_commitment_blinding<F: Field + Extendable<D>, const D: usize>(
) -> Result<()> {
let k0 = 10;
let k1 = 3;
let k2 = 7;
let degree_log = 11;
let num_points = 5;
let fri_config = FriConfig {
proof_of_work_bits: 2,
rate_bits: 2,
reduction_arity_bits: vec![2, 3, 1, 2],
num_query_rounds: 3,
blinding: vec![true, false, true],
check_basefield: vec![true, false, true],
};
let (polys0, _) = gen_random_test_case::<F, D>(k0, degree_log, num_points);
let (polys1, _) = gen_random_test_case::<F, D>(k1, degree_log, num_points);
let (polys2, points) = gen_random_test_case::<F, D>(k2, degree_log, num_points);
let lpc0 = ListPolynomialCommitment::new(polys0, fri_config.rate_bits, true);
let lpc1 = ListPolynomialCommitment::new(polys1, fri_config.rate_bits, false);
let lpc2 = ListPolynomialCommitment::new(polys2, fri_config.rate_bits, true);
let (proof, evaluations) = ListPolynomialCommitment::batch_open::<D>(
&[&lpc0, &lpc1, &lpc2],
&points,
&mut Challenger::new(),
&fri_config,
);
proof.verify(
&points,
&evaluations,
&[
lpc0.merkle_tree.root,
lpc1.merkle_tree.root,
lpc2.merkle_tree.root,
],
&mut Challenger::new(),
&fri_config,
)
}
// fn check_batch_polynomial_commitment_blinding<F: Field + Extendable<D>, const D: usize>(
// ) -> Result<()> {
// let k0 = 10;
// let k1 = 3;
// let k2 = 7;
// let degree_log = 11;
// let num_points = 5;
// let fri_config = FriConfig {
// proof_of_work_bits: 2,
// rate_bits: 2,
// reduction_arity_bits: vec![2, 3, 1, 2],
// num_query_rounds: 3,
// blinding: vec![true, false, true],
// check_basefield: vec![true, false, true],
// };
// let (polys0, _) = gen_random_test_case::<F, D>(k0, degree_log, num_points);
// let (polys1, _) = gen_random_test_case::<F, D>(k1, degree_log, num_points);
// let (polys2, points) = gen_random_test_case::<F, D>(k2, degree_log, num_points);
//
// let lpc0 = ListPolynomialCommitment::new(polys0, fri_config.rate_bits, true);
// let lpc1 = ListPolynomialCommitment::new(polys1, fri_config.rate_bits, false);
// let lpc2 = ListPolynomialCommitment::new(polys2, fri_config.rate_bits, true);
//
// let (proof, evaluations) = ListPolynomialCommitment::batch_open::<D>(
// &[&lpc0, &lpc1, &lpc2],
// &points,
// &fri_config,
// &mut Challenger::new(),
// );
// proof.verify(
// &points,
// &evaluations,
// &[
// lpc0.merkle_tree.root,
// lpc1.merkle_tree.root,
// lpc2.merkle_tree.root,
// ],
// &mut Challenger::new(),
// &fri_config,
// )
// }
macro_rules! tests_commitments {
($F:ty, $D:expr) => {
use super::*;
#[test]
fn test_polynomial_commitment() -> Result<()> {
check_polynomial_commitment::<$F, $D>()
}
#[test]
fn test_polynomial_commitment_blinding() -> Result<()> {
check_polynomial_commitment_blinding::<$F, $D>()
}
#[test]
fn test_batch_polynomial_commitment() -> Result<()> {
check_batch_polynomial_commitment::<$F, $D>()
}
#[test]
fn test_batch_polynomial_commitment_blinding() -> Result<()> {
check_batch_polynomial_commitment_blinding::<$F, $D>()
}
// #[test]
// fn test_batch_polynomial_commitment_blinding() -> Result<()> {
// check_batch_polynomial_commitment_blinding::<$F, $D>()
// }
};
}

