Merge branch 'main' into avoid_rotating

This commit is contained in:
wborgeaud 2021-07-21 20:02:22 +02:00
commit a54a4e5830
37 changed files with 777 additions and 366 deletions

View File

@ -50,8 +50,8 @@ fn bench_prove<F: Field + Extendable<D>, const D: usize>() -> Result<()> {
let circuit = builder.build();
let inputs = PartialWitness::new();
let proof = circuit.prove(inputs)?;
let proof_bytes = serde_cbor::to_vec(&proof).unwrap();
let proof_with_pis = circuit.prove(inputs)?;
let proof_bytes = serde_cbor::to_vec(&proof_with_pis).unwrap();
info!("Proof length: {} bytes", proof_bytes.len());
circuit.verify(proof)
circuit.verify(proof_with_pis)
}

View File

@ -17,6 +17,7 @@ use crate::gates::constant::ConstantGate;
use crate::gates::gate::{GateInstance, GateRef, PrefixedGate};
use crate::gates::gate_tree::Tree;
use crate::gates::noop::NoopGate;
use crate::gates::public_input::PublicInputGate;
use crate::generator::{CopyGenerator, RandomValueGenerator, WitnessGenerator};
use crate::hash::hash_n_to_hash;
use crate::permutation_argument::TargetPartition;
@ -39,8 +40,8 @@ pub struct CircuitBuilder<F: Extendable<D>, const D: usize> {
/// The concrete placement of each gate.
gate_instances: Vec<GateInstance<F, D>>,
/// The next available index for a public input.
public_input_index: usize,
/// Targets to be made public.
public_inputs: Vec<Target>,
/// The next available index for a `VirtualTarget`.
virtual_target_index: usize,
@ -66,7 +67,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
config,
gates: HashSet::new(),
gate_instances: Vec::new(),
public_input_index: 0,
public_inputs: Vec::new(),
virtual_target_index: 0,
copy_constraints: Vec::new(),
context_log: ContextTree::new(),
@ -81,14 +82,14 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.gate_instances.len()
}
pub fn add_public_input(&mut self) -> Target {
let index = self.public_input_index;
self.public_input_index += 1;
Target::PublicInput { index }
/// Registers the given target as a public input.
pub fn register_public_input(&mut self, target: Target) {
self.public_inputs.push(target);
}
pub fn add_public_inputs(&mut self, n: usize) -> Vec<Target> {
(0..n).map(|_i| self.add_public_input()).collect()
/// Registers the given targets as public inputs.
pub fn register_public_inputs(&mut self, targets: &[Target]) {
targets.iter().for_each(|&t| self.register_public_input(t));
}
/// Adds a new "virtual" target. This is not an actual wire in the witness, but just a target
@ -462,10 +463,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let degree_log = log2_strict(degree);
let mut target_partition = TargetPartition::new(|t| match t {
Target::Wire(Wire { gate, input }) => gate * self.config.num_routed_wires + input,
Target::PublicInput { index } => degree * self.config.num_routed_wires + index,
Target::VirtualTarget { index } => {
degree * self.config.num_routed_wires + self.public_input_index + index
}
Target::VirtualTarget { index } => degree * self.config.num_routed_wires + index,
});
for gate in 0..degree {
@ -474,10 +472,6 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
for index in 0..self.public_input_index {
target_partition.add(Target::PublicInput { index });
}
for index in 0..self.virtual_target_index {
target_partition.add(Target::VirtualTarget { index });
}
@ -500,6 +494,19 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub fn build(mut self) -> CircuitData<F, D> {
let quotient_degree_factor = 7; // TODO: add this as a parameter.
let start = Instant::now();
// Hash the public inputs, and route them to a `PublicInputGate` which will enforce that
// those hash wires match the claimed public inputs.
let public_inputs_hash = self.hash_n_to_hash(self.public_inputs.clone(), true);
let pi_gate = self.add_gate_no_constants(PublicInputGate::get());
for (&hash_part, wire) in public_inputs_hash
.elements
.iter()
.zip(PublicInputGate::wires_public_inputs_hash())
{
self.route(hash_part, Target::wire(pi_gate, wire))
}
info!(
"Degree before blinding & padding: {}",
self.gate_instances.len()
@ -552,6 +559,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
subgroup,
copy_constraints: self.copy_constraints,
gate_instances: self.gate_instances,
public_inputs: self.public_inputs,
marked_targets: self.marked_targets,
};

View File

@ -9,8 +9,9 @@ use crate::fri::FriConfig;
use crate::gates::gate::{GateInstance, PrefixedGate};
use crate::generator::WitnessGenerator;
use crate::polynomial::commitment::ListPolynomialCommitment;
use crate::proof::{Hash, HashTarget, Proof};
use crate::proof::{Hash, HashTarget, ProofWithPublicInputs};
use crate::prover::prove;
use crate::target::Target;
use crate::util::marking::MarkedTargets;
use crate::verifier::verify;
use crate::witness::PartialWitness;
@ -78,12 +79,12 @@ pub struct CircuitData<F: Extendable<D>, const D: usize> {
}
impl<F: Extendable<D>, const D: usize> CircuitData<F, D> {
pub fn prove(&self, inputs: PartialWitness<F>) -> Result<Proof<F, D>> {
pub fn prove(&self, inputs: PartialWitness<F>) -> Result<ProofWithPublicInputs<F, D>> {
prove(&self.prover_only, &self.common, inputs)
}
pub fn verify(&self, proof: Proof<F, D>) -> Result<()> {
verify(proof, &self.verifier_only, &self.common)
pub fn verify(&self, proof_with_pis: ProofWithPublicInputs<F, D>) -> Result<()> {
verify(proof_with_pis, &self.verifier_only, &self.common)
}
}
@ -100,7 +101,7 @@ pub struct ProverCircuitData<F: Extendable<D>, const D: usize> {
}
impl<F: Extendable<D>, const D: usize> ProverCircuitData<F, D> {
pub fn prove(&self, inputs: PartialWitness<F>) -> Result<Proof<F, D>> {
pub fn prove(&self, inputs: PartialWitness<F>) -> Result<ProofWithPublicInputs<F, D>> {
prove(&self.prover_only, &self.common, inputs)
}
}
@ -112,8 +113,8 @@ pub struct VerifierCircuitData<F: Extendable<D>, const D: usize> {
}
impl<F: Extendable<D>, const D: usize> VerifierCircuitData<F, D> {
pub fn verify(&self, proof: Proof<F, D>) -> Result<()> {
verify(proof, &self.verifier_only, &self.common)
pub fn verify(&self, proof_with_pis: ProofWithPublicInputs<F, D>) -> Result<()> {
verify(proof_with_pis, &self.verifier_only, &self.common)
}
}
@ -130,6 +131,8 @@ pub(crate) struct ProverOnlyCircuitData<F: Extendable<D>, const D: usize> {
pub copy_constraints: Vec<CopyConstraint>,
/// The concrete placement of each gate in the circuit.
pub gate_instances: Vec<GateInstance<F, D>>,
/// Targets to be made public.
pub public_inputs: Vec<Target>,
/// A vector of marked targets. The values assigned to these targets will be displayed by the prover.
pub marked_targets: Vec<MarkedTargets<D>>,
}

View File

@ -67,7 +67,7 @@ fn fft_unrolled_root_table<F: Field>(n: usize) -> FftRootTable<F> {
#[inline]
fn fft_dispatch<F: Field>(
input: Vec<F>,
input: &[F],
zero_factor: Option<usize>,
root_table: Option<FftRootTable<F>>,
) -> Vec<F> {
@ -87,13 +87,13 @@ fn fft_dispatch<F: Field>(
}
#[inline]
pub fn fft<F: Field>(poly: PolynomialCoeffs<F>) -> PolynomialValues<F> {
pub fn fft<F: Field>(poly: &PolynomialCoeffs<F>) -> PolynomialValues<F> {
fft_with_options(poly, None, None)
}
#[inline]
pub fn fft_with_options<F: Field>(
poly: PolynomialCoeffs<F>,
poly: &PolynomialCoeffs<F>,
zero_factor: Option<usize>,
root_table: Option<FftRootTable<F>>,
) -> PolynomialValues<F> {
@ -104,12 +104,12 @@ pub fn fft_with_options<F: Field>(
}
#[inline]
pub fn ifft<F: Field>(poly: PolynomialValues<F>) -> PolynomialCoeffs<F> {
pub fn ifft<F: Field>(poly: &PolynomialValues<F>) -> PolynomialCoeffs<F> {
ifft_with_options(poly, None, None)
}
pub fn ifft_with_options<F: Field>(
poly: PolynomialValues<F>,
poly: &PolynomialValues<F>,
zero_factor: Option<usize>,
root_table: Option<FftRootTable<F>>,
) -> PolynomialCoeffs<F> {
@ -139,11 +139,7 @@ pub fn ifft_with_options<F: Field>(
/// The parameter r signifies that the first 1/2^r of the entries of
/// input may be non-zero, but the last 1 - 1/2^r entries are
/// definitely zero.
pub(crate) fn fft_classic<F: Field>(
input: Vec<F>,
r: usize,
root_table: FftRootTable<F>,
) -> Vec<F> {
pub(crate) fn fft_classic<F: Field>(input: &[F], r: usize, root_table: FftRootTable<F>) -> Vec<F> {
let mut values = reverse_index_bits(input);
let n = values.len();
@ -196,7 +192,7 @@ pub(crate) fn fft_classic<F: Field>(
/// The parameter r signifies that the first 1/2^r of the entries of
/// input may be non-zero, but the last 1 - 1/2^r entries are
/// definitely zero.
fn fft_unrolled<F: Field>(input: Vec<F>, r_orig: usize, root_table: FftRootTable<F>) -> Vec<F> {
fn fft_unrolled<F: Field>(input: &[F], r_orig: usize, root_table: FftRootTable<F>) -> Vec<F> {
let n = input.len();
let lg_n = log2_strict(input.len());
@ -325,10 +321,10 @@ mod tests {
}
let coefficients = PolynomialCoeffs::new_padded(coefficients);
let points = fft(coefficients.clone());
let points = fft(&coefficients);
assert_eq!(points, evaluate_naive(&coefficients));
let interpolated_coefficients = ifft(points);
let interpolated_coefficients = ifft(&points);
for i in 0..degree {
assert_eq!(interpolated_coefficients.coeffs[i], coefficients.coeffs[i]);
}
@ -337,12 +333,9 @@ mod tests {
}
for r in 0..4 {
// expand ceofficients by factor 2^r by filling with zeros
let zero_tail = coefficients.clone().lde(r);
assert_eq!(
fft(zero_tail.clone()),
fft_with_options(zero_tail, Some(r), None)
);
// expand coefficients by factor 2^r by filling with zeros
let zero_tail = coefficients.lde(r);
assert_eq!(fft(&zero_tail), fft_with_options(&zero_tail, Some(r), None));
}
}
@ -350,10 +343,7 @@ mod tests {
let degree = coefficients.len();
let degree_padded = 1 << log2_ceil(degree);
let mut coefficients_padded = coefficients.clone();
for _i in degree..degree_padded {
coefficients_padded.coeffs.push(F::ZERO);
}
let coefficients_padded = coefficients.padded(degree_padded);
evaluate_naive_power_of_2(&coefficients_padded)
}

View File

@ -18,7 +18,7 @@ pub(crate) fn interpolant<F: Field>(points: &[(F, F)]) -> PolynomialCoeffs<F> {
.map(|x| interpolate(points, x, &barycentric_weights))
.collect();
let mut coeffs = ifft(PolynomialValues {
let mut coeffs = ifft(&PolynomialValues {
values: subgroup_evals,
});
coeffs.trim();

