Implement compute_z and rewrite of compute_vanishing_polys

This commit is contained in:
wborgeaud 2021-06-17 15:49:21 +02:00
parent 1b99f8272f
commit a71909ba15
5 changed files with 154 additions and 84 deletions

View File

@ -292,19 +292,13 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let subgroup = F::two_adic_subgroup(degree_bits);
let constant_vecs = self.constant_polys();
let constants_commitment = ListPolynomialCommitment::new(
constant_vecs.into_iter().map(|v| v.ifft()).collect(),
self.config.fri_config.rate_bits,
false,
);
let constants_commitment =
ListPolynomialCommitment::new(constant_vecs, self.config.fri_config.rate_bits, false);
let k_is = get_unique_coset_shifts(degree, self.config.num_routed_wires);
let sigma_vecs = self.sigma_vecs(&k_is, &subgroup);
let sigmas_commitment = ListPolynomialCommitment::new(
sigma_vecs.into_iter().map(|v| v.ifft()).collect(),
self.config.fri_config.rate_bits,
false,
);
let sigmas_commitment =
ListPolynomialCommitment::new(sigma_vecs, self.config.fri_config.rate_bits, false);
let constants_root = constants_commitment.merkle_tree.root;
let sigmas_root = sigmas_commitment.merkle_tree.root;
@ -339,6 +333,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
config: self.config,
degree_bits,
gates,
max_filtered_constraint_degree_bits: 3, // TODO: compute this correctly once filters land.
num_gate_constraints,
k_is,
circuit_digest,

View File

@ -143,6 +143,9 @@ pub(crate) struct CommonCircuitData<F: Extendable<D>, const D: usize> {
/// The types of gates used in this circuit.
pub(crate) gates: Vec<GateRef<F, D>>,
/// The largest number of constraints imposed by any gate.
pub(crate) max_filtered_constraint_degree_bits: usize,
/// The largest number of constraints imposed by any gate.
pub(crate) num_gate_constraints: usize,
@ -176,7 +179,7 @@ impl<F: Extendable<D>, const D: usize> CommonCircuitData<F, D> {
}
pub fn quotient_degree(&self) -> usize {
self.constraint_degree() - 1
1 << self.max_filtered_constraint_degree_bits - 1
}
pub fn total_constraints(&self) -> usize {

