EVM Arithmetic Stark table (#559)

* First draft of 256-bit addition.

* Update comment.

* cargo fmt

* Rename addition evaluation file.

* Port ALU logic from SZ.

* Give a name to some magic numbers.

* `addition.rs` -> `add.rs`; fix carry propagation in add; impl sub.

* Clippy.

* Combine hi and lo parts of the output.

* Implement MUL.

* Suppress Clippy's attempt to make my code even harder to read.

* Next draft of MUL.

* Make all limbs (i.e. input and output) 16-bits.

* Tidying.

* Use iterators instead of building arrays.

* Documentation.

* Clippy is wrong; also cargo fmt.

* Un-refactor equality checking, since it was wrong for sub.

* Daniel comments.

* Daniel comments.

* Rename folder 'alu' -> 'arithmetic'.

* Rename file.

* Finish changing name ALU -> Arithmetic Unit.

* Finish removing dependency on array_zip feature.

* Remove operations that will be handled elsewhere.

* Rename var; tidy up.

* Clean up columns; mark places where range-checks need to be done.

* Import all names in 'columns' to reduce verbiage.

* cargo fmt

* Fix aux_in calculation in mul.

* Remove redundant 'allow's; more precise range-check size.

* Document functions.

* Document MUL instruction verification technique.

* Initial tests for ADD.

* Minor test fixes; add test for SUB.

* Fix bugs in generate functions.

* Fix SUB verification; refactor equality verification.

* cargo fmt

* Add test for MUL and fix some bugs.

* Update doc.

* Quiet incorrect clippy error.

* Clean up 'decode.rs'.

* Fold 'decode.rs' into 'arithmetic_stark.rs'.

* Force limb size to divide EVM register size.

* Document range-check warning and fix end value calc.

* Convert `debug_assert!`s into `assert!`s.

* Clean up various kinds of iterator usage.

* Remove unnecessary type spec.

* Document unexpected use of `collect`.
This commit is contained in:
Hamish Ivey-Law 2022-06-29 11:56:48 +10:00 committed by GitHub
parent dec0765fb5
commit aa42312126
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 827 additions and 0 deletions