View File

@ -16,9 +16,9 @@ use crate::util::reverse_index_bits_in_place;
pub fn fri_proof<F: Field + Extendable<D>, const D: usize>(
initial_merkle_trees: &[&MerkleTree<F>],
// Coefficients of the polynomial on which the LDT is performed. Only the first `1/rate` coefficients are non-zero.
lde_polynomial_coeffs: &PolynomialCoeffs<F::Extension>,
lde_polynomial_coeffs: PolynomialCoeffs<F::Extension>,
// Evaluation of the polynomial on the large domain.
lde_polynomial_values: &PolynomialValues<F::Extension>,
lde_polynomial_values: PolynomialValues<F::Extension>,
challenger: &mut Challenger<F>,
config: &FriConfig,
) -> FriProof<F, D> {
@ -53,14 +53,11 @@ pub fn fri_proof<F: Field + Extendable<D>, const D: usize>(
}
fn fri_committed_trees<F: Field + Extendable<D>, const D: usize>(
polynomial_coeffs: &PolynomialCoeffs<F::Extension>,
polynomial_values: &PolynomialValues<F::Extension>,
mut coeffs: PolynomialCoeffs<F::Extension>,
mut values: PolynomialValues<F::Extension>,
challenger: &mut Challenger<F>,
config: &FriConfig,
) -> (Vec<MerkleTree<F>>, PolynomialCoeffs<F::Extension>) {
let mut values = polynomial_values.clone();
let mut coeffs = polynomial_coeffs.clone();
let mut trees = Vec::new();
let mut shift = F::MULTIPLICATIVE_GROUP_GENERATOR;
@ -91,8 +88,7 @@ fn fri_committed_trees<F: Field + Extendable<D>, const D: usize>(
.collect::<Vec<_>>(),
);
shift = shift.exp_u32(arity as u32);
// TODO: Is it faster to interpolate?
values = coeffs.clone().coset_fft(shift.into())
values = coeffs.coset_fft(shift.into())
}
coeffs.trim();

View File

@ -125,14 +125,16 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
"Number of reductions should be non-zero."
);
let precomputed_reduced_evals =
PrecomputedReducedEvalsTarget::from_os_and_alpha(os, alpha, self);
for (i, round_proof) in proof.query_round_proofs.iter().enumerate() {
context!(
self,
&format!("verify {}'th FRI query", i),
self.fri_verifier_query_round(
os,
zeta,
alpha,
precomputed_reduced_evals,
initial_merkle_roots,
proof,
challenger,
@ -169,9 +171,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
&mut self,
proof: &FriInitialTreeProofTarget,
alpha: ExtensionTarget<D>,
os: &OpeningSetTarget<D>,
zeta: ExtensionTarget<D>,
subgroup_x: Target,
precomputed_reduced_evals: PrecomputedReducedEvalsTarget<D>,
common_data: &CommonCircuitData<F, D>,
) -> ExtensionTarget<D> {
assert!(D > 1, "Not implemented for D=1.");
@ -199,19 +201,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
)
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
let single_openings = os
.constants
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.wires)
.chain(&os.quotient_polys)
.chain(&os.partial_products)
.copied()
.collect::<Vec<_>>();
let mut single_numerator = alpha.reduce(&single_evals, self);
// TODO: Precompute the rhs as it is the same in all FRI rounds.
let rhs = alpha.reduce(&single_openings, self);
single_numerator = self.sub_extension(single_numerator, rhs);
let single_composition_eval = alpha.reduce(&single_evals, self);
let single_numerator =
self.sub_extension(single_composition_eval, precomputed_reduced_evals.single);
let single_denominator = self.sub_extension(subgroup_x, zeta);
let quotient = self.div_unsafe_extension(single_numerator, single_denominator);
sum = self.add_extension(sum, quotient);
@ -224,14 +216,15 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
.take(common_data.zs_range().end)
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
let zs_composition_eval = alpha.clone().reduce(&zs_evals, self);
let zs_composition_eval = alpha.reduce(&zs_evals, self);
let g = self.constant_extension(F::Extension::primitive_root_of_unity(degree_log));
let zeta_right = self.mul_extension(g, zeta);
let zs_ev_zeta = alpha.clone().reduce(&os.plonk_zs, self);
let zs_ev_zeta_right = alpha.reduce(&os.plonk_zs_right, self);
let interpol_val = self.interpolate2(
[(zeta, zs_ev_zeta), (zeta_right, zs_ev_zeta_right)],
[
(zeta, precomputed_reduced_evals.zs),
(zeta_right, precomputed_reduced_evals.zs_right),
],
subgroup_x,
);
let zs_numerator = self.sub_extension(zs_composition_eval, interpol_val);
@ -247,9 +240,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
fn fri_verifier_query_round(
&mut self,
os: &OpeningSetTarget<D>,
zeta: ExtensionTarget<D>,
alpha: ExtensionTarget<D>,
precomputed_reduced_evals: PrecomputedReducedEvalsTarget<D>,
initial_merkle_roots: &[HashTarget],
proof: &FriProofTarget<D>,
challenger: &mut RecursiveChallenger,
@ -260,7 +253,6 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
) {
let config = &common_data.config.fri_config;
let n_log = log2_strict(n);
let mut evaluations: Vec<Vec<ExtensionTarget<D>>> = Vec::new();
// TODO: Do we need to range check `x_index` to a target smaller than `p`?
let mut x_index = challenger.get_challenge(self);
x_index = self.split_low_high(x_index, n_log, 64).0;
@ -287,6 +279,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.mul(g, phi)
});
let mut evaluations: Vec<Vec<ExtensionTarget<D>>> = Vec::new();
for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() {
let next_domain_size = domain_size >> arity_bits;
let e_x = if i == 0 {
@ -296,9 +289,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.fri_combine_initial(
&round_proof.initial_trees_proof,
alpha,
os,
zeta,
subgroup_x,
precomputed_reduced_evals,
common_data,
)
)
@ -322,23 +315,21 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let (low_x_index, high_x_index) =
self.split_low_high(x_index, arity_bits, x_index_num_bits);
evals = self.insert(low_x_index, e_x, evals);
evaluations.push(evals);
context!(
self,
"verify FRI round Merkle proof.",
self.verify_merkle_proof(
flatten_target(&evaluations[i]),
flatten_target(&evals),
high_x_index,
proof.commit_phase_merkle_roots[i],
&round_proof.steps[i].merkle_proof,
)
);
evaluations.push(evals);
if i > 0 {
// Update the point x to x^arity.
for _ in 0..config.reduction_arity_bits[i - 1] {
subgroup_x = self.square(subgroup_x);
}
subgroup_x = self.exp_power_of_2(subgroup_x, config.reduction_arity_bits[i - 1]);
}
domain_size = next_domain_size;
old_x_index = low_x_index;
@ -359,9 +350,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
*betas.last().unwrap(),
)
);
for _ in 0..final_arity_bits {
subgroup_x = self.square(subgroup_x);
}
subgroup_x = self.exp_power_of_2(subgroup_x, final_arity_bits);
// Final check of FRI. After all the reductions, we check that the final polynomial is equal
// to the one sent by the prover.
@ -373,3 +362,39 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.assert_equal_extension(eval, purported_eval);
}
}
#[derive(Copy, Clone)]
struct PrecomputedReducedEvalsTarget<const D: usize> {
pub single: ExtensionTarget<D>,
pub zs: ExtensionTarget<D>,
pub zs_right: ExtensionTarget<D>,
}
impl<const D: usize> PrecomputedReducedEvalsTarget<D> {
fn from_os_and_alpha<F: Extendable<D>>(
os: &OpeningSetTarget<D>,
alpha: ExtensionTarget<D>,
builder: &mut CircuitBuilder<F, D>,
) -> Self {
let mut alpha = ReducingFactorTarget::new(alpha);
let single = alpha.reduce(
&os.constants
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.wires)
.chain(&os.quotient_polys)
.chain(&os.partial_products)
.copied()
.collect::<Vec<_>>(),
builder,
);
let zs = alpha.reduce(&os.plonk_zs, builder);
let zs_right = alpha.reduce(&os.plonk_zs_right, builder);
Self {
single,
zs,
zs_right,
}
}
}

View File

@ -113,11 +113,12 @@ pub fn verify_fri_proof<F: Field + Extendable<D>, const D: usize>(
"Number of reductions should be non-zero."
);
let precomputed_reduced_evals = PrecomputedReducedEvals::from_os_and_alpha(os, alpha);
for round_proof in &proof.query_round_proofs {
fri_verifier_query_round(
os,
zeta,
alpha,
precomputed_reduced_evals,
initial_merkle_roots,
&proof,
challenger,
@ -143,12 +144,43 @@ fn fri_verify_initial_proof<F: Field>(
Ok(())
}
/// Holds the reduced (by `alpha`) evaluations at `zeta` for the polynomial opened just at
/// zeta, for `Z` at zeta and for `Z` at `g*zeta`.
#[derive(Copy, Clone)]
struct PrecomputedReducedEvals<F: Extendable<D>, const D: usize> {
pub single: F::Extension,
pub zs: F::Extension,
pub zs_right: F::Extension,
}
impl<F: Extendable<D>, const D: usize> PrecomputedReducedEvals<F, D> {
fn from_os_and_alpha(os: &OpeningSet<F, D>, alpha: F::Extension) -> Self {
let mut alpha = ReducingFactor::new(alpha);
let single = alpha.reduce(
os.constants
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.wires)
.chain(&os.quotient_polys)
.chain(&os.partial_products),
);
let zs = alpha.reduce(os.plonk_zs.iter());
let zs_right = alpha.reduce(os.plonk_zs_right.iter());
Self {
single,
zs,
zs_right,
}
}
}
fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
proof: &FriInitialTreeProof<F>,
alpha: F::Extension,
os: &OpeningSet<F, D>,
zeta: F::Extension,
subgroup_x: F,
precomputed_reduced_evals: PrecomputedReducedEvals<F, D>,
common_data: &CommonCircuitData<F, D>,
) -> F::Extension {
let config = &common_data.config;
@ -175,19 +207,8 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
[common_data.partial_products_range()],
)
.map(|&e| F::Extension::from_basefield(e));
let single_openings = os
.constants
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.wires)
.chain(&os.quotient_polys)
.chain(&os.partial_products);
let single_diffs = single_evals
.into_iter()
.zip(single_openings)
.map(|(e, &o)| e - o)
.collect::<Vec<_>>();
let single_numerator = alpha.reduce(single_diffs.iter());
let single_composition_eval = alpha.reduce(single_evals);
let single_numerator = single_composition_eval - precomputed_reduced_evals.single;
let single_denominator = subgroup_x - zeta;
sum += single_numerator / single_denominator;
alpha.reset();
@ -198,12 +219,12 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
.iter()
.map(|&e| F::Extension::from_basefield(e))
.take(common_data.zs_range().end);
let zs_composition_eval = alpha.clone().reduce(zs_evals);
let zs_composition_eval = alpha.reduce(zs_evals);
let zeta_right = F::Extension::primitive_root_of_unity(degree_log) * zeta;
let zs_interpol = interpolate2(
[
(zeta, alpha.clone().reduce(os.plonk_zs.iter())),
(zeta_right, alpha.reduce(os.plonk_zs_right.iter())),
(zeta, precomputed_reduced_evals.zs),
(zeta_right, precomputed_reduced_evals.zs_right),
],
subgroup_x,
);
@ -216,9 +237,9 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
}
fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
os: &OpeningSet<F, D>,
zeta: F::Extension,
alpha: F::Extension,
precomputed_reduced_evals: PrecomputedReducedEvals<F, D>,
initial_merkle_roots: &[Hash<F>],
proof: &FriProof<F, D>,
challenger: &mut Challenger<F>,
@ -228,7 +249,6 @@ fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
) -> Result<()> {
let config = &common_data.config.fri_config;
let mut evaluations: Vec<Vec<F::Extension>> = Vec::new();
let x = challenger.get_challenge();
let mut domain_size = n;
let mut x_index = x.to_canonical_u64() as usize % n;
@ -242,6 +262,8 @@ fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
let log_n = log2_strict(n);
let mut subgroup_x = F::MULTIPLICATIVE_GROUP_GENERATOR
* F::primitive_root_of_unity(log_n).exp(reverse_bits(x_index, log_n) as u64);
let mut evaluations: Vec<Vec<F::Extension>> = Vec::new();
for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() {
let arity = 1 << arity_bits;
let next_domain_size = domain_size >> arity_bits;
@ -249,9 +271,9 @@ fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
fri_combine_initial(
&round_proof.initial_trees_proof,
alpha,
os,
zeta,
subgroup_x,
precomputed_reduced_evals,
common_data,
)
} else {
@ -268,20 +290,18 @@ fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
let mut evals = round_proof.steps[i].evals.clone();
// Insert P(y) into the evaluation vector, since it wasn't included by the prover.
evals.insert(x_index & (arity - 1), e_x);
evaluations.push(evals);
verify_merkle_proof(
flatten(&evaluations[i]),
flatten(&evals),
x_index >> arity_bits,
proof.commit_phase_merkle_roots[i],
&round_proof.steps[i].merkle_proof,
false,
)?;
evaluations.push(evals);
if i > 0 {
// Update the point x to x^arity.
for _ in 0..config.reduction_arity_bits[i - 1] {
subgroup_x = subgroup_x.square();
}
subgroup_x = subgroup_x.exp_power_of_2(config.reduction_arity_bits[i - 1]);
}
domain_size = next_domain_size;
old_x_index = x_index & (arity - 1);
@ -297,9 +317,7 @@ fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
last_evals,
*betas.last().unwrap(),
);
for _ in 0..final_arity_bits {
subgroup_x = subgroup_x.square();
}
subgroup_x = subgroup_x.exp_power_of_2(final_arity_bits);
// Final check of FRI. After all the reductions, we check that the final polynomial is equal
// to the one sent by the prover.

