Merge pull request #346 from mir-protocol/partial_product_chain

Use chain structure to compute partial products
This commit is contained in:
wborgeaud 2021-11-12 09:39:17 +01:00 committed by GitHub
commit a48eb2f81d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 161 additions and 185 deletions

View File

@ -190,8 +190,8 @@ pub struct CommonCircuitData<F: RichField + Extendable<D>, const D: usize> {
/// The `{k_i}` valued used in `S_ID_i` in Plonk's permutation argument.
pub(crate) k_is: Vec<F>,
/// The number of partial products needed to compute the `Z` polynomials and the number
/// of partial products needed to compute the final product.
/// The number of partial products needed to compute the `Z` polynomials and
/// the number of original elements consumed in `partial_products()`.
pub(crate) num_partial_products: (usize, usize),
/// A digest of the "circuit" (i.e. the instance, minus public inputs), which can be used to

View File

@ -1,3 +1,5 @@
use std::mem::swap;
use anyhow::Result;
use rayon::prelude::*;
@ -17,7 +19,7 @@ use crate::plonk::vanishing_poly::eval_vanishing_poly_base_batch;
use crate::plonk::vars::EvaluationVarsBase;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::timed;
use crate::util::partial_products::partial_products;
use crate::util::partial_products::{partial_products_and_z_gx, quotient_chunk_products};
use crate::util::timing::TimingTree;
use crate::util::{log2_ceil, transpose};
@ -91,28 +93,22 @@ pub(crate) fn prove<F: RichField + Extendable<D>, const D: usize>(
common_data.quotient_degree_factor < common_data.config.num_routed_wires,
"When the number of routed wires is smaller that the degree, we should change the logic to avoid computing partial products."
);
let mut partial_products = timed!(
let mut partial_products_and_zs = timed!(
timing,
"compute partial products",
all_wires_permutation_partial_products(&witness, &betas, &gammas, prover_data, common_data)
);
let plonk_z_vecs = timed!(
timing,
"compute Z's",
compute_zs(&partial_products, common_data)
);
// Z is expected at the front of our batch; see `zs_range` and `partial_products_range`.
let plonk_z_vecs = partial_products_and_zs
.iter_mut()
.map(|partial_products_and_z| partial_products_and_z.pop().unwrap())
.collect();
let zs_partial_products = [plonk_z_vecs, partial_products_and_zs.concat()].concat();
// The first polynomial in `partial_products` represent the final product used in the
// computation of `Z`. It isn't needed anymore so we discard it.
partial_products.iter_mut().for_each(|part| {
part.remove(0);
});
let zs_partial_products = [plonk_z_vecs, partial_products.concat()].concat();
let zs_partial_products_commitment = timed!(
let partial_products_and_zs_commitment = timed!(
timing,
"commit to Z's",
"commit to partial products and Z's",
PolynomialBatchCommitment::from_values(
zs_partial_products,
config.rate_bits,
@ -123,7 +119,7 @@ pub(crate) fn prove<F: RichField + Extendable<D>, const D: usize>(
)
);
challenger.observe_cap(&zs_partial_products_commitment.merkle_tree.cap);
challenger.observe_cap(&partial_products_and_zs_commitment.merkle_tree.cap);
let alphas = challenger.get_n_challenges(num_challenges);
@ -135,7 +131,7 @@ pub(crate) fn prove<F: RichField + Extendable<D>, const D: usize>(
prover_data,
&public_inputs_hash,
&wires_commitment,
&zs_partial_products_commitment,
&partial_products_and_zs_commitment,
&betas,
&gammas,
&alphas,
@ -184,7 +180,7 @@ pub(crate) fn prove<F: RichField + Extendable<D>, const D: usize>(
&[
&prover_data.constants_sigmas_commitment,
&wires_commitment,
&zs_partial_products_commitment,
&partial_products_and_zs_commitment,
&quotient_polys_commitment,
],
zeta,