View File

@ -9,37 +9,73 @@ use crate::fri::{prover::fri_proof, verifier::verify_fri_proof, FriConfig};
use crate::merkle_tree::MerkleTree;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::{reduce_polys_with_iter, reduce_with_iter};
use crate::polynomial::polynomial::PolynomialCoeffs;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::{FriProof, FriProofTarget, Hash, OpeningSet};
use crate::timed;
use crate::util::{log2_strict, reverse_index_bits_in_place, transpose};
use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place, transpose};
pub const SALT_SIZE: usize = 2;
pub struct ListPolynomialCommitment<F: Field> {
pub polynomials: Vec<PolynomialCoeffs<F>>,
pub values: Vec<PolynomialValues<F>>,
pub merkle_tree: MerkleTree<F>,
pub degree: usize,
pub degree_log: usize,
pub rate_bits: usize,
pub blinding: bool,
}
impl<F: Field> ListPolynomialCommitment<F> {
pub fn new(polynomials: Vec<PolynomialCoeffs<F>>, rate_bits: usize, blinding: bool) -> Self {
let degree = polynomials[0].len();
/// Creates a list polynomial commitment for the polynomials interpolating the values in `values`.
pub fn new(values: Vec<PolynomialValues<F>>, rate_bits: usize, blinding: bool) -> Self {
let degree = values[0].len();
let polynomials = values.iter().map(|v| v.clone().ifft()).collect::<Vec<_>>();
let lde_values = timed!(
Self::lde_values(&polynomials, rate_bits, blinding),
"to compute LDE"
);
Self::new_from_data(polynomials, values, lde_values, degree, rate_bits, blinding)
}
/// Creates a list polynomial commitment for the polynomials `polynomials`.
pub fn new_from_polys(
polynomials: Vec<PolynomialCoeffs<F>>,
rate_bits: usize,
blinding: bool,
) -> Self {
let degree = polynomials[0].len();
let values = polynomials
.iter()
.map(|v| v.clone().fft())
.collect::<Vec<_>>();
let lde_values = timed!(
Self::lde_values(&polynomials, rate_bits, blinding),
"to compute LDE"
);
Self::new_from_data(polynomials, values, lde_values, degree, rate_bits, blinding)
}
fn new_from_data(
polynomials: Vec<PolynomialCoeffs<F>>,
values: Vec<PolynomialValues<F>>,
lde_values: Vec<Vec<F>>,
degree: usize,
rate_bits: usize,
blinding: bool,
) -> Self {
let mut leaves = timed!(transpose(&lde_values), "to transpose LDEs");
reverse_index_bits_in_place(&mut leaves);
let merkle_tree = timed!(MerkleTree::new(leaves, false), "to build Merkle tree");
Self {
polynomials,
values,
merkle_tree,
degree,
degree_log: log2_strict(degree),
rate_bits,
blinding,
}
@ -71,9 +107,8 @@ impl<F: Field> ListPolynomialCommitment<F> {
.collect()
}
pub fn leaf(&self, index: usize) -> &[F] {
let leaf = &self.merkle_tree.leaves[index];
&leaf[0..leaf.len() - if self.blinding { SALT_SIZE } else { 0 }]
pub fn original_value(&self, index: usize) -> Vec<F> {
self.values.iter().map(|v| v.values[index]).collect()
}
/// Takes the commitments to the constants - sigmas - wires - zs - quotient — polynomials,
@ -88,7 +123,7 @@ impl<F: Field> ListPolynomialCommitment<F> {
F: Extendable<D>,
{
assert!(D > 1, "Not implemented for D=1.");
let degree_log = log2_strict(commitments[0].degree);
let degree_log = commitments[0].degree_log;
let g = F::Extension::primitive_root_of_unity(degree_log);
for p in &[zeta, g * zeta] {
assert_ne!(
@ -267,11 +302,11 @@ mod tests {
fn gen_random_test_case<F: Field + Extendable<D>, const D: usize>(
k: usize,
degree_log: usize,
) -> Vec<PolynomialCoeffs<F>> {
) -> Vec<PolynomialValues<F>> {
let degree = 1 << degree_log;
(0..k)
.map(|_| PolynomialCoeffs::new(F::rand_vec(degree)))
.map(|_| PolynomialValues::new(F::rand_vec(degree)))
.collect()
}