View File

@ -16,7 +16,8 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Computes `x^3`.
pub fn cube(&mut self, x: Target) -> Target {
self.mul_many(&[x, x, x])
let xe = self.convert_to_ext(x);
self.mul_three_extension(xe, xe, xe).to_target_array()[0]
}
/// Computes `const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend`.
@ -123,13 +124,14 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.arithmetic(F::ONE, x, one, F::ONE, y)
}
/// Add `n` `Target`s with `ceil(n/2) + 1` `ArithmeticExtensionGate`s.
// TODO: Can be made `2*D` times more efficient by using all wires of an `ArithmeticExtensionGate`.
pub fn add_many(&mut self, terms: &[Target]) -> Target {
let mut sum = self.zero();
for term in terms {
sum = self.add(sum, *term);
}
sum
let terms_ext = terms
.iter()
.map(|&t| self.convert_to_ext(t))
.collect::<Vec<_>>();
self.add_many_extension(&terms_ext).to_target_array()[0]
}
/// Computes `x - y`.
@ -145,12 +147,22 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.arithmetic(F::ONE, x, y, F::ZERO, x)
}
/// Multiply `n` `Target`s with `ceil(n/2) + 1` `ArithmeticExtensionGate`s.
pub fn mul_many(&mut self, terms: &[Target]) -> Target {
let mut product = self.one();
for term in terms {
product = self.mul(product, *term);
let terms_ext = terms
.iter()
.map(|&t| self.convert_to_ext(t))
.collect::<Vec<_>>();
self.mul_many_extension(&terms_ext).to_target_array()[0]
}
product
/// Exponentiate `base` to the power of `2^power_log`.
// TODO: Test
pub fn exp_power_of_2(&mut self, mut base: Target, power_log: usize) -> Target {
for _ in 0..power_log {
base = self.square(base);
}
base
}
// TODO: Optimize this, maybe with a new gate.

View File

@ -7,7 +7,7 @@ use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::target::{ExtensionAlgebraTarget, ExtensionTarget};
use crate::field::extension_field::{Extendable, OEF};
use crate::gates::arithmetic::ArithmeticExtensionGate;
use crate::generator::SimpleGenerator;
use crate::generator::{GeneratedValues, SimpleGenerator};
use crate::target::Target;
use crate::util::bits_u64;
use crate::witness::PartialWitness;
@ -17,37 +17,47 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
&mut self,
const_0: F,
const_1: F,
fixed_multiplicand: ExtensionTarget<D>,
multiplicand_0: ExtensionTarget<D>,
addend_0: ExtensionTarget<D>,
multiplicand_1: ExtensionTarget<D>,
addend_1: ExtensionTarget<D>,
first_multiplicand_0: ExtensionTarget<D>,
first_multiplicand_1: ExtensionTarget<D>,
first_addend: ExtensionTarget<D>,
second_multiplicand_0: ExtensionTarget<D>,
second_multiplicand_1: ExtensionTarget<D>,
second_addend: ExtensionTarget<D>,
) -> (ExtensionTarget<D>, ExtensionTarget<D>) {
let gate = self.add_gate(ArithmeticExtensionGate::new(), vec![const_0, const_1]);
let wire_fixed_multiplicand = ExtensionTarget::from_range(
let wire_first_multiplicand_0 = ExtensionTarget::from_range(
gate,
ArithmeticExtensionGate::<D>::wires_fixed_multiplicand(),
ArithmeticExtensionGate::<D>::wires_first_multiplicand_0(),
);
let wire_multiplicand_0 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_multiplicand_0());
let wire_addend_0 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_addend_0());
let wire_multiplicand_1 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_multiplicand_1());
let wire_addend_1 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_addend_1());
let wire_output_0 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_output_0());
let wire_output_1 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_output_1());
let wire_first_multiplicand_1 = ExtensionTarget::from_range(
gate,
ArithmeticExtensionGate::<D>::wires_first_multiplicand_1(),
);
let wire_first_addend =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_first_addend());
let wire_second_multiplicand_0 = ExtensionTarget::from_range(
gate,
ArithmeticExtensionGate::<D>::wires_second_multiplicand_0(),
);
let wire_second_multiplicand_1 = ExtensionTarget::from_range(
gate,
ArithmeticExtensionGate::<D>::wires_second_multiplicand_1(),
);
let wire_second_addend =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_second_addend());
let wire_first_output =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_first_output());
let wire_second_output =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_second_output());
self.route_extension(fixed_multiplicand, wire_fixed_multiplicand);
self.route_extension(multiplicand_0, wire_multiplicand_0);
self.route_extension(addend_0, wire_addend_0);
self.route_extension(multiplicand_1, wire_multiplicand_1);
self.route_extension(addend_1, wire_addend_1);
(wire_output_0, wire_output_1)
self.route_extension(first_multiplicand_0, wire_first_multiplicand_0);
self.route_extension(first_multiplicand_1, wire_first_multiplicand_1);
self.route_extension(first_addend, wire_first_addend);
self.route_extension(second_multiplicand_0, wire_second_multiplicand_0);
self.route_extension(second_multiplicand_1, wire_second_multiplicand_1);
self.route_extension(second_addend, wire_second_addend);
(wire_first_output, wire_second_output)
}
pub fn arithmetic_extension(
@ -67,6 +77,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
addend,
zero,
zero,
zero,
)
.0
}
@ -80,6 +91,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.arithmetic_extension(F::ONE, F::ONE, one, a, b)
}
/// Returns `(a0+b0, a1+b1)`.
pub fn add_two_extension(
&mut self,
a0: ExtensionTarget<D>,
@ -88,7 +100,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
b1: ExtensionTarget<D>,
) -> (ExtensionTarget<D>, ExtensionTarget<D>) {
let one = self.one_extension();
self.double_arithmetic_extension(F::ONE, F::ONE, one, a0, b0, a1, b1)
self.double_arithmetic_extension(F::ONE, F::ONE, one, a0, b0, one, a1, b1)
}
pub fn add_ext_algebra(
@ -113,20 +125,39 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
ExtensionAlgebraTarget(res.try_into().unwrap())
}
/// Add 3 `ExtensionTarget`s with 1 `ArithmeticExtensionGate`s.
pub fn add_three_extension(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let one = self.one_extension();
let gate = self.num_gates();
let first_out =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_first_output());
self.double_arithmetic_extension(F::ONE, F::ONE, one, a, b, one, c, first_out)
.1
}
/// Add `n` `ExtensionTarget`s with `n/2` `ArithmeticExtensionGate`s.
pub fn add_many_extension(&mut self, terms: &[ExtensionTarget<D>]) -> ExtensionTarget<D> {
let zero = self.zero_extension();
let mut terms = terms.to_vec();
if terms.len().is_odd() {
if terms.is_empty() {
return zero;
} else if terms.len() < 3 {
terms.resize(3, zero);
} else if terms.len().is_even() {
terms.push(zero);
}
// We maintain two accumulators, one for the sum of even elements, and one for odd elements.
let mut acc0 = zero;
let mut acc1 = zero;
let mut acc = self.add_three_extension(terms[0], terms[1], terms[2]);
terms.drain(0..3);
for chunk in terms.chunks_exact(2) {
(acc0, acc1) = self.add_two_extension(acc0, chunk[0], acc1, chunk[1]);
acc = self.add_three_extension(acc, chunk[0], chunk[1]);
}
// We sum both accumulators to get the final result.
self.add_extension(acc0, acc1)
acc
}
pub fn sub_extension(
@ -146,7 +177,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
b1: ExtensionTarget<D>,
) -> (ExtensionTarget<D>, ExtensionTarget<D>) {
let one = self.one_extension();
self.double_arithmetic_extension(F::ONE, F::NEG_ONE, one, a0, b0, a1, b1)
self.double_arithmetic_extension(F::ONE, F::NEG_ONE, one, a0, b0, one, a1, b1)
}
pub fn sub_ext_algebra(
@ -184,6 +215,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
zero,
zero,
zero,
zero,
)
.0
}
@ -196,6 +228,18 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.mul_extension_with_const(F::ONE, multiplicand_0, multiplicand_1)
}
/// Returns `(a0*b0, a1*b1)`.
pub fn mul_two_extension(
&mut self,
a0: ExtensionTarget<D>,
b0: ExtensionTarget<D>,
a1: ExtensionTarget<D>,
b1: ExtensionTarget<D>,
) -> (ExtensionTarget<D>, ExtensionTarget<D>) {
let zero = self.zero_extension();
self.double_arithmetic_extension(F::ONE, F::ZERO, a0, b0, zero, a1, b1, zero)
}
/// Computes `x^2`.
pub fn square_extension(&mut self, x: ExtensionTarget<D>) -> ExtensionTarget<D> {
self.mul_extension(x, x)
@ -221,12 +265,38 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
ExtensionAlgebraTarget(res)
}
pub fn mul_many_extension(&mut self, terms: &[ExtensionTarget<D>]) -> ExtensionTarget<D> {
let mut product = self.one_extension();
for term in terms {
product = self.mul_extension(product, *term);
/// Multiply 3 `ExtensionTarget`s with 1 `ArithmeticExtensionGate`s.
pub fn mul_three_extension(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let zero = self.zero_extension();
let gate = self.num_gates();
let first_out =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_first_output());
self.double_arithmetic_extension(F::ONE, F::ZERO, a, b, zero, c, first_out, zero)
.1
}
product
/// Multiply `n` `ExtensionTarget`s with `n/2` `ArithmeticExtensionGate`s.
pub fn mul_many_extension(&mut self, terms: &[ExtensionTarget<D>]) -> ExtensionTarget<D> {
let one = self.one_extension();
let mut terms = terms.to_vec();
if terms.is_empty() {
return one;
} else if terms.len() < 3 {
terms.resize(3, one);
} else if terms.len().is_even() {
terms.push(one);
}
let mut acc = self.mul_three_extension(terms[0], terms[1], terms[2]);
terms.drain(0..3);
for chunk in terms.chunks_exact(2) {
acc = self.mul_three_extension(acc, chunk[0], chunk[1]);
}
acc
}
/// Like `mul_add`, but for `ExtensionTarget`s.
@ -292,7 +362,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Exponentiate `base` to the power of `2^power_log`.
// TODO: Test
pub fn exp_power_of_2(
pub fn exp_power_of_2_extension(
&mut self,
mut base: ExtensionTarget<D>,
power_log: usize,
@ -384,11 +454,11 @@ impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for QuotientGeneratorE
deps
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let num = witness.get_extension_target(self.numerator);
let dem = witness.get_extension_target(self.denominator);
let quotient = num / dem;
PartialWitness::singleton_extension_target(self.quotient, quotient)
GeneratedValues::singleton_extension_target(self.quotient, quotient)
}
}
@ -443,6 +513,43 @@ mod tests {
use crate::verifier::verify;
use crate::witness::PartialWitness;
#[test]
fn test_mul_many() -> Result<()> {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let mut pw = PartialWitness::new();
let vs = FF::rand_vec(3);
let ts = builder.add_virtual_extension_targets(3);
for (&v, &t) in vs.iter().zip(&ts) {
pw.set_extension_target(t, v);
}
let mul0 = builder.mul_many_extension(&ts);
let mul1 = {
let mut acc = builder.one_extension();
for &t in &ts {
acc = builder.mul_extension(acc, t);
}
acc
};
let mul2 = builder.mul_three_extension(ts[0], ts[1], ts[2]);
let mul3 = builder.constant_extension(vs.into_iter().product());
builder.assert_equal_extension(mul0, mul1);
builder.assert_equal_extension(mul1, mul2);
builder.assert_equal_extension(mul2, mul3);
let data = builder.build();
let proof = data.prove(pw)?;
verify(proof, &data.verifier_only, &data.common)
}
#[test]
fn test_div_extension() -> Result<()> {
type F = CrandallField;