@ -196,7 +192,7 @@ pub(crate) fn prove<F: RichField + Extendable<D>, const D: usize>(
let proof = Proof {
wires_cap: wires_commitment.merkle_tree.cap,
plonk_zs_partial_products_cap: zs_partial_products_commitment.merkle_tree.cap,
plonk_zs_partial_products_cap: partial_products_and_zs_commitment.merkle_tree.cap,
quotient_polys_cap: quotient_polys_commitment.merkle_tree.cap,
openings,
opening_proof,
@ -217,7 +213,7 @@ fn all_wires_permutation_partial_products<F: RichField + Extendable<D>, const D:
) -> Vec<Vec<PolynomialValues<F>>> {
(0..common_data.config.num_challenges)
.map(|i| {
wires_permutation_partial_products(
wires_permutation_partial_products_and_zs(
witness,
betas[i],
gammas[i],
@ -231,7 +227,7 @@ fn all_wires_permutation_partial_products<F: RichField + Extendable<D>, const D:
/// Compute the partial products used in the `Z` polynomial.
/// Returns the polynomials interpolating `partial_products(f / g)`
/// where `f, g` are the products in the definition of `Z`: `Z(g^i) = f / g`.
fn wires_permutation_partial_products<F: RichField + Extendable<D>, const D: usize>(
fn wires_permutation_partial_products_and_zs<F: RichField + Extendable<D>, const D: usize>(
witness: &MatrixWitness<F>,
beta: F,
gamma: F,
@ -241,7 +237,8 @@ fn wires_permutation_partial_products<F: RichField + Extendable<D>, const D: usi
let degree = common_data.quotient_degree_factor;
let subgroup = &prover_data.subgroup;
let k_is = &common_data.k_is;
let values = subgroup
let (num_prods, final_num_prod) = common_data.num_partial_products;
let all_quotient_chunk_products = subgroup
.par_iter()
.enumerate()
.map(|(i, &x)| {
@ -265,49 +262,26 @@ fn wires_permutation_partial_products<F: RichField + Extendable<D>, const D: usi
.map(|(num, den_inv)| num * den_inv)
.collect::<Vec<_>>();
let quotient_partials = partial_products(&quotient_values, degree);
// This is the final product for the quotient.
let quotient = quotient_partials
[common_data.num_partial_products.0 - common_data.num_partial_products.1..]
.iter()
.copied()
.product();
// We add the quotient at the beginning of the vector to reuse them later in the computation of `Z`.
[vec![quotient], quotient_partials].concat()
quotient_chunk_products(&quotient_values, degree)
})
.collect::<Vec<_>>();
transpose(&values)
let mut z_x = F::ONE;
let mut all_partial_products_and_zs = Vec::new();
for quotient_chunk_products in all_quotient_chunk_products {
let mut partial_products_and_z_gx =
partial_products_and_z_gx(z_x, &quotient_chunk_products);
// The last term is Z(gx), but we replace it with Z(x), otherwise Z would end up shifted.
swap(&mut z_x, &mut partial_products_and_z_gx[num_prods]);
all_partial_products_and_zs.push(partial_products_and_z_gx);
}
transpose(&all_partial_products_and_zs)
.into_par_iter()
.map(PolynomialValues::new)
.collect()
}
fn compute_zs<F: RichField + Extendable<D>, const D: usize>(
partial_products: &[Vec<PolynomialValues<F>>],
common_data: &CommonCircuitData<F, D>,
) -> Vec<PolynomialValues<F>> {
(0..common_data.config.num_challenges)
.map(|i| compute_z(&partial_products[i], common_data))
.collect()
}
/// Compute the `Z` polynomial by reusing the computations done in `wires_permutation_partial_products`.
fn compute_z<F: RichField + Extendable<D>, const D: usize>(
partial_products: &[PolynomialValues<F>],
common_data: &CommonCircuitData<F, D>,
) -> PolynomialValues<F> {
let mut plonk_z_points = vec![F::ONE];
for i in 1..common_data.degree() {
let quotient = partial_products[0].values[i - 1];
let last = *plonk_z_points.last().unwrap();
plonk_z_points.push(last * quotient);
}
plonk_z_points.into()
}
const BATCH_SIZE: usize = 32;
fn compute_quotient_polys<'a, F: RichField + Extendable<D>, const D: usize>(