View File

@ -17,7 +17,7 @@ use crate::timed;
use crate::util::transpose;
use crate::vars::EvaluationVarsBase;
use crate::wire::Wire;
use crate::witness::PartialWitness;
use crate::witness::{PartialWitness, Witness};
/// Corresponds to constants - sigmas - wires - zs - quotient — polynomial commitments.
pub const PLONK_BLINDING: [bool; 5] = [false, false, true, true, true];
@ -31,10 +31,10 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
let start_proof_gen = Instant::now();
let mut witness = inputs;
let mut partial_witness = inputs;
info!("Running {} generators", prover_data.generators.len());
timed!(
generate_partial_witness(&mut witness, &prover_data.generators),
generate_partial_witness(&mut partial_witness, &prover_data.generators),
"to generate witness"
);
@ -42,12 +42,15 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
let num_wires = config.num_wires;
let num_challenges = config.num_challenges;
let quotient_degree = common_data.quotient_degree();
let degree = common_data.degree();
let wires_polynomials: Vec<PolynomialCoeffs<F>> = timed!(
(0..num_wires)
.into_par_iter()
.map(|i| compute_wire_polynomial(i, &witness, degree))
let witness = partial_witness.full_witness(degree, num_wires);
let wires_values: Vec<PolynomialValues<F>> = timed!(
witness
.wire_values
.iter()
.map(|column| PolynomialValues::new(column.clone()))
.collect(),
"to compute wire polynomials"
);
@ -55,7 +58,7 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
// TODO: Could try parallelizing the transpose, or not doing it explicitly, instead having
// merkle_root_bit_rev_order do it implicitly.
let wires_commitment = timed!(
ListPolynomialCommitment::new(wires_polynomials, fri_config.rate_bits, true),
ListPolynomialCommitment::new(wires_values, fri_config.rate_bits, true),
"to compute wires commitment"
);
@ -68,7 +71,10 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
let betas = challenger.get_n_challenges(num_challenges);
let gammas = challenger.get_n_challenges(num_challenges);
let plonk_z_vecs = timed!(compute_zs(&common_data), "to compute Z's");
let plonk_z_vecs = timed!(
compute_zs(&witness, &betas, &gammas, &prover_data, &common_data),
"to compute Z's"
);
let plonk_zs_commitment = timed!(
ListPolynomialCommitment::new(plonk_z_vecs, fri_config.rate_bits, true),
@ -107,7 +113,11 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
);
let quotient_polys_commitment = timed!(
ListPolynomialCommitment::new(all_quotient_poly_chunks, fri_config.rate_bits, true),
ListPolynomialCommitment::new_from_polys(
all_quotient_poly_chunks,
fri_config.rate_bits,
true
),
"to commit to quotient polys"
);
@ -146,37 +156,44 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
}
fn compute_zs<F: Extendable<D>, const D: usize>(
witness: &Witness<F>,
betas: &[F],
gammas: &[F],
prover_data: &ProverOnlyCircuitData<F>,
common_data: &CommonCircuitData<F, D>,
) -> Vec<PolynomialCoeffs<F>> {
) -> Vec<PolynomialValues<F>> {
(0..common_data.config.num_challenges)
.map(|i| compute_z(common_data, i))
.map(|i| compute_z(witness, betas[i], gammas[i], prover_data, common_data))
.collect()
}
fn compute_z<F: Extendable<D>, const D: usize>(
witness: &Witness<F>,
beta: F,
gamma: F,
prover_data: &ProverOnlyCircuitData<F>,
common_data: &CommonCircuitData<F, D>,
_i: usize,
) -> PolynomialCoeffs<F> {
todo!()
// let subgroup =
// let mut plonk_z_points = vec![F::ONE];
// let k_is = common_data.k_is;
// for i in 1..common_data.degree() {
// let x = subgroup[i - 1];
// let mut numerator = F::ONE;
// let mut denominator = F::ONE;
// for j in 0..NUM_ROUTED_WIRES {
// let wire_value = witness.get_indices(i - 1, j);
// let k_i = k_is[j];
// let s_id = k_i * x;
// let s_sigma = sigma_values[j][8 * (i - 1)];
// numerator = numerator * (wire_value + beta * s_id + gamma);
// denominator = denominator * (wire_value + beta * s_sigma + gamma);
// }
// let last = *plonk_z_points.last().unwrap();
// plonk_z_points.push(last * numerator / denominator);
// }
// plonk_z_points
) -> PolynomialValues<F> {
let subgroup = &prover_data.subgroup;
let mut plonk_z_points = vec![F::ONE];
let k_is = &common_data.k_is;
for i in 1..common_data.degree() {