View File

@ -2,7 +2,7 @@ use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
use crate::gates::base_sum::BaseSumGate;
use crate::generator::SimpleGenerator;
use crate::generator::{GeneratedValues, SimpleGenerator};
use crate::target::Target;
use crate::witness::PartialWitness;
@ -49,12 +49,12 @@ impl<F: Field> SimpleGenerator<F> for LowHighGenerator {
vec![self.integer]
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let integer_value = witness.get_target(self.integer).to_canonical_u64();
let low = integer_value & ((1 << self.n_log) - 1);
let high = integer_value >> self.n_log;
let mut result = PartialWitness::new();
let mut result = GeneratedValues::with_capacity(2);
result.set_target(self.low, F::from_canonical_u64(low));
result.set_target(self.high, F::from_canonical_u64(high));

View File

@ -2,7 +2,7 @@ use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
use crate::gates::base_sum::BaseSumGate;
use crate::generator::{SimpleGenerator, WitnessGenerator};
use crate::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::target::Target;
use crate::util::ceil_div_usize;
use crate::wire::Wire;
@ -110,10 +110,10 @@ impl<F: Field> SimpleGenerator<F> for SplitGenerator {
vec![self.integer]
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let mut integer_value = witness.get_target(self.integer).to_canonical_u64();
let mut result = PartialWitness::new();
let mut result = GeneratedValues::with_capacity(self.bits.len());
for &b in &self.bits {
let b_value = integer_value & 1;
result.set_target(b, F::from_canonical_u64(b_value));
@ -141,10 +141,10 @@ impl<F: Field> SimpleGenerator<F> for WireSplitGenerator {
vec![self.integer]
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let mut integer_value = witness.get_target(self.integer).to_canonical_u64();
let mut result = PartialWitness::new();
let mut result = GeneratedValues::with_capacity(self.gates.len());
for &gate in &self.gates {
let sum = Target::wire(gate, BaseSumGate::<2>::WIRE_SUM);
result.set_target(

View File

@ -4,7 +4,7 @@ use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::gates::gate::{Gate, GateRef};
use crate::generator::{SimpleGenerator, WitnessGenerator};
use crate::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars};
use crate::witness::PartialWitness;
@ -18,27 +18,30 @@ impl<const D: usize> ArithmeticExtensionGate<D> {
GateRef::new(ArithmeticExtensionGate)
}
pub fn wires_fixed_multiplicand() -> Range<usize> {
pub fn wires_first_multiplicand_0() -> Range<usize> {
0..D
}
pub fn wires_multiplicand_0() -> Range<usize> {
pub fn wires_first_multiplicand_1() -> Range<usize> {
D..2 * D
}
pub fn wires_addend_0() -> Range<usize> {
pub fn wires_first_addend() -> Range<usize> {
2 * D..3 * D
}
pub fn wires_multiplicand_1() -> Range<usize> {
pub fn wires_second_multiplicand_0() -> Range<usize> {
3 * D..4 * D
}
pub fn wires_addend_1() -> Range<usize> {
pub fn wires_second_multiplicand_1() -> Range<usize> {
4 * D..5 * D
}
pub fn wires_output_0() -> Range<usize> {
pub fn wires_second_addend() -> Range<usize> {
5 * D..6 * D
}
pub fn wires_output_1() -> Range<usize> {
pub fn wires_first_output() -> Range<usize> {
6 * D..7 * D
}
pub fn wires_second_output() -> Range<usize> {
7 * D..8 * D
}
}
impl<F: Extendable<D>, const D: usize> Gate<F, D> for ArithmeticExtensionGate<D> {
@ -50,21 +53,24 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for ArithmeticExtensionGate<D>
let const_0 = vars.local_constants[0];
let const_1 = vars.local_constants[1];
let fixed_multiplicand = vars.get_local_ext_algebra(Self::wires_fixed_multiplicand());
let multiplicand_0 = vars.get_local_ext_algebra(Self::wires_multiplicand_0());
let addend_0 = vars.get_local_ext_algebra(Self::wires_addend_0());
let multiplicand_1 = vars.get_local_ext_algebra(Self::wires_multiplicand_1());
let addend_1 = vars.get_local_ext_algebra(Self::wires_addend_1());
let output_0 = vars.get_local_ext_algebra(Self::wires_output_0());
let output_1 = vars.get_local_ext_algebra(Self::wires_output_1());
let first_multiplicand_0 = vars.get_local_ext_algebra(Self::wires_first_multiplicand_0());
let first_multiplicand_1 = vars.get_local_ext_algebra(Self::wires_first_multiplicand_1());
let first_addend = vars.get_local_ext_algebra(Self::wires_first_addend());
let second_multiplicand_0 = vars.get_local_ext_algebra(Self::wires_second_multiplicand_0());
let second_multiplicand_1 = vars.get_local_ext_algebra(Self::wires_second_multiplicand_1());
let second_addend = vars.get_local_ext_algebra(Self::wires_second_addend());
let first_output = vars.get_local_ext_algebra(Self::wires_first_output());
let second_output = vars.get_local_ext_algebra(Self::wires_second_output());
let computed_output_0 =
fixed_multiplicand * multiplicand_0 * const_0.into() + addend_0 * const_1.into();
let computed_output_1 =
fixed_multiplicand * multiplicand_1 * const_0.into() + addend_1 * const_1.into();
let first_computed_output = first_multiplicand_0 * first_multiplicand_1 * const_0.into()
+ first_addend * const_1.into();
let second_computed_output = second_multiplicand_0 * second_multiplicand_1 * const_0.into()
+ second_addend * const_1.into();
let mut constraints = (output_0 - computed_output_0).to_basefield_array().to_vec();
constraints.extend((output_1 - computed_output_1).to_basefield_array());
let mut constraints = (first_output - first_computed_output)
.to_basefield_array()
.to_vec();
constraints.extend((second_output - second_computed_output).to_basefield_array());
constraints
}
@ -76,26 +82,32 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for ArithmeticExtensionGate<D>
let const_0 = vars.local_constants[0];
let const_1 = vars.local_constants[1];
let fixed_multiplicand = vars.get_local_ext_algebra(Self::wires_fixed_multiplicand());
let multiplicand_0 = vars.get_local_ext_algebra(Self::wires_multiplicand_0());
let addend_0 = vars.get_local_ext_algebra(Self::wires_addend_0());
let multiplicand_1 = vars.get_local_ext_algebra(Self::wires_multiplicand_1());
let addend_1 = vars.get_local_ext_algebra(Self::wires_addend_1());
let output_0 = vars.get_local_ext_algebra(Self::wires_output_0());
let output_1 = vars.get_local_ext_algebra(Self::wires_output_1());
let first_multiplicand_0 = vars.get_local_ext_algebra(Self::wires_first_multiplicand_0());
let first_multiplicand_1 = vars.get_local_ext_algebra(Self::wires_first_multiplicand_1());
let first_addend = vars.get_local_ext_algebra(Self::wires_first_addend());
let second_multiplicand_0 = vars.get_local_ext_algebra(Self::wires_second_multiplicand_0());
let second_multiplicand_1 = vars.get_local_ext_algebra(Self::wires_second_multiplicand_1());
let second_addend = vars.get_local_ext_algebra(Self::wires_second_addend());
let first_output = vars.get_local_ext_algebra(Self::wires_first_output());
let second_output = vars.get_local_ext_algebra(Self::wires_second_output());
let computed_output_0 = builder.mul_ext_algebra(fixed_multiplicand, multiplicand_0);
let computed_output_0 = builder.scalar_mul_ext_algebra(const_0, computed_output_0);
let scaled_addend_0 = builder.scalar_mul_ext_algebra(const_1, addend_0);
let computed_output_0 = builder.add_ext_algebra(computed_output_0, scaled_addend_0);
let first_computed_output =
builder.mul_ext_algebra(first_multiplicand_0, first_multiplicand_1);
let first_computed_output = builder.scalar_mul_ext_algebra(const_0, first_computed_output);
let first_scaled_addend = builder.scalar_mul_ext_algebra(const_1, first_addend);
let first_computed_output =
builder.add_ext_algebra(first_computed_output, first_scaled_addend);
let computed_output_1 = builder.mul_ext_algebra(fixed_multiplicand, multiplicand_1);
let computed_output_1 = builder.scalar_mul_ext_algebra(const_0, computed_output_1);
let scaled_addend_1 = builder.scalar_mul_ext_algebra(const_1, addend_1);
let computed_output_1 = builder.add_ext_algebra(computed_output_1, scaled_addend_1);
let second_computed_output =
builder.mul_ext_algebra(second_multiplicand_0, second_multiplicand_1);
let second_computed_output =
builder.scalar_mul_ext_algebra(const_0, second_computed_output);
let second_scaled_addend = builder.scalar_mul_ext_algebra(const_1, second_addend);
let second_computed_output =
builder.add_ext_algebra(second_computed_output, second_scaled_addend);
let diff_0 = builder.sub_ext_algebra(output_0, computed_output_0);
let diff_1 = builder.sub_ext_algebra(output_1, computed_output_1);
let diff_0 = builder.sub_ext_algebra(first_output, first_computed_output);
let diff_1 = builder.sub_ext_algebra(second_output, second_computed_output);
let mut constraints = diff_0.to_ext_target_array().to_vec();
constraints.extend(diff_1.to_ext_target_array());
constraints
@ -120,7 +132,7 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for ArithmeticExtensionGate<D>
}
fn num_wires(&self) -> usize {
7 * D
8 * D
}
fn num_constants(&self) -> usize {
@ -150,67 +162,67 @@ struct ArithmeticExtensionGenerator1<F: Extendable<D>, const D: usize> {
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for ArithmeticExtensionGenerator0<F, D> {
fn dependencies(&self) -> Vec<Target> {
ArithmeticExtensionGate::<D>::wires_fixed_multiplicand()
.chain(ArithmeticExtensionGate::<D>::wires_multiplicand_0())
.chain(ArithmeticExtensionGate::<D>::wires_addend_0())
ArithmeticExtensionGate::<D>::wires_first_multiplicand_0()
.chain(ArithmeticExtensionGate::<D>::wires_first_multiplicand_1())
.chain(ArithmeticExtensionGate::<D>::wires_first_addend())
.map(|i| Target::wire(self.gate_index, i))
.collect()
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let extract_extension = |range: Range<usize>| -> F::Extension {
let t = ExtensionTarget::from_range(self.gate_index, range);
witness.get_extension_target(t)
};
let fixed_multiplicand =
extract_extension(ArithmeticExtensionGate::<D>::wires_fixed_multiplicand());
let multiplicand_0 =
extract_extension(ArithmeticExtensionGate::<D>::wires_multiplicand_0());
let addend_0 = extract_extension(ArithmeticExtensionGate::<D>::wires_addend_0());
extract_extension(ArithmeticExtensionGate::<D>::wires_first_multiplicand_0());
let multiplicand_1 =
extract_extension(ArithmeticExtensionGate::<D>::wires_first_multiplicand_1());
let addend = extract_extension(ArithmeticExtensionGate::<D>::wires_first_addend());
let output_target_0 = ExtensionTarget::from_range(
let output_target = ExtensionTarget::from_range(
self.gate_index,
ArithmeticExtensionGate::<D>::wires_output_0(),
ArithmeticExtensionGate::<D>::wires_first_output(),
);
let computed_output_0 = fixed_multiplicand * multiplicand_0 * self.const_0.into()
+ addend_0 * self.const_1.into();
let computed_output =
multiplicand_0 * multiplicand_1 * self.const_0.into() + addend * self.const_1.into();
PartialWitness::singleton_extension_target(output_target_0, computed_output_0)
GeneratedValues::singleton_extension_target(output_target, computed_output)
}
}
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for ArithmeticExtensionGenerator1<F, D> {
fn dependencies(&self) -> Vec<Target> {
ArithmeticExtensionGate::<D>::wires_fixed_multiplicand()
.chain(ArithmeticExtensionGate::<D>::wires_multiplicand_1())
.chain(ArithmeticExtensionGate::<D>::wires_addend_1())
ArithmeticExtensionGate::<D>::wires_second_multiplicand_0()
.chain(ArithmeticExtensionGate::<D>::wires_second_multiplicand_1())
.chain(ArithmeticExtensionGate::<D>::wires_second_addend())
.map(|i| Target::wire(self.gate_index, i))
.collect()
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let extract_extension = |range: Range<usize>| -> F::Extension {
let t = ExtensionTarget::from_range(self.gate_index, range);
witness.get_extension_target(t)
};
let fixed_multiplicand =
extract_extension(ArithmeticExtensionGate::<D>::wires_fixed_multiplicand());
let multiplicand_0 =
extract_extension(ArithmeticExtensionGate::<D>::wires_second_multiplicand_0());
let multiplicand_1 =
extract_extension(ArithmeticExtensionGate::<D>::wires_multiplicand_1());
let addend_1 = extract_extension(ArithmeticExtensionGate::<D>::wires_addend_1());
extract_extension(ArithmeticExtensionGate::<D>::wires_second_multiplicand_1());
let addend = extract_extension(ArithmeticExtensionGate::<D>::wires_second_addend());
let output_target_1 = ExtensionTarget::from_range(
let output_target = ExtensionTarget::from_range(
self.gate_index,
ArithmeticExtensionGate::<D>::wires_output_1(),
ArithmeticExtensionGate::<D>::wires_second_output(),
);
let computed_output_1 = fixed_multiplicand * multiplicand_1 * self.const_0.into()
+ addend_1 * self.const_1.into();
let computed_output =
multiplicand_0 * multiplicand_1 * self.const_0.into() + addend * self.const_1.into();
PartialWitness::singleton_extension_target(output_target_1, computed_output_1)
GeneratedValues::singleton_extension_target(output_target, computed_output)
}
}