211
evm/src/arithmetic/add.rs Normal file
View File

@ -0,0 +1,211 @@
use itertools::izip;
use plonky2::field::extension::Extendable;
use plonky2::field::packed::PackedField;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use crate::arithmetic::columns::*;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::range_check_error;
/// Given two sequences `larger` and `smaller` of equal length (not
/// checked), verifies that \sum_i larger[i] 2^(LIMB_BITS * i) ==
/// \sum_i smaller[i] 2^(LIMB_BITS * i), taking care of carry propagation.
///
/// The sequences must have been produced by `{add,sub}::eval_packed_generic()`.
pub(crate) fn eval_packed_generic_are_equal<P, I, J>(
yield_constr: &mut ConstraintConsumer<P>,
is_op: P,
larger: I,
smaller: J,
) where
P: PackedField,
I: Iterator<Item = P>,
J: Iterator<Item = P>,
{
let overflow = P::Scalar::from_canonical_u64(1 << LIMB_BITS);
let overflow_inv = overflow.inverse();
let mut cy = P::ZEROS;
for (a, b) in larger.zip(smaller) {
// t should be either 0 or 2^LIMB_BITS
let t = cy + a - b;
yield_constr.constraint(is_op * t * (overflow - t));
// cy <-- 0 or 1
// NB: this is multiplication by a constant, so doesn't
// increase the degree of the constraint.
cy = t * overflow_inv;
}
}
pub(crate) fn eval_ext_circuit_are_equal<F, const D: usize, I, J>(
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
is_op: ExtensionTarget<D>,
larger: I,
smaller: J,
) where
F: RichField + Extendable<D>,
I: Iterator<Item = ExtensionTarget<D>>,
J: Iterator<Item = ExtensionTarget<D>>,
{
// 2^LIMB_BITS in the base field
let overflow_base = F::from_canonical_u64(1 << LIMB_BITS);
// 2^LIMB_BITS in the extension field as an ExtensionTarget
let overflow = builder.constant_extension(F::Extension::from(overflow_base));
// 2^-LIMB_BITS in the base field.
let overflow_inv = F::inverse_2exp(LIMB_BITS);
let mut cy = builder.zero_extension();
for (a, b) in larger.zip(smaller) {
// t0 = cy + a
let t0 = builder.add_extension(cy, a);
// t = t0 - b
let t = builder.sub_extension(t0, b);
// t1 = overflow - t
let t1 = builder.sub_extension(overflow, t);
// t2 = t * t1
let t2 = builder.mul_extension(t, t1);
let filtered_limb_constraint = builder.mul_extension(is_op, t2);
yield_constr.constraint(builder, filtered_limb_constraint);
cy = builder.mul_const_extension(overflow_inv, t);
}
}
pub fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS]) {
let input0_limbs = ADD_INPUT_0.map(|c| lv[c].to_canonical_u64());
let input1_limbs = ADD_INPUT_1.map(|c| lv[c].to_canonical_u64());
// Input and output have 16-bit limbs
let mut output_limbs = [0u64; N_LIMBS];
const MASK: u64 = (1u64 << LIMB_BITS) - 1u64;
let mut cy = 0u64;
for (i, a, b) in izip!(0.., input0_limbs, input1_limbs) {
let s = a + b + cy;
cy = s >> LIMB_BITS;
assert!(cy <= 1u64, "input limbs were larger than 16 bits");
output_limbs[i] = s & MASK;
}