View File

@ -63,8 +63,8 @@ pub struct Proof<F: Field + Extendable<D>, const D: usize> {
/// Merkle root of LDEs of the quotient polynomial components.
pub quotient_polys_root: Hash<F>,
/// Purported values of each polynomial at each challenge point.
pub openings: Vec<OpeningSet<F::Extension>>,
/// Purported values of each polynomial at the challenge point.
pub openings: OpeningSet<F, D>,
/// A FRI argument for each FRI query.
pub opening_proof: OpeningProof<F, D>,
@ -130,31 +130,37 @@ pub struct FriProofTarget {
}
/// The purported values of each polynomial at a single point.
pub struct OpeningSet<F: Field> {
pub constants: Vec<F>,
pub plonk_sigmas: Vec<F>,
pub wires: Vec<F>,
pub plonk_zs: Vec<F>,
pub quotient_polys: Vec<F>,
pub struct OpeningSet<F: Field + Extendable<D>, const D: usize> {
pub constants: Vec<F::Extension>,
pub plonk_sigmas: Vec<F::Extension>,
pub wires: Vec<F::Extension>,
pub plonk_zs: Vec<F::Extension>,
pub plonk_zs_right: Vec<F::Extension>,
pub quotient_polys: Vec<F::Extension>,
}
impl<F: Field> OpeningSet<F> {
impl<F: Field + Extendable<D>, const D: usize> OpeningSet<F, D> {
pub fn new(
z: F,
z: F::Extension,
g: F::Extension,
constant_commitment: &ListPolynomialCommitment<F>,
plonk_sigmas_commitment: &ListPolynomialCommitment<F>,
wires_commitment: &ListPolynomialCommitment<F>,
plonk_zs_commitment: &ListPolynomialCommitment<F>,
quotient_polys_commitment: &ListPolynomialCommitment<F>,
) -> Self {
let eval_commitment = |z: F, c: &ListPolynomialCommitment<F>| {
c.polynomials.iter().map(|p| p.eval(z)).collect::<Vec<_>>()
let eval_commitment = |z: F::Extension, c: &ListPolynomialCommitment<F>| {
c.polynomials
.iter()
.map(|p| p.to_extension().eval(z))
.collect::<Vec<_>>()
};
Self {
constants: eval_commitment(z, constant_commitment),
plonk_sigmas: eval_commitment(z, plonk_sigmas_commitment),
wires: eval_commitment(z, wires_commitment),
plonk_zs: eval_commitment(z, plonk_zs_commitment),
plonk_zs_right: eval_commitment(g * z, plonk_zs_commitment),
quotient_polys: eval_commitment(z, quotient_polys_commitment),
}
}

View File

@ -14,7 +14,7 @@ use crate::polynomial::commitment::ListPolynomialCommitment;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::Proof;
use crate::timed;
use crate::util::transpose;
use crate::util::{log2_strict, transpose};
use crate::vars::EvaluationVars;
use crate::wire::Wire;
use crate::witness::PartialWitness;
@ -116,10 +116,10 @@ pub(crate) fn prove<F: Field + Extendable<D>, const D: usize>(
challenger.observe_hash(&quotient_polys_commitment.merkle_tree.root);
let zetas = challenger.get_n_extension_challenges(config.num_challenges);
let zeta = challenger.get_extension_challenge();
let (opening_proof, openings) = timed!(
ListPolynomialCommitment::batch_open_plonk(
ListPolynomialCommitment::open_plonk(
&[
&prover_data.constants_commitment,
&prover_data.sigmas_commitment,
@ -127,7 +127,8 @@ pub(crate) fn prove<F: Field + Extendable<D>, const D: usize>(
&plonk_zs_commitment,
&quotient_polys_commitment,
],
&zetas,
zeta,
log2_strict(degree),
&mut challenger,
&common_data.config.fri_config
),