View File

@ -5,7 +5,7 @@ use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
use crate::gates::gate::{Gate, GateRef};
use crate::generator::{SimpleGenerator, WitnessGenerator};
use crate::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::plonk_common::{reduce_with_powers, reduce_with_powers_recursive};
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars};
@ -130,7 +130,7 @@ impl<F: Field, const B: usize> SimpleGenerator<F> for BaseSplitGenerator<B> {
vec![Target::wire(self.gate_index, BaseSumGate::<B>::WIRE_SUM)]
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let sum_value = witness
.get_target(Target::wire(self.gate_index, BaseSumGate::<B>::WIRE_SUM))
.to_canonical_u64() as usize;
@ -155,7 +155,7 @@ impl<F: Field, const B: usize> SimpleGenerator<F> for BaseSplitGenerator<B> {
.iter()
.fold(F::ZERO, |acc, &x| acc * b_field + x);
let mut result = PartialWitness::new();
let mut result = GeneratedValues::with_capacity(self.num_limbs + 1);
result.set_target(
Target::wire(self.gate_index, BaseSumGate::<B>::WIRE_REVERSED_SUM),
reversed_sum,

View File

@ -3,7 +3,7 @@ use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
use crate::gates::gate::{Gate, GateRef};
use crate::generator::{SimpleGenerator, WitnessGenerator};
use crate::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars};
use crate::wire::Wire;
@ -83,12 +83,12 @@ impl<F: Field> SimpleGenerator<F> for ConstantGenerator<F> {
Vec::new()
}
fn run_once(&self, _witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, _witness: &PartialWitness<F>) -> GeneratedValues<F> {
let wire = Wire {
gate: self.gate_index,
input: ConstantGate::WIRE_OUTPUT,
};
PartialWitness::singleton_target(Target::Wire(wire), self.constant)
GeneratedValues::singleton_target(Target::Wire(wire), self.constant)
}
}

View File

@ -31,9 +31,11 @@ pub trait Gate<F: Extendable<D>, const D: usize>: 'static + Send + Sync {
.iter()
.map(|w| F::Extension::from_basefield(*w))
.collect::<Vec<_>>();
let public_inputs_hash = &vars_base.public_inputs_hash;
let vars = EvaluationVars {
local_constants,
local_wires,
public_inputs_hash,
};
let values = self.eval_unfiltered(vars);

View File

@ -2,6 +2,7 @@ use crate::field::extension_field::Extendable;
use crate::field::field::Field;
use crate::gates::gate::GateRef;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::Hash;
use crate::util::{log2_ceil, transpose};
use crate::vars::EvaluationVars;
@ -17,6 +18,7 @@ pub(crate) fn test_low_degree<F: Extendable<D>, const D: usize>(gate: GateRef<F,
let wire_ldes = random_low_degree_matrix::<F::Extension>(gate.num_wires(), rate_bits);
let constant_ldes = random_low_degree_matrix::<F::Extension>(gate.num_constants(), rate_bits);
assert_eq!(wire_ldes.len(), constant_ldes.len());
let public_inputs_hash = &Hash::rand();
let constraint_evals = wire_ldes
.iter()
@ -24,6 +26,7 @@ pub(crate) fn test_low_degree<F: Extendable<D>, const D: usize>(gate: GateRef<F,
.map(|(local_wires, local_constants)| EvaluationVars {
local_constants,
local_wires,
public_inputs_hash,
})
.map(|vars| gate.eval_unfiltered(vars))
.collect::<Vec<_>>();

View File

@ -5,7 +5,7 @@ use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
use crate::gates::gate::{Gate, GateRef};
use crate::generator::{SimpleGenerator, WitnessGenerator};
use crate::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::gmimc::gmimc_automatic_constants;
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars};
@ -239,8 +239,8 @@ impl<F: Extendable<D>, const D: usize, const R: usize> SimpleGenerator<F>
.collect()
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
let mut result = PartialWitness::new();
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let mut result = GeneratedValues::with_capacity(R + W + 1);
let mut state = (0..W)
.map(|i| {
@ -326,6 +326,7 @@ mod tests {
use crate::gates::gmimc::{GMiMCGate, W};
use crate::generator::generate_partial_witness;
use crate::gmimc::gmimc_permute_naive;
use crate::proof::Hash;
use crate::vars::{EvaluationTargets, EvaluationVars};
use crate::verifier::verify;
use crate::wire::Wire;
@ -416,9 +417,11 @@ mod tests {
let gate = Gate::with_constants(constants);
let wires = FF::rand_vec(Gate::end());
let public_inputs_hash = &Hash::rand();
let vars = EvaluationVars {
local_constants: &[],
local_wires: &wires,
public_inputs_hash,
};
let ev = gate.0.eval_unfiltered(vars);
@ -427,9 +430,14 @@ mod tests {
for i in 0..Gate::end() {
pw.set_extension_target(wires_t[i], wires[i]);
}
let public_inputs_hash_t = builder.add_virtual_hash();
pw.set_hash_target(public_inputs_hash_t, *public_inputs_hash);
let vars_t = EvaluationTargets {
local_constants: &[],
local_wires: &wires_t,
public_inputs_hash: &public_inputs_hash_t,
};
let ev_t = gate.0.eval_unfiltered_recursively(&mut builder, vars_t);

View File

@ -7,7 +7,7 @@ use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field::Field;
use crate::gates::gate::{Gate, GateRef};
use crate::generator::{SimpleGenerator, WitnessGenerator};
use crate::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars};
use crate::wire::Wire;
@ -218,7 +218,7 @@ impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for InsertionGenerator
deps
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let local_wire = |input| Wire {
gate: self.gate_index,
input,
@ -264,7 +264,7 @@ impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for InsertionGenerator
let mut insert_here_vals = vec![F::ZERO; vec_size];
insert_here_vals.insert(insertion_index, F::ONE);
let mut result = PartialWitness::<F>::new();
let mut result = GeneratedValues::<F>::with_capacity((vec_size + 1) * (D + 2));
for i in 0..=vec_size {
let output_wires = self.gate.wires_output_list_item(i).map(local_wire);
result.set_ext_wires(output_wires, new_vec[i]);
@ -288,6 +288,7 @@ mod tests {
use crate::gates::gate::Gate;
use crate::gates::gate_testing::test_low_degree;
use crate::gates::insertion::InsertionGate;
use crate::proof::Hash;
use crate::vars::EvaluationVars;
#[test]
@ -366,6 +367,7 @@ mod tests {
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(orig_vec, insertion_index, element_to_insert),
public_inputs_hash: &Hash::rand(),
};
assert!(