// last carry is dropped because this is addition modulo 2^256.
for (&c, output_limb) in ADD_OUTPUT.iter().zip(output_limbs) {
lv[c] = F::from_canonical_u64(output_limb);
}
}
pub fn eval_packed_generic<P: PackedField>(
lv: &[P; NUM_ARITH_COLUMNS],
yield_constr: &mut ConstraintConsumer<P>,
) {
range_check_error!(ADD_INPUT_0, 16);
range_check_error!(ADD_INPUT_1, 16);
range_check_error!(ADD_OUTPUT, 16);
let is_add = lv[IS_ADD];
let input0_limbs = ADD_INPUT_0.iter().map(|&c| lv[c]);
let input1_limbs = ADD_INPUT_1.iter().map(|&c| lv[c]);
let output_limbs = ADD_OUTPUT.iter().map(|&c| lv[c]);
// This computed output is not yet reduced; i.e. some limbs may be
// more than 16 bits.
let output_computed = input0_limbs.zip(input1_limbs).map(|(a, b)| a + b);
eval_packed_generic_are_equal(yield_constr, is_add, output_computed, output_limbs);
}
#[allow(clippy::needless_collect)]
pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let is_add = lv[IS_ADD];
let input0_limbs = ADD_INPUT_0.iter().map(|&c| lv[c]);
let input1_limbs = ADD_INPUT_1.iter().map(|&c| lv[c]);
let output_limbs = ADD_OUTPUT.iter().map(|&c| lv[c]);
// Since `map` is lazy and the closure passed to it borrows
// `builder`, we can't then borrow builder again below in the call
// to `eval_ext_circuit_are_equal`. The solution is to force
// evaluation with `collect`.
let output_computed = input0_limbs
.zip(input1_limbs)
.map(|(a, b)| builder.add_extension(a, b))
.collect::<Vec<ExtensionTarget<D>>>();
eval_ext_circuit_are_equal(
builder,
yield_constr,
is_add,
output_computed.into_iter(),
output_limbs,
);
}
#[cfg(test)]
mod tests {
use plonky2::field::goldilocks_field::GoldilocksField;
use plonky2::field::types::Field;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use super::*;
use crate::arithmetic::columns::NUM_ARITH_COLUMNS;
use crate::constraint_consumer::ConstraintConsumer;
// TODO: Should be able to refactor this test to apply to all operations.
#[test]
fn generate_eval_consistency_not_add() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// if `IS_ADD == 0`, then the constraints should be met even
// if all values are garbage.
lv[IS_ADD] = F::ZERO;
let mut constrant_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constrant_consumer);
for &acc in &constrant_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
#[test]
fn generate_eval_consistency_add() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// set `IS_ADD == 1` and ensure all constraints are satisfied.
lv[IS_ADD] = F::ONE;
// set inputs to random values
for (&ai, bi) in ADD_INPUT_0.iter().zip(ADD_INPUT_1) {
lv[ai] = F::from_canonical_u16(rng.gen());
lv[bi] = F::from_canonical_u16(rng.gen());
}
generate(&mut lv);
let mut constrant_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constrant_consumer);
for &acc in &constrant_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
}