let x = subgroup[i - 1];
let mut numerator = F::ONE;
let mut denominator = F::ONE;
let s_sigmas = prover_data.sigmas_commitment.original_value(i - 1);
for j in 0..common_data.config.num_routed_wires {
let wire_value = witness.get_wire(i - 1, j);
let k_i = k_is[j];
let s_id = k_i * x;
let s_sigma = s_sigmas[j];
numerator = numerator * (wire_value + beta * s_id + gamma);
denominator = denominator * (wire_value + beta * s_sigma + gamma);
}
let last = *plonk_z_points.last().unwrap();
plonk_z_points.push(last * numerator / denominator);
}
plonk_z_points.into()
}
fn compute_vanishing_polys<F: Extendable<D>, const D: usize>(
@ -188,21 +205,38 @@ fn compute_vanishing_polys<F: Extendable<D>, const D: usize>(
gammas: &[F],
alphas: &[F],
) -> Vec<PolynomialValues<F>> {
let lde_size = common_data.lde_size();
let lde_gen = common_data.lde_generator();
let num_challenges = common_data.config.num_challenges;
let points = F::two_adic_subgroup(
common_data.degree_bits + common_data.max_filtered_constraint_degree_bits,
);
let lde_size = points.len();
let commitment_to_lde = |comm: &ListPolynomialCommitment<F>| -> Vec<PolynomialValues<F>> {
comm.polynomials
.iter()
.map(|p| p.lde(common_data.max_filtered_constraint_degree_bits).fft())
.collect()
};
let constants_lde = commitment_to_lde(&prover_data.constants_commitment);
let sigmas_lde = commitment_to_lde(&prover_data.sigmas_commitment);
let wires_lde = commitment_to_lde(wires_commitment);
let zs_lde = commitment_to_lde(plonk_zs_commitment);
let get_at_index = |ldes: &[PolynomialValues<F>], i: usize| {
ldes.iter().map(|l| l.values[i]).collect::<Vec<_>>()
};
let points = F::cyclic_subgroup_known_order(lde_gen, lde_size);
let values: Vec<Vec<F>> = points
.into_par_iter()
.enumerate()
.map(|(i, x)| {
let i_next = (i + 1) % lde_size;
let local_wires = wires_commitment.leaf(i);
let local_constants = prover_data.constants_commitment.leaf(i);
let local_plonk_zs = plonk_zs_commitment.leaf(i);
let next_plonk_zs = plonk_zs_commitment.leaf(i_next);
let s_sigmas = prover_data.sigmas_commitment.leaf(i);
let local_constants = &get_at_index(&constants_lde, i);
let s_sigmas = &get_at_index(&sigmas_lde, i);
let local_wires = &get_at_index(&wires_lde, i);
let local_plonk_zs = &get_at_index(&zs_lde, i);
let next_plonk_zs = &get_at_index(&zs_lde, i_next);
debug_assert_eq!(local_wires.len(), common_data.config.num_wires);
debug_assert_eq!(local_plonk_zs.len(), num_challenges);
@ -230,22 +264,3 @@ fn compute_vanishing_polys<F: Extendable<D>, const D: usize>(
.map(PolynomialValues::new)
.collect()
}
fn compute_wire_polynomial<F: Field>(
input: usize,
witness: &PartialWitness<F>,
degree: usize,
) -> PolynomialCoeffs<F> {
let wire_values = (0..degree)
// Some gates do not use all wires, and we do not require that generators populate unused
// wires, so some wire values will not be set. We can set these to any value; here we
// arbitrary pick zero. Ideally we would verify that no constraints operate on these unset
// wires, but that isn't trivial.
.map(|gate| {
witness
.try_get_wire(Wire { gate, input })
.unwrap_or(F::ZERO)
})
.collect();
PolynomialValues::new(wire_values).ifft()
}

View File

@ -1,11 +1,23 @@
use std::collections::HashMap;
use std::convert::TryInto;
use crate::circuit_data::{CircuitConfig, CommonCircuitData};
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field::Field;
use crate::target::Target;
use crate::wire::Wire;
use std::convert::TryInto;
#[derive(Clone, Debug)]
pub struct Witness<F: Field> {
pub(crate) wire_values: Vec<Vec<F>>,
}
impl<F: Field> Witness<F> {
pub fn get_wire(&self, gate: usize, input: usize) -> F {
self.wire_values[input][gate]
}
}
#[derive(Clone, Debug)]
pub struct PartialWitness<F: Field> {
@ -121,6 +133,16 @@ impl<F: Field> PartialWitness<F> {
self.set_target(target, value);
}
}
pub fn full_witness(self, degree: usize, num_wires: usize) -> Witness<F> {
let mut wire_values = vec![vec![F::ZERO; degree]; num_wires];
self.target_values.into_iter().for_each(|(t, v)| {
if let Target::Wire(Wire { gate, input }) = t {
wire_values[input][gate] = v;
}
});
Witness { wire_values }
}
}
impl<F: Field> Default for PartialWitness<F> {