View File

@ -9,7 +9,7 @@ use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::interpolation::interpolant;
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
use crate::gates::gate::{Gate, GateRef};
use crate::generator::{SimpleGenerator, WitnessGenerator};
use crate::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars};
use crate::wire::Wire;
@ -216,7 +216,7 @@ impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for InterpolationGener
deps
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let n = self.gate.num_points;
let local_wire = |input| Wire {
@ -244,7 +244,7 @@ impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for InterpolationGener
.collect::<Vec<_>>();
let interpolant = interpolant(&points);
let mut result = PartialWitness::<F>::new();
let mut result = GeneratedValues::<F>::with_capacity(D * (self.gate.num_points + 1));
for (i, &coeff) in interpolant.coeffs.iter().enumerate() {
let wires = self.gate.wires_coeff(i).map(local_wire);
result.set_ext_wires(wires, coeff);
@ -271,6 +271,7 @@ mod tests {
use crate::gates::gate_testing::test_low_degree;
use crate::gates::interpolation::InterpolationGate;
use crate::polynomial::polynomial::PolynomialCoeffs;
use crate::proof::Hash;
use crate::vars::EvaluationVars;
#[test]
@ -352,6 +353,7 @@ mod tests {
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(2, coeffs, points, eval_point),
public_inputs_hash: &Hash::rand(),
};
assert!(

View File

@ -10,6 +10,7 @@ pub mod gmimc;
pub mod insertion;
pub mod interpolation;
pub(crate) mod noop;
pub(crate) mod public_input;
#[cfg(test)]
mod gate_testing;

84
src/gates/public_input.rs Normal file
View File

@ -0,0 +1,84 @@
use std::ops::Range;
use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::gates::gate::{Gate, GateRef};
use crate::generator::WitnessGenerator;
use crate::vars::{EvaluationTargets, EvaluationVars};
/// A gate whose first four wires will be equal to a hash of public inputs.
pub struct PublicInputGate;
impl PublicInputGate {
pub fn get<F: Extendable<D>, const D: usize>() -> GateRef<F, D> {
GateRef::new(PublicInputGate)
}
pub fn wires_public_inputs_hash() -> Range<usize> {
0..4
}
}
impl<F: Extendable<D>, const D: usize> Gate<F, D> for PublicInputGate {
fn id(&self) -> String {
"PublicInputGate".into()
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
Self::wires_public_inputs_hash()
.zip(vars.public_inputs_hash.elements)
.map(|(wire, hash_part)| vars.local_wires[wire] - hash_part.into())
.collect()
}
fn eval_unfiltered_recursively(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
Self::wires_public_inputs_hash()
.zip(vars.public_inputs_hash.elements)
.map(|(wire, hash_part)| {
let hash_part_ext = builder.convert_to_ext(hash_part);
builder.sub_extension(vars.local_wires[wire], hash_part_ext)
})
.collect()
}
fn generators(
&self,
_gate_index: usize,
_local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
Vec::new()
}
fn num_wires(&self) -> usize {
4
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
1
}
fn num_constraints(&self) -> usize {
4
}
}
#[cfg(test)]
mod tests {
use crate::field::crandall_field::CrandallField;
use crate::gates::gate_testing::test_low_degree;
use crate::gates::public_input::PublicInputGate;
#[test]
fn low_degree() {
test_low_degree(PublicInputGate::get::<CrandallField, 4>())
}
}

View File

@ -1,8 +1,13 @@
use std::collections::{HashMap, HashSet};
use std::convert::identity;
use std::fmt::Debug;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field::Field;
use crate::proof::{Hash, HashTarget};
use crate::target::Target;
use crate::wire::Wire;
use crate::witness::PartialWitness;
/// Given a `PartialWitness` that has only inputs set, populates the rest of the witness using the
@ -27,7 +32,7 @@ pub(crate) fn generate_partial_witness<F: Field>(
let mut pending_generator_indices: HashSet<_> = (0..generators.len()).collect();
// We also track a list of "expired" generators which have already returned false.
let mut expired_generator_indices = HashSet::new();
let mut generator_is_expired = vec![false; generators.len()];
// Keep running generators until no generators are queued.
while !pending_generator_indices.is_empty() {
@ -36,15 +41,15 @@ pub(crate) fn generate_partial_witness<F: Field>(
for &generator_idx in &pending_generator_indices {
let (result, finished) = generators[generator_idx].run(&witness);
if finished {
expired_generator_indices.insert(generator_idx);
generator_is_expired[generator_idx] = true;
}
// Enqueue unfinished generators that were watching one of the newly populated targets.
for watch in result.target_values.keys() {
for (watch, _) in &result.target_values {
if let Some(watching_generator_indices) = generator_indices_by_watches.get(watch) {
for watching_generator_idx in watching_generator_indices {
if !expired_generator_indices.contains(watching_generator_idx) {
next_pending_generator_indices.insert(*watching_generator_idx);
for &watching_generator_idx in watching_generator_indices {
if !generator_is_expired[watching_generator_idx] {
next_pending_generator_indices.insert(watching_generator_idx);
}
}
}
@ -55,9 +60,9 @@ pub(crate) fn generate_partial_witness<F: Field>(
pending_generator_indices = next_pending_generator_indices;
}
assert_eq!(
expired_generator_indices.len(),
generators.len(),
assert!(
generator_is_expired.into_iter().all(identity),
"Some generators weren't run."
);
}
@ -72,14 +77,101 @@ pub trait WitnessGenerator<F: Field>: 'static + Send + Sync {
/// flag indicating whether the generator is finished. If the flag is true, the generator will
/// never be run again, otherwise it will be queued for another run next time a target in its
/// watch list is populated.
fn run(&self, witness: &PartialWitness<F>) -> (PartialWitness<F>, bool);
fn run(&self, witness: &PartialWitness<F>) -> (GeneratedValues<F>, bool);
}
/// Values generated by a generator invocation.
pub struct GeneratedValues<F: Field> {
pub(crate) target_values: Vec<(Target, F)>,
}
impl<F: Field> From<Vec<(Target, F)>> for GeneratedValues<F> {
fn from(target_values: Vec<(Target, F)>) -> Self {
Self { target_values }
}
}
impl<F: Field> GeneratedValues<F> {
pub fn with_capacity(capacity: usize) -> Self {
Vec::with_capacity(capacity).into()
}
pub fn empty() -> Self {
Vec::new().into()
}
pub fn singleton_wire(wire: Wire, value: F) -> Self {
Self::singleton_target(Target::Wire(wire), value)
}
pub fn singleton_target(target: Target, value: F) -> Self {
vec![(target, value)].into()
}
pub fn singleton_extension_target<const D: usize>(
et: ExtensionTarget<D>,
value: F::Extension,
) -> Self
where
F: Extendable<D>,
{
let mut witness = Self::with_capacity(D);
witness.set_extension_target(et, value);
witness
}
pub fn set_target(&mut self, target: Target, value: F) {
self.target_values.push((target, value))
}
pub fn set_hash_target(&mut self, ht: HashTarget, value: Hash<F>) {
ht.elements
.iter()
.zip(value.elements)
.for_each(|(&t, x)| self.set_target(t, x));
}
pub fn set_extension_target<const D: usize>(
&mut self,
et: ExtensionTarget<D>,
value: F::Extension,
) where
F: Extendable<D>,
{
let limbs = value.to_basefield_array();
(0..D).for_each(|i| {
self.set_target(et.0[i], limbs[i]);
});
}
pub fn set_wire(&mut self, wire: Wire, value: F) {
self.set_target(Target::Wire(wire), value)
}
pub fn set_wires<W>(&mut self, wires: W, values: &[F])
where
W: IntoIterator<Item = Wire>,
{
// If we used itertools, we could use zip_eq for extra safety.
for (wire, &value) in wires.into_iter().zip(values) {
self.set_wire(wire, value);
}
}
pub fn set_ext_wires<W, const D: usize>(&mut self, wires: W, value: F::Extension)
where
F: Extendable<D>,
W: IntoIterator<Item = Wire>,
{
self.set_wires(wires, &value.to_basefield_array());
}
}
/// A generator which runs once after a list of dependencies is present in the witness.
pub trait SimpleGenerator<F: Field>: 'static + Send + Sync {
fn dependencies(&self) -> Vec<Target>;
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F>;
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F>;
}
impl<F: Field, SG: SimpleGenerator<F>> WitnessGenerator<F> for SG {
@ -87,11 +179,11 @@ impl<F: Field, SG: SimpleGenerator<F>> WitnessGenerator<F> for SG {
self.dependencies()
}
fn run(&self, witness: &PartialWitness<F>) -> (PartialWitness<F>, bool) {
fn run(&self, witness: &PartialWitness<F>) -> (GeneratedValues<F>, bool) {
if witness.contains_all(&self.dependencies()) {
(self.run_once(witness), true)
} else {
(PartialWitness::new(), false)
(GeneratedValues::empty(), false)
}
}
}
@ -108,9 +200,9 @@ impl<F: Field> SimpleGenerator<F> for CopyGenerator {
vec![self.src]
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let value = witness.get_target(self.src);
PartialWitness::singleton_target(self.dst, value)
GeneratedValues::singleton_target(self.dst, value)
}
}
@ -124,10 +216,10 @@ impl<F: Field> SimpleGenerator<F> for RandomValueGenerator {
Vec::new()
}
fn run_once(&self, _witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, _witness: &PartialWitness<F>) -> GeneratedValues<F> {
let random_value = F::rand();
PartialWitness::singleton_target(self.target, random_value)
GeneratedValues::singleton_target(self.target, random_value)
}
}
@ -142,7 +234,7 @@ impl<F: Field> SimpleGenerator<F> for NonzeroTestGenerator {
vec![self.to_test]
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let to_test_value = witness.get_target(self.to_test);
let dummy_value = if to_test_value == F::ZERO {
@ -151,6 +243,6 @@ impl<F: Field> SimpleGenerator<F> for NonzeroTestGenerator {
to_test_value.inverse()
};
PartialWitness::singleton_target(self.dummy, dummy_value)
GeneratedValues::singleton_target(self.dummy, dummy_value)
}
}

View File

@ -90,7 +90,7 @@ impl<F: Fn(Target) -> usize> TargetPartition<Target, F> {
}
let mut indices = HashMap::new();
// // Here we keep just the Wire targets, filtering out everything else.
// Here we keep just the Wire targets, filtering out everything else.
let partition = partition
.into_values()
.map(|v| {

View File

@ -34,10 +34,7 @@ impl<F: Field> ListPolynomialCommitment<F> {
/// Creates a list polynomial commitment for the polynomials interpolating the values in `values`.
pub fn new(values: Vec<PolynomialValues<F>>, rate_bits: usize, blinding: bool) -> Self {
let degree = values[0].len();
let polynomials = values
.par_iter()
.map(|v| v.clone().ifft())
.collect::<Vec<_>>();
let polynomials = values.par_iter().map(|v| v.ifft()).collect::<Vec<_>>();
let lde_values = timed!(
Self::lde_values(&polynomials, rate_bits, blinding),
"to compute LDE"
@ -92,7 +89,7 @@ impl<F: Field> ListPolynomialCommitment<F> {
.par_iter()
.map(|p| {
assert_eq!(p.len(), degree, "Polynomial degree invalid.");
p.clone().lde(rate_bits).coset_fft(F::coset_shift()).values
p.lde(rate_bits).coset_fft(F::coset_shift()).values
})
.chain(if blinding {
// If blinding, salt with two random elements to each leaf vector.
@ -182,15 +179,15 @@ impl<F: Field> ListPolynomialCommitment<F> {
final_poly += zs_quotient;
let lde_final_poly = final_poly.lde(config.rate_bits);
let lde_final_values = lde_final_poly.clone().coset_fft(F::coset_shift().into());
let lde_final_values = lde_final_poly.coset_fft(F::coset_shift().into());
let fri_proof = fri_proof(
&commitments
.par_iter()
.map(|c| &c.merkle_tree)
.collect::<Vec<_>>(),
&lde_final_poly,
&lde_final_values,
lde_final_poly,
lde_final_values,
challenger,
&config.fri_config,
);