View File

@ -0,0 +1,87 @@
use std::marker::PhantomData;
use std::ops::Add;
use itertools::Itertools;
use plonky2::field::extension::{Extendable, FieldExtension};
use plonky2::field::packed::PackedField;
use plonky2::hash::hash_types::RichField;
use crate::arithmetic::add;
use crate::arithmetic::columns;
use crate::arithmetic::mul;
use crate::arithmetic::sub;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::stark::Stark;
use crate::vars::{StarkEvaluationTargets, StarkEvaluationVars};
#[derive(Copy, Clone)]
pub struct ArithmeticStark<F, const D: usize> {
pub f: PhantomData<F>,
}
impl<F: RichField, const D: usize> ArithmeticStark<F, D> {
pub fn generate(&self, local_values: &mut [F; columns::NUM_ARITH_COLUMNS]) {
// Check that at most one operation column is "one" and that the
// rest are "zero".
assert_eq!(
columns::ALL_OPERATIONS
.iter()
.map(|&c| {
if local_values[c] == F::ONE {
Ok(1u64)
} else if local_values[c] == F::ZERO {
Ok(0u64)
} else {
Err("column was not 0 nor 1")
}
})
.fold_ok(0u64, Add::add),
Ok(1)
);
if local_values[columns::IS_ADD].is_one() {
add::generate(local_values);
} else if local_values[columns::IS_SUB].is_one() {
sub::generate(local_values);
} else if local_values[columns::IS_MUL].is_one() {
mul::generate(local_values);
} else {
todo!("the requested operation has not yet been implemented");
}
}
}
impl<F: RichField + Extendable<D>, const D: usize> Stark<F, D> for ArithmeticStark<F, D> {
const COLUMNS: usize = columns::NUM_ARITH_COLUMNS;
const PUBLIC_INPUTS: usize = 0;
fn eval_packed_generic<FE, P, const D2: usize>(
&self,
vars: StarkEvaluationVars<FE, P, { Self::COLUMNS }, { Self::PUBLIC_INPUTS }>,
yield_constr: &mut ConstraintConsumer<P>,
) where
FE: FieldExtension<D2, BaseField = F>,
P: PackedField<Scalar = FE>,
{
let lv = vars.local_values;
add::eval_packed_generic(lv, yield_constr);
sub::eval_packed_generic(lv, yield_constr);
mul::eval_packed_generic(lv, yield_constr);
}
fn eval_ext_circuit(
&self,
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
vars: StarkEvaluationTargets<D, { Self::COLUMNS }, { Self::PUBLIC_INPUTS }>,
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let lv = vars.local_values;
add::eval_ext_circuit(builder, lv, yield_constr);
sub::eval_ext_circuit(builder, lv, yield_constr);
mul::eval_ext_circuit(builder, lv, yield_constr);
}
fn constraint_degree(&self) -> usize {
3
}
}