View File

@ -62,31 +62,27 @@ pub(crate) fn eval_vanishing_poly<F: RichField + Extendable<D>, const D: usize>(
wire_value + s_sigma.scalar_mul(betas[i]) + gammas[i].into()
})
.collect::<Vec<_>>();
let quotient_values = (0..common_data.config.num_routed_wires)
.map(|j| numerator_values[j] / denominator_values[j])
.collect::<Vec<_>>();
// The partial products considered for this iteration of `i`.
let current_partial_products = &partial_products[i * num_prods..(i + 1) * num_prods];
// Check the quotient partial products.
let mut partial_product_check =
check_partial_products(&quotient_values, current_partial_products, max_degree);
// The first checks are of the form `q - n/d` which is a rational function not a polynomial.
// We multiply them by `d` to get checks of the form `q*d - n` which low-degree polynomials.
denominator_values
.chunks(max_degree)
.zip(partial_product_check.iter_mut())
.for_each(|(d, q)| {
*q *= d.iter().copied().product();
});
vanishing_partial_products_terms.extend(partial_product_check);
let partial_product_checks = check_partial_products(
&numerator_values,
&denominator_values,
current_partial_products,
z_x,
max_degree,
);
vanishing_partial_products_terms.extend(partial_product_checks);
// The quotient final product is the product of the last `final_num_prod` elements.
let quotient: F::Extension = current_partial_products[num_prods - final_num_prod..]
let final_nume_product = numerator_values[final_num_prod..].iter().copied().product();
let final_deno_product = denominator_values[final_num_prod..]
.iter()
.copied()
.product();
vanishing_v_shift_terms.push(quotient * z_x - z_gz);
let last_partial = *current_partial_products.last().unwrap();
let v_shift_term = last_partial * final_nume_product - z_gz * final_deno_product;
vanishing_v_shift_terms.push(v_shift_term);
}
let vanishing_terms = [
@ -138,7 +134,6 @@ pub(crate) fn eval_vanishing_poly_base_batch<F: RichField + Extendable<D>, const
let mut numerator_values = Vec::with_capacity(num_routed_wires);
let mut denominator_values = Vec::with_capacity(num_routed_wires);
let mut quotient_values = Vec::with_capacity(num_routed_wires);
// The L_1(x) (Z(x) - 1) vanishing terms.
let mut vanishing_z_1_terms = Vec::with_capacity(num_challenges);
@ -177,36 +172,30 @@ pub(crate) fn eval_vanishing_poly_base_batch<F: RichField + Extendable<D>, const
let s_sigma = s_sigmas[j];
wire_value + betas[i] * s_sigma + gammas[i]
}));
let denominator_inverses = F::batch_multiplicative_inverse(&denominator_values);
quotient_values.extend(
(0..num_routed_wires).map(|j| numerator_values[j] * denominator_inverses[j]),
);
// The partial products considered for this iteration of `i`.
let current_partial_products = &partial_products[i * num_prods..(i + 1) * num_prods];
// Check the numerator partial products.
let mut partial_product_check =
check_partial_products(&quotient_values, current_partial_products, max_degree);
// The first checks are of the form `q - n/d` which is a rational function not a polynomial.
// We multiply them by `d` to get checks of the form `q*d - n` which low-degree polynomials.
denominator_values
.chunks(max_degree)
.zip(partial_product_check.iter_mut())
.for_each(|(d, q)| {
*q *= d.iter().copied().product();
});
vanishing_partial_products_terms.extend(partial_product_check);
let partial_product_checks = check_partial_products(
&numerator_values,
&denominator_values,
current_partial_products,
z_x,
max_degree,
);
vanishing_partial_products_terms.extend(partial_product_checks);
// The quotient final product is the product of the last `final_num_prod` elements.
let quotient: F = current_partial_products[num_prods - final_num_prod..]
let final_nume_product = numerator_values[final_num_prod..].iter().copied().product();
let final_deno_product = denominator_values[final_num_prod..]
.iter()
.copied()
.product();
vanishing_v_shift_terms.push(quotient * z_x - z_gz);
let last_partial = *current_partial_products.last().unwrap();
let v_shift_term = last_partial * final_nume_product - z_gz * final_deno_product;
vanishing_v_shift_terms.push(v_shift_term);
numerator_values.clear();
denominator_values.clear();
quotient_values.clear();
}
let vanishing_terms = vanishing_z_1_terms
@ -363,7 +352,6 @@ pub(crate) fn eval_vanishing_poly_recursively<F: RichField + Extendable<D>, cons
let mut numerator_values = Vec::new();
let mut denominator_values = Vec::new();
let mut quotient_values = Vec::new();
for j in 0..common_data.config.num_routed_wires {
let wire_value = vars.local_wires[j];
@ -376,38 +364,30 @@ pub(crate) fn eval_vanishing_poly_recursively<F: RichField + Extendable<D>, cons
let numerator = builder.mul_add_extension(beta_ext, s_ids[j], wire_value_plus_gamma);
let denominator =
builder.mul_add_extension(beta_ext, s_sigmas[j], wire_value_plus_gamma);
let quotient = builder.div_extension(numerator, denominator);
numerator_values.push(numerator);
denominator_values.push(denominator);
quotient_values.push(quotient);
}
// The partial products considered for this iteration of `i`.
let current_partial_products = &partial_products[i * num_prods..(i + 1) * num_prods];
// Check the quotient partial products.
let mut partial_product_check = check_partial_products_recursively(
let partial_product_checks = check_partial_products_recursively(
builder,
&quotient_values,
&numerator_values,
&denominator_values,
current_partial_products,
z_x,
max_degree,
);
// The first checks are of the form `q - n/d` which is a rational function not a polynomial.
// We multiply them by `d` to get checks of the form `q*d - n` which low-degree polynomials.
denominator_values
.chunks(max_degree)
.zip(partial_product_check.iter_mut())
.for_each(|(d, q)| {
let mut v = d.to_vec();
v.push(*q);
*q = builder.mul_many_extension(&v);
});
vanishing_partial_products_terms.extend(partial_product_