View File

@ -88,7 +88,7 @@ impl<F: Field> PolynomialCoeffs<F> {
let root = F::primitive_root_of_unity(log2_strict(a.len()));
// Equals to the evaluation of `a` on `{g.w^i}`.
let mut a_eval = fft(a);
let mut a_eval = fft(&a);
// Compute the denominators `1/(g^n.w^(n*i) - 1)` using batch inversion.
let denominator_g = g.exp(n as u64);
let root_n = root.exp(n as u64);
@ -112,7 +112,7 @@ impl<F: Field> PolynomialCoeffs<F> {
*x *= d;
});
// `p` is the interpolating polynomial of `a_eval` on `{w^i}`.
let mut p = ifft(a_eval);
let mut p = ifft(&a_eval);
// We need to scale it by `g^(-i)` to get the interpolating polynomial of `a_eval` on `{g.w^i}`,
// a.k.a `a/Z_H`.
let g_inv = g.inverse();

View File

@ -33,12 +33,12 @@ impl<F: Field> PolynomialValues<F> {
self.values.len()
}
pub fn ifft(self) -> PolynomialCoeffs<F> {
pub fn ifft(&self) -> PolynomialCoeffs<F> {
ifft(self)
}
/// Returns the polynomial whose evaluation on the coset `shift*H` is `self`.
pub fn coset_ifft(self, shift: F) -> PolynomialCoeffs<F> {
pub fn coset_ifft(&self, shift: F) -> PolynomialCoeffs<F> {
let mut shifted_coeffs = self.ifft();
shifted_coeffs
.coeffs
@ -54,9 +54,9 @@ impl<F: Field> PolynomialValues<F> {
polys.into_iter().map(|p| p.lde(rate_bits)).collect()
}
pub fn lde(self, rate_bits: usize) -> Self {
pub fn lde(&self, rate_bits: usize) -> Self {
let coeffs = ifft(self).lde(rate_bits);
fft_with_options(coeffs, Some(rate_bits), None)
fft_with_options(&coeffs, Some(rate_bits), None)
}
pub fn degree(&self) -> usize {
@ -66,7 +66,7 @@ impl<F: Field> PolynomialValues<F> {
}
pub fn degree_plus_one(&self) -> usize {
self.clone().ifft().degree_plus_one()
self.ifft().degree_plus_one()
}
}
@ -136,7 +136,7 @@ impl<F: Field> PolynomialCoeffs<F> {
.fold(F::ZERO, |acc, &c| acc * x + c)
}
pub fn lde_multiple(polys: Vec<Self>, rate_bits: usize) -> Vec<Self> {
pub fn lde_multiple(polys: Vec<&Self>, rate_bits: usize) -> Vec<Self> {
polys.into_iter().map(|p| p.lde(rate_bits)).collect()
}
@ -194,16 +194,16 @@ impl<F: Field> PolynomialCoeffs<F> {
Self::new(self.trimmed().coeffs.into_iter().rev().collect())
}
pub fn fft(self) -> PolynomialValues<F> {
pub fn fft(&self) -> PolynomialValues<F> {
fft(self)
}
/// Returns the evaluation of the polynomial on the coset `shift*H`.
pub fn coset_fft(self, shift: F) -> PolynomialValues<F> {
pub fn coset_fft(&self, shift: F) -> PolynomialValues<F> {
let modified_poly: Self = shift
.powers()
.zip(self.coeffs)
.map(|(r, c)| r * c)
.zip(&self.coeffs)
.map(|(r, &c)| r * c)
.collect::<Vec<_>>()
.into();
modified_poly.fft()
@ -262,8 +262,7 @@ impl<F: Field> Sub for &PolynomialCoeffs<F> {
fn sub(self, rhs: Self) -> Self::Output {
let len = max(self.len(), rhs.len());
let mut coeffs = self.coeffs.clone();
coeffs.resize(len, F::ZERO);
let mut coeffs = self.padded(len).coeffs;
for (i, &c) in rhs.coeffs.iter().enumerate() {
coeffs[i] -= c;
}
@ -343,7 +342,7 @@ impl<F: Field> Mul for &PolynomialCoeffs<F> {
.zip(b_evals.values)
.map(|(pa, pb)| pa * pb)
.collect();
ifft(mul_evals.into())
ifft(&mul_evals.into())
}
}
@ -390,7 +389,7 @@ mod tests {
let n = 1 << k;
let poly = PolynomialCoeffs::new(F::rand_vec(n));
let shift = F::rand();
let coset_evals = poly.clone().coset_fft(shift).values;
let coset_evals = poly.coset_fft(shift).values;
let generator = F::primitive_root_of_unity(k);
let naive_coset_evals = F::cyclic_subgroup_coset_known_order(generator, shift, n)
@ -411,7 +410,7 @@ mod tests {
let n = 1 << k;
let evals = PolynomialValues::new(F::rand_vec(n));
let shift = F::rand();
let coeffs = evals.clone().coset_ifft(shift);
let coeffs = evals.coset_ifft(shift);
let generator = F::primitive_root_of_unity(k);
let naive_coset_evals = F::cyclic_subgroup_coset_known_order(generator, shift, n)

View File

@ -37,6 +37,12 @@ impl<F: Field> Hash<F> {
elements: [elements[0], elements[1], elements[2], elements[3]],
}
}
pub(crate) fn rand() -> Self {
Self {
elements: [F::rand(), F::rand(), F::rand(), F::rand()],
}
}
}
/// Represents a ~256 bit hash output.
@ -79,6 +85,13 @@ pub struct Proof<F: Extendable<D>, const D: usize> {
pub opening_proof: OpeningProof<F, D>,
}
#[derive(Serialize, Deserialize, Clone, Debug)]
#[serde(bound = "")]
pub struct ProofWithPublicInputs<F: Extendable<D>, const D: usize> {
pub proof: Proof<F, D>,
pub public_inputs: Vec<F>,
}
pub struct ProofTarget<const D: usize> {
pub wires_root: HashTarget,
pub plonk_zs_partial_products_root: HashTarget,
@ -87,6 +100,11 @@ pub struct ProofTarget<const D: usize> {
pub opening_proof: OpeningProofTarget<D>,
}
pub struct ProofWithPublicInputsTarget<const D: usize> {
pub proof: ProofTarget<D>,
pub public_inputs: Vec<Target>,
}
/// Evaluations and Merkle proof produced by the prover in a FRI query step.
#[derive(Serialize, Deserialize, Clone, Debug)]
#[serde(bound = "")]

View File

@ -7,11 +7,12 @@ use rayon::prelude::*;
use crate::circuit_data::{CommonCircuitData, ProverOnlyCircuitData};
use crate::field::extension_field::Extendable;
use crate::generator::generate_partial_witness;
use crate::hash::hash_n_to_hash;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::{PlonkPolynomials, ZeroPolyOnCoset};
use crate::polynomial::commitment::ListPolynomialCommitment;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::Proof;
use crate::proof::{Hash, Proof, ProofWithPublicInputs};
use crate::timed;
use crate::util::partial_products::partial_products;
use crate::util::{log2_ceil, transpose};
@ -23,7 +24,7 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
prover_data: &ProverOnlyCircuitData<F, D>,
common_data: &CommonCircuitData<F, D>,
inputs: PartialWitness<F>,
) -> Result<Proof<F, D>> {
) -> Result<ProofWithPublicInputs<F, D>> {
let config = &common_data.config;
let num_wires = config.num_wires;
let num_challenges = config.num_challenges;
@ -39,6 +40,9 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
"to generate witness"
);
let public_inputs = partial_witness.get_targets(&prover_data.public_inputs);
let public_inputs_hash = hash_n_to_hash(public_inputs.clone(), true);
// Display the marked targets for debugging purposes.
for m in &prover_data.marked_targets {
m.display(&partial_witness);
@ -58,7 +62,7 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
let wires_values: Vec<PolynomialValues<F>> = timed!(
witness
.wire_values
.iter()
.par_iter()
.map(|column| PolynomialValues::new(column.clone()))
.collect(),
"to compute wire polynomials"
@ -119,6 +123,7 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
compute_quotient_polys(
common_data,
prover_data,
&public_inputs_hash,
&wires_commitment,
&zs_partial_products_commitment,
&betas,
@ -178,12 +183,16 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
start_proof_gen.elapsed().as_secs_f32()
);
Ok(Proof {
let proof = Proof {
wires_root: wires_commitment.merkle_tree.root,
plonk_zs_partial_products_root: zs_partial_products_commitment.merkle_tree.root,
quotient_polys_root: quotient_polys_commitment.merkle_tree.root,
openings,
opening_proof,
};
Ok(ProofWithPublicInputs {
proof,
public_inputs,
})
}
@ -284,6 +293,7 @@ fn compute_z<F: Extendable<D>, const D: usize>(
fn compute_quotient_polys<'a, F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
prover_data: &'a ProverOnlyCircuitData<F, D>,
public_inputs_hash: &Hash<F>,
wires_commitment: &'a ListPolynomialCommitment<F>,
zs_partial_products_commitment: &'a ListPolynomialCommitment<F>,
betas: &[F],
@ -337,6 +347,7 @@ fn compute_quotient_polys<'a, F: Extendable<D>, const D: usize>(
let vars = EvaluationVarsBase {
local_constants,
local_wires,
public_inputs_hash,
};
let mut quotient_values = eval_vanishing_poly_base(
common_data,