View File

@ -0,0 +1,82 @@
//! Arithmetic unit
pub const LIMB_BITS: usize = 16;
const EVM_REGISTER_BITS: usize = 256;
/// Return the number of LIMB_BITS limbs that are in an EVM
/// register-sized number, panicking if LIMB_BITS doesn't divide in
/// the EVM register size.
const fn n_limbs() -> usize {
if EVM_REGISTER_BITS % LIMB_BITS != 0 {
panic!("limb size must divide EVM register size");
}
EVM_REGISTER_BITS / LIMB_BITS
}
/// Number of LIMB_BITS limbs that are in on EVM register-sized number.
pub const N_LIMBS: usize = n_limbs();
pub const IS_ADD: usize = 0;
pub const IS_MUL: usize = IS_ADD + 1;
pub const IS_SUB: usize = IS_MUL + 1;
pub const IS_DIV: usize = IS_SUB + 1;
pub const IS_SDIV: usize = IS_DIV + 1;
pub const IS_MOD: usize = IS_SDIV + 1;
pub const IS_SMOD: usize = IS_MOD + 1;
pub const IS_ADDMOD: usize = IS_SMOD + 1;
pub const IS_MULMOD: usize = IS_ADDMOD + 1;
pub const IS_LT: usize = IS_MULMOD + 1;
pub const IS_GT: usize = IS_LT + 1;
pub const IS_SLT: usize = IS_GT + 1;
pub const IS_SGT: usize = IS_SLT + 1;
pub const IS_SHL: usize = IS_SGT + 1;
pub const IS_SHR: usize = IS_SHL + 1;
pub const IS_SAR: usize = IS_SHR + 1;
const START_SHARED_COLS: usize = IS_SAR + 1;
pub(crate) const ALL_OPERATIONS: [usize; 16] = [
IS_ADD, IS_MUL, IS_SUB, IS_DIV, IS_SDIV, IS_MOD, IS_SMOD, IS_ADDMOD, IS_MULMOD, IS_LT, IS_GT,
IS_SLT, IS_SGT, IS_SHL, IS_SHR, IS_SAR,
];
/// Within the Arithmetic Unit, there are shared columns which can be
/// used by any arithmetic circuit, depending on which one is active
/// this cycle. Can be increased as needed as other operations are
/// implemented.
const NUM_SHARED_COLS: usize = 64;
const fn shared_col(i: usize) -> usize {
assert!(i < NUM_SHARED_COLS);
START_SHARED_COLS + i
}
const fn gen_input_cols<const N: usize>(start: usize) -> [usize; N] {
let mut cols = [0usize; N];
let mut i = 0;
while i < N {
cols[i] = shared_col(start + i);
i += 1;
}
cols
}
const GENERAL_INPUT_0: [usize; N_LIMBS] = gen_input_cols::<N_LIMBS>(0);
const GENERAL_INPUT_1: [usize; N_LIMBS] = gen_input_cols::<N_LIMBS>(N_LIMBS);
const GENERAL_INPUT_2: [usize; N_LIMBS] = gen_input_cols::<N_LIMBS>(2 * N_LIMBS);
const AUX_INPUT_0: [usize; N_LIMBS] = gen_input_cols::<N_LIMBS>(3 * N_LIMBS);
pub(crate) const ADD_INPUT_0: [usize; N_LIMBS] = GENERAL_INPUT_0;
pub(crate) const ADD_INPUT_1: [usize; N_LIMBS] = GENERAL_INPUT_1;
pub(crate) const ADD_OUTPUT: [usize; N_LIMBS] = GENERAL_INPUT_2;
pub(crate) const SUB_INPUT_0: [usize; N_LIMBS] = GENERAL_INPUT_0;
pub(crate) const SUB_INPUT_1: [usize; N_LIMBS] = GENERAL_INPUT_1;
pub(crate) const SUB_OUTPUT: [usize; N_LIMBS] = GENERAL_INPUT_2;
pub(crate) const MUL_INPUT_0: [usize; N_LIMBS] = GENERAL_INPUT_0;
pub(crate) const MUL_INPUT_1: [usize; N_LIMBS] = GENERAL_INPUT_1;
pub(crate) const MUL_OUTPUT: [usize; N_LIMBS] = GENERAL_INPUT_2;
pub(crate) const MUL_AUX_INPUT: [usize; N_LIMBS] = AUX_INPUT_0;
pub const NUM_ARITH_COLUMNS: usize = START_SHARED_COLS + NUM_SHARED_COLS;

View File

@ -0,0 +1,7 @@
mod add;
mod mul;
mod sub;
mod utils;
pub mod arithmetic_stark;
pub(crate) mod columns;

269
evm/src/arithmetic/mul.rs Normal file
View File

@ -0,0 +1,269 @@
//! Support for the EVM MUL instruction.
//!
//! This crate verifies an EVM MUL instruction, which takes two
//! 256-bit inputs A and B, and produces a 256-bit output C satisfying
//!
//! C = A*B (mod 2^256).
//!
//! Inputs A and B, and output C, are given as arrays of 16-bit
//! limbs. For example, if the limbs of A are a[0]...a[15], then
//!
//! A = \sum_{i=0}^15 a[i] β^i,
//!
//! where β = 2^16. To verify that A, B and C satisfy the equation we
//! proceed as follows. Define a(x) = \sum_{i=0}^15 a[i] x^i (so A = a(β))
//! and similarly for b(x) and c(x). Then A*B = C (mod 2^256) if and only
//! if there exist polynomials q and m such that
//!
//! a(x)*b(x) - c(x) - m(x)*x^16 - (x - β)*q(x) == 0.
//!
//! Because A, B and C are 256-bit numbers, the degrees of a, b and c
//! are (at most) 15. Thus deg(a*b) <= 30, so deg(m) <= 14 and deg(q)
//! <= 29. However, the fact that we're verifying the equality modulo
//! 2^256 means that we can ignore terms of degree >= 16, since for
//! them evaluating at β gives a factor of β^16 = 2^256 which is 0.
//!
//! Hence, to verify the equality, we don't need m(x) at all, and we
//! only need to know q(x) up to degree 14 (so that (x-β)*q(x) has
//! degree 15). On the other hand, the coefficients of q(x) can be as
//! large as 16*(β-2) or 20 bits.
use plonky2::field::extension::Extendable;
use plonky2::field::packed::PackedField;
use plonky2::field::types::Field;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use crate::arithmetic::columns::*;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::range_check_error;
pub fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS]) {
let input0_limbs = MUL_INPUT_0.map(|c| lv[c].to_canonical_u64());
let input1_limbs = MUL_INPUT_1.map(|c| lv[c].to_canonical_u64());
const MASK: u64 = (1u64 << LIMB_BITS) - 1u64;
// Input and output have 16-bit limbs
let mut aux_in_limbs = [0u64; N_LIMBS];
let mut output_limbs = [0u64; N_LIMBS];
let mut unreduced_prod = [0u64; N_LIMBS];
// Column-wise pen-and-paper long multiplication on 16-bit limbs.
// We have heaps of space at the top of each limb, so by
// calculating column-wise (instead of the usual row-wise) we
// avoid a bunch of carry propagation handling (at the expense of
// slightly worse cache coherency), and it makes it easy to
// calculate the coefficients of a(x)*b(x) (in unreduced_prod).
let mut cy = 0u64;
for col in 0..N_LIMBS {
for i in 0..=col {
// Invariant: i + j = col
let j = col - i;
let ai_x_bj = input0_limbs[i] * input1_limbs[j];
unreduced_prod[col] += ai_x_bj;
}
let t = unreduced_prod[col] + cy;
cy = t >> LIMB_BITS;
output_limbs[col] = t & MASK;
}
// In principle, the last cy could be dropped because this is
// multiplication modulo 2^256. However, we need it below for
// aux_in_limbs to handle the fact that unreduced_prod will
// inevitably contain a one digit's worth that is > 2^256.
for (&c, output_limb) in MUL_OUTPUT.iter().zip(output_limbs) {
lv[c] = F::from_canonical_u64(output_limb);
}
for deg in 0..N_LIMBS {
// deg'th element <- a*b - c
unreduced_prod[deg] -= output_limbs[deg];
}
// unreduced_prod is the coefficients of the polynomial a(x)*b(x) - c(x).
// This must be zero when evaluated at x = B = 2^LIMB_BITS, hence it's
// divisible by (B - x). If we write unreduced_prod as
//
// a(x)*b(x) - c(x) = \sum_{i=0}^n p_i x^i
// = (B - x) \sum_{i=0}^{n-1} q_i x^i
//
// then by comparing coefficients it is easy to see that
//
// q_0 = p_0 / B and q_i = (p_i + q_{i-1}) / B
//
// for 0 < i < n-1 (and the divisions are exact).
aux_in_limbs[0] = unreduced_prod[0] >> LIMB_BITS;
for deg in 1..N_LIMBS - 1 {
aux_in_limbs[deg] = (unreduced_prod[deg] + aux_in_limbs[deg - 1]) >> LIMB_BITS;
}
aux_in_limbs[N_LIMBS - 1] = cy;
for deg in 0..N_LIMBS {
let c = MUL_AUX_INPUT[deg];
lv[c] = F::from_canonical_u64(aux_in_limbs[deg]);
}
}
pub fn eval_packed_generic<P: PackedField>(
lv: &[P; NUM_ARITH_COLUMNS],
yield_constr: &mut ConstraintConsumer<P>,