View File

@ -3,7 +3,7 @@ use crate::circuit_data::{CircuitConfig, CommonCircuitData, VerifierCircuitTarge
use crate::context;
use crate::field::extension_field::Extendable;
use crate::plonk_challenger::RecursiveChallenger;
use crate::proof::{HashTarget, ProofTarget};
use crate::proof::{HashTarget, ProofWithPublicInputsTarget};
use crate::util::scaling::ReducingFactorTarget;
use crate::vanishing_poly::eval_vanishing_poly_recursively;
use crate::vars::EvaluationTargets;
@ -15,15 +15,21 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Recursively verifies an inner proof.
pub fn add_recursive_verifier(
&mut self,
proof: ProofTarget<D>,
proof_with_pis: ProofWithPublicInputsTarget<D>,
inner_config: &CircuitConfig,
inner_verifier_data: &VerifierCircuitTarget,
inner_common_data: &CommonCircuitData<F, D>,
) {
assert!(self.config.num_wires >= MIN_WIRES);
assert!(self.config.num_wires >= MIN_ROUTED_WIRES);
let ProofWithPublicInputsTarget {
proof,
public_inputs,
} = proof_with_pis;
let one = self.one_extension();
let public_inputs_hash = &self.hash_n_to_hash(public_inputs, true);
let num_challenges = inner_config.num_challenges;
let mut challenger = RecursiveChallenger::new(self);
@ -53,13 +59,14 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let vars = EvaluationTargets {
local_constants,
local_wires,
public_inputs_hash,
};
let local_zs = &proof.openings.plonk_zs;
let next_zs = &proof.openings.plonk_zs_right;
let s_sigmas = &proof.openings.plonk_sigmas;
let partial_products = &proof.openings.partial_products;
let zeta_pow_deg = self.exp_power_of_2(zeta, inner_common_data.degree_bits);
let zeta_pow_deg = self.exp_power_of_2_extension(zeta, inner_common_data.degree_bits);
let vanishing_polys_zeta = context!(
self,
"evaluate the vanishing polynomial at our challenge point, zeta.",
@ -89,7 +96,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
{
let recombined_quotient = scale.reduce(chunk, self);
let computed_vanishing_poly = self.mul_extension(z_h_zeta, recombined_quotient);
self.named_route_extension(
self.named_assert_equal_extension(
vanishing_polys_zeta[i],
computed_vanishing_poly,
format!("Vanishing polynomial == Z_H * quotient, challenge {}", i),
@ -127,7 +134,7 @@ mod tests {
use crate::polynomial::commitment::OpeningProofTarget;
use crate::proof::{
FriInitialTreeProofTarget, FriProofTarget, FriQueryRoundTarget, FriQueryStepTarget,
OpeningSetTarget, Proof,
OpeningSetTarget, Proof, ProofTarget, ProofWithPublicInputs,
};
use crate::verifier::verify;
use crate::witness::PartialWitness;
@ -167,9 +174,14 @@ mod tests {
// Construct a `ProofTarget` with the same dimensions as `proof`.
fn proof_to_proof_target<F: Extendable<D>, const D: usize>(
proof: &Proof<F, D>,
proof_with_pis: &ProofWithPublicInputs<F, D>,
builder: &mut CircuitBuilder<F, D>,
) -> ProofTarget<D> {
) -> ProofWithPublicInputsTarget<D> {
let ProofWithPublicInputs {
proof,
public_inputs,
} = proof_with_pis;
let wires_root = builder.add_virtual_hash();
let plonk_zs_root = builder.add_virtual_hash();
let quotient_polys_root = builder.add_virtual_hash();
@ -208,21 +220,41 @@ mod tests {
},
};
ProofTarget {
let proof = ProofTarget {
wires_root,
plonk_zs_partial_products_root: plonk_zs_root,
quotient_polys_root,
openings,
opening_proof,
};
let public_inputs = builder.add_virtual_targets(public_inputs.len());
ProofWithPublicInputsTarget {
proof,
public_inputs,
}
}
// Set the targets in a `ProofTarget` to their corresponding values in a `Proof`.
fn set_proof_target<F: Extendable<D>, const D: usize>(
proof: &Proof<F, D>,
pt: &ProofTarget<D>,
proof: &ProofWithPublicInputs<F, D>,
pt: &ProofWithPublicInputsTarget<D>,
pw: &mut PartialWitness<F>,
) {
let ProofWithPublicInputs {
proof,
public_inputs,
} = proof;
let ProofWithPublicInputsTarget {
proof: pt,
public_inputs: pi_targets,
} = pt;
// Set public inputs.
for (&pi_t, &pi) in pi_targets.iter().zip(public_inputs) {
pw.set_target(pi_t, pi);
}
pw.set_hash_target(pt.wires_root, proof.wires_root);
pw.set_hash_target(
pt.plonk_zs_partial_products_root,
@ -343,7 +375,7 @@ mod tests {
num_query_rounds: 40,
},
};
let (proof, vd, cd) = {
let (proof_with_pis, vd, cd) = {
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
let _two = builder.two();
let _two = builder.hash_n_to_hash(vec![_two], true).elements[0];
@ -357,12 +389,12 @@ mod tests {
data.common,
)
};
verify(proof.clone(), &vd, &cd)?;
verify(proof_with_pis.clone(), &vd, &cd)?;
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
let mut pw = PartialWitness::new();
let pt = proof_to_proof_target(&proof, &mut builder);
set_proof_target(&proof, &pt, &mut pw);
let pt = proof_to_proof_target(&proof_with_pis, &mut builder);
set_proof_target(&proof_with_pis, &pt, &mut pw);
let inner_data = VerifierCircuitTarget {
constants_sigmas_root: builder.add_virtual_hash(),

View File

@ -7,9 +7,6 @@ use crate::wire::Wire;
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub enum Target {
Wire(Wire),
PublicInput {
index: usize,
},
/// A target that doesn't have any inherent location in the witness (but it can be copied to
/// another target that does). This is useful for representing intermediate values in witness
/// generation.
@ -26,7 +23,6 @@ impl Target {
pub fn is_routable(&self, config: &CircuitConfig) -> bool {
match self {
Target::Wire(wire) => wire.is_routable(config),
Target::PublicInput { .. } => true,
Target::VirtualTarget { .. } => true,
}
}

View File

@ -51,7 +51,7 @@ pub(crate) fn transpose<T: Clone>(matrix: &[Vec<T>]) -> Vec<Vec<T>> {
}
/// Permutes `arr` such that each index is mapped to its reverse in binary.
pub(crate) fn reverse_index_bits<T: Copy>(arr: Vec<T>) -> Vec<T> {
pub(crate) fn reverse_index_bits<T: Copy>(arr: &[T]) -> Vec<T> {
let n = arr.len();
let n_power = log2_strict(n);
@ -99,12 +99,9 @@ mod tests {
#[test]
fn test_reverse_index_bits() {
assert_eq!(reverse_index_bits(&[10, 20, 30, 40]), vec![10, 30, 20, 40]);
assert_eq!(
reverse_index_bits(vec![10, 20, 30, 40]),
vec![10, 30, 20, 40]
);
assert_eq!(
reverse_index_bits(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]),
reverse_index_bits(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]),
vec![0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15]
);
}

View File

@ -16,7 +16,7 @@ use crate::polynomial::polynomial::PolynomialCoeffs;
/// This struct abstract away these operations by implementing Horner's method and keeping track
/// of the number of multiplications by `a` to compute the scaling factor.
/// See https://github.com/mir-protocol/plonky2/pull/69 for more details and discussions.
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Clone)]
pub struct ReducingFactor<F: Field> {
base: F,
count: u64,
@ -79,7 +79,7 @@ impl<F: Field> ReducingFactor<F> {
}
}
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Clone)]
pub struct ReducingFactorTarget<const D: usize> {
base: ExtensionTarget<D>,
count: u64,
@ -122,8 +122,10 @@ impl<const D: usize> ReducingFactorTarget<D> {
// out_0 = alpha acc + pair[0]
// acc' = out_1 = alpha out_0 + pair[1]
let gate = builder.num_gates();
let out_0 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_output_0());
let out_0 = ExtensionTarget::from_range(
gate,
ArithmeticExtensionGate::<D>::wires_first_output(),
);
acc = builder
.double_arithmetic_extension(
F::ONE,
@ -131,6 +133,7 @@ impl<const D: usize> ReducingFactorTarget<D> {
self.base,
acc,
pair[0],
self.base,
out_0,
pair[1],
)

View File

@ -236,10 +236,13 @@ pub fn evaluate_gate_constraints_recursively<F: Extendable<D>, const D: usize>(
) -> Vec<ExtensionTarget<D>> {
let mut constraints = vec![builder.zero_extension(); num_gate_constraints];
for gate in gates {
let gate_constraints = gate
.gate
let gate_constraints = context!(
builder,
&format!("evaluate {} constraints", gate.gate.0.id()),
gate.gate
.0
.eval_filtered_recursively(builder, vars, &gate.prefix);
.eval_filtered_recursively(builder, vars, &gate.prefix)
);
for (i, c) in gate_constraints.into_iter().enumerate() {
constraints[i] = builder.add_extension(constraints[i], c);
}

View File

@ -5,17 +5,20 @@ use crate::field::extension_field::algebra::ExtensionAlgebra;
use crate::field::extension_field::target::{ExtensionAlgebraTarget, ExtensionTarget};
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
use crate::proof::{Hash, HashTarget};
#[derive(Debug, Copy, Clone)]
pub struct EvaluationVars<'a, F: Extendable<D>, const D: usize> {
pub(crate) local_constants: &'a [F::Extension],
pub(crate) local_wires: &'a [F::Extension],
pub(crate) public_inputs_hash: &'a Hash<F>,
}
#[derive(Debug, Copy, Clone)]
pub struct EvaluationVarsBase<'a, F: Field> {
pub(crate) local_constants: &'a [F],
pub(crate) local_wires: &'a [F],
pub(crate) public_inputs_hash: &'a Hash<F>,
}
impl<'a, F: Extendable<D>, const D: usize> EvaluationVars<'a, F, D> {
@ -49,6 +52,7 @@ impl<'a, const D: usize> EvaluationTargets<'a, D> {
pub struct EvaluationTargets<'a, const D: usize> {
pub(crate) local_constants: &'a [ExtensionTarget<D>],
pub(crate) local_wires: &'a [ExtensionTarget<D>],
pub(crate) public_inputs_hash: &'a HashTarget,
}
impl<'a, const D: usize> EvaluationTargets<'a, D> {

View File

@ -3,20 +3,27 @@ use anyhow::{ensure, Result};
use crate::circuit_data::{CommonCircuitData, VerifierOnlyCircuitData};
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
use crate::hash::hash_n_to_hash;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::reduce_with_powers;
use crate::proof::Proof;
use crate::proof::ProofWithPublicInputs;
use crate::vanishing_poly::eval_vanishing_poly;
use crate::vars::EvaluationVars;
pub(crate) fn verify<F: Extendable<D>, const D: usize>(
proof: Proof<F, D>,
proof_with_pis: ProofWithPublicInputs<F, D>,
verifier_data: &VerifierOnlyCircuitData<F>,
common_data: &CommonCircuitData<F, D>,
) -> Result<()> {
let ProofWithPublicInputs {
proof,
public_inputs,
} = proof_with_pis;
let config = &common_data.config;
let num_challenges = config.num_challenges;
let public_inputs_hash = &hash_n_to_hash(public_inputs, true);
let mut challenger = Challenger::new();
// Observe the instance.
// TODO: Need to include public inputs as well.
@ -37,6 +44,7 @@ pub(crate) fn verify<F: Extendable<D>, const D: usize>(
let vars = EvaluationVars {
local_constants,
local_wires,
public_inputs_hash,
};
let local_zs = &proof.openings.plonk_zs;
let next_zs = &proof.openings.plonk_zs_right;

View File

@ -8,6 +8,7 @@ use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field::Field;
use crate::gates::gate::GateInstance;
use crate::generator::GeneratedValues;
use crate::proof::{Hash, HashTarget};
use crate::target::Target;
use crate::wire::Wire;
@ -35,28 +36,6 @@ impl<F: Field> PartialWitness<F> {
}
}
pub fn singleton_wire(wire: Wire, value: F) -> Self {
Self::singleton_target(Target::Wire(wire), value)
}
pub fn singleton_target(target: Target, value: F) -> Self {
let mut witness = PartialWitness::new();
witness.set_target(target, value);
witness
}
pub fn singleton_extension_target<const D: usize>(
et: ExtensionTarget<D>,
value: F::Extension,
) -> Self
where
F: Extendable<D>,
{
let mut witness = PartialWitness::new();
witness.set_extension_target(et, value);
witness
}
pub fn is_empty(&self) -> bool {
self.target_values.is_empty()
}
@ -157,7 +136,7 @@ impl<F: Field> PartialWitness<F> {
self.set_wires(wires, &value.to_basefield_array());
}
pub fn extend(&mut self, other: PartialWitness<F>) {
pub fn extend(&mut self, other: GeneratedValues<F>) {
for (target, value) in other.target_values {
self.set_target(target, value);
}
@ -193,7 +172,6 @@ impl<F: Field> PartialWitness<F> {
gate,
gate_instances[*gate].gate_type.0.id()
),
Target::PublicInput { index } => format!("{}-th public input", index),
Target::VirtualTarget { index } => format!("{}-th virtual target", index),
}
};