) {
range_check_error!(MUL_INPUT_0, 16);
range_check_error!(MUL_INPUT_1, 16);
range_check_error!(MUL_OUTPUT, 16);
range_check_error!(MUL_AUX_INPUT, 20);
let is_mul = lv[IS_MUL];
let input0_limbs = MUL_INPUT_0.map(|c| lv[c]);
let input1_limbs = MUL_INPUT_1.map(|c| lv[c]);
let output_limbs = MUL_OUTPUT.map(|c| lv[c]);
let aux_limbs = MUL_AUX_INPUT.map(|c| lv[c]);
// Constraint poly holds the coefficients of the polynomial that
// must be identically zero for this multiplication to be
// verified. It is initialised to the /negative/ of the claimed
// output.
let mut constr_poly = [P::ZEROS; N_LIMBS];
assert_eq!(constr_poly.len(), N_LIMBS);
// After this loop constr_poly holds the coefficients of the
// polynomial A(x)B(x) - C(x), where A, B and C are the polynomials
//
// A(x) = \sum_i input0_limbs[i] * 2^LIMB_BITS
// B(x) = \sum_i input1_limbs[i] * 2^LIMB_BITS
// C(x) = \sum_i output_limbs[i] * 2^LIMB_BITS
//
// This polynomial should equal (2^LIMB_BITS - x) * Q(x) where Q is
//
// Q(x) = \sum_i aux_limbs[i] * 2^LIMB_BITS
//
for col in 0..N_LIMBS {
// Invariant: i + j = col
for i in 0..=col {
let j = col - i;
constr_poly[col] += input0_limbs[i] * input1_limbs[j];
}
constr_poly[col] -= output_limbs[col];
}
// This subtracts (2^LIMB_BITS - x) * Q(x) from constr_poly.
let base = P::Scalar::from_canonical_u64(1 << LIMB_BITS);
constr_poly[0] -= base * aux_limbs[0];
for deg in 1..N_LIMBS {
constr_poly[deg] -= (base * aux_limbs[deg]) - aux_limbs[deg - 1];
}
// At this point constr_poly holds the coefficients of the
// polynomial A(x)B(x) - C(x) - (x - 2^LIMB_BITS)*Q(x). The
// multiplication is valid if and only if all of those
// coefficients are zero.
for &c in &constr_poly {
yield_constr.constraint(is_mul * c);
}
}
pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let is_mul = lv[IS_MUL];
let input0_limbs = MUL_INPUT_0.map(|c| lv[c]);
let input1_limbs = MUL_INPUT_1.map(|c| lv[c]);
let output_limbs = MUL_OUTPUT.map(|c| lv[c]);
let aux_in_limbs = MUL_AUX_INPUT.map(|c| lv[c]);
let zero = builder.zero_extension();
let mut constr_poly = [zero; N_LIMBS]; // pointless init
// Invariant: i + j = deg
for col in 0..N_LIMBS {
let mut acc = zero;
for i in 0..=col {
let j = col - i;
acc = builder.mul_add_extension(input0_limbs[i], input1_limbs[j], acc);
}
constr_poly[col] = builder.sub_extension(acc, output_limbs[col]);
}
let base = F::from_canonical_u64(1 << LIMB_BITS);
let t = builder.mul_const_extension(base, aux_in_limbs[0]);
constr_poly[0] = builder.sub_extension(constr_poly[0], t);
for deg in 1..N_LIMBS {
let t0 = builder.mul_const_extension(base, aux_in_limbs[deg]);
let t1 = builder.sub_extension(t0, aux_in_limbs[deg - 1]);
constr_poly[deg] = builder.sub_extension(constr_poly[deg], t1);
}
for &c in &constr_poly {
let filter = builder.mul_extension(is_mul, c);
yield_constr.constraint(builder, filter);
}
}
#[cfg(test)]
mod tests {
use plonky2::field::goldilocks_field::GoldilocksField;
use plonky2::field::types::Field;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use super::*;
use crate::arithmetic::columns::NUM_ARITH_COLUMNS;
use crate::constraint_consumer::ConstraintConsumer;
// TODO: Should be able to refactor this test to apply to all operations.
#[test]
fn generate_eval_consistency_not_mul() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// if `IS_MUL == 0`, then the constraints should be met even
// if all values are garbage.
lv[IS_MUL] = F::ZERO;
let mut constrant_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constrant_consumer);
for &acc in &constrant_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
#[test]
fn generate_eval_consistency_mul() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// set `IS_MUL == 1` and ensure all constraints are satisfied.
lv[IS_MUL] = F::ONE;
// set inputs to random values
for (&ai, bi) in MUL_INPUT_0.iter().zip(MUL_INPUT_1) {
lv[ai] = F::from_canonical_u16(rng.gen());
lv[bi] = F::from_canonical_u16(rng.gen());
}
generate(&mut lv);
let mut constrant_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constrant_consumer);
for &acc in &constrant_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
}

148
evm/src/arithmetic/sub.rs Normal file
View File

@ -0,0 +1,148 @@
use itertools::izip;
use plonky2::field::extension::Extendable;
use plonky2::field::packed::PackedField;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::ext_target::ExtensionTarget;
use crate::arithmetic::add::{eval_ext_circuit_are_equal, eval_packed_generic_are_equal};
use crate::arithmetic::columns::*;
use crate::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsumer};
use crate::range_check_error;
pub fn generate<F: RichField>(lv: &mut [F; NUM_ARITH_COLUMNS]) {
let input0_limbs = SUB_INPUT_0.map(|c| lv[c].to_canonical_u64());
let input1_limbs = SUB_INPUT_1.map(|c| lv[c].to_canonical_u64());
// Input and output have 16-bit limbs
let mut output_limbs = [0u64; N_LIMBS];
const LIMB_BOUNDARY: u64 = 1 << LIMB_BITS;
const MASK: u64 = LIMB_BOUNDARY - 1u64;
let mut br = 0u64;
for (i, a, b) in izip!(0.., input0_limbs, input1_limbs) {
let d = LIMB_BOUNDARY + a - b - br;
// if a < b, then d < 2^16 so br = 1
// if a >= b, then d >= 2^16 so br = 0
br = 1u64 - (d >> LIMB_BITS);
assert!(br <= 1u64, "input limbs were larger than 16 bits");
output_limbs[i] = d & MASK;
}
// last borrow is dropped because this is subtraction modulo 2^256.
for (&c, output_limb) in SUB_OUTPUT.iter().zip(output_limbs) {
lv[c] = F::from_canonical_u64(output_limb);
}
}
pub fn eval_packed_generic<P: PackedField>(
lv: &[P; NUM_ARITH_COLUMNS],
yield_constr: &mut ConstraintConsumer<P>,
) {
range_check_error!(SUB_INPUT_0, 16);
range_check_error!(SUB_INPUT_1, 16);
range_check_error!(SUB_OUTPUT, 16);
let is_sub = lv[IS_SUB];
let input0_limbs = SUB_INPUT_0.iter().map(|&c| lv[c]);
let input1_limbs = SUB_INPUT_1.iter().map(|&c| lv[c]);
let output_limbs = SUB_OUTPUT.iter().map(|&c| lv[c]);
let output_computed = input0_limbs.zip(input1_limbs).map(|(a, b)| a - b);
eval_packed_generic_are_equal(yield_constr, is_sub, output_limbs, output_computed);
}
#[allow(clippy::needless_collect)]
pub fn eval_ext_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut plonky2::plonk::circuit_builder::CircuitBuilder<F, D>,
lv: &[ExtensionTarget<D>; NUM_ARITH_COLUMNS],
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let is_sub = lv[IS_SUB];
let input0_limbs = SUB_INPUT_0.iter().map(|&c| lv[c]);
let input1_limbs = SUB_INPUT_1.iter().map(|&c| lv[c]);
let output_limbs = SUB_OUTPUT.iter().map(|&c| lv[c]);
// Since `map` is lazy and the closure passed to it borrows
// `builder`, we can't then borrow builder again below in the call
// to `eval_ext_circuit_are_equal`. The solution is to force
// evaluation with `collect`.
let output_computed = input0_limbs
.zip(input1_limbs)
.map(|(a, b)| builder.sub_extension(a, b))
.collect::<Vec<ExtensionTarget<D>>>();
eval_ext_circuit_are_equal(
builder,
yield_constr,
is_sub,
output_limbs,
output_computed.into_iter(),
);
}
#[cfg(test)]
mod tests {
use plonky2::field::goldilocks_field::GoldilocksField;
use plonky2::field::types::Field;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use super::*;
use crate::arithmetic::columns::NUM_ARITH_COLUMNS;
use crate::constraint_consumer::ConstraintConsumer;
// TODO: Should be able to refactor this test to apply to all operations.
#[test]
fn generate_eval_consistency_not_sub() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// if `IS_SUB == 0`, then the constraints should be met even
// if all values are garbage.
lv[IS_SUB] = F::ZERO;
let mut constrant_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constrant_consumer);
for &acc in &constrant_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
#[test]
fn generate_eval_consistency_sub() {
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut lv = [F::default(); NUM_ARITH_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// set `IS_SUB == 1` and ensure all constraints are satisfied.
lv[IS_SUB] = F::ONE;
// set inputs to random values
for (&ai, bi) in SUB_INPUT_0.iter().zip(SUB_INPUT_1) {
lv[ai] = F::from_canonical_u16(rng.gen());
lv[bi] = F::from_canonical_u16(rng.gen());
}
generate(&mut lv);
let mut constrant_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_packed_generic(&lv, &mut constrant_consumer);
for &acc in &constrant_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
}

View File

@ -0,0 +1,22 @@
use log::error;
/// Emit an error message regarding unchecked range assumptions.
/// Assumes the values in `cols` are `[cols[0], cols[0] + 1, ...,
/// cols[0] + cols.len() - 1]`.
pub(crate) fn _range_check_error<const RC_BITS: u32>(file: &str, line: u32, cols: &[usize]) {
error!(
"{}:{}: arithmetic unit skipped {}-bit range-checks on columns {}--{}: not yet implemented",
line,
file,
RC_BITS,
cols[0],
cols[0] + cols.len() - 1
);
}
#[macro_export]
macro_rules! range_check_error {
($cols:ident, $rc_bits:expr) => {
$crate::arithmetic::utils::_range_check_error::<$rc_bits>(file!(), line!(), &$cols);
};
}

View File

@ -5,6 +5,7 @@
#![feature(generic_const_exprs)]
pub mod all_stark;
pub mod arithmetic;
pub mod config;
pub mod constraint_consumer;
pub mod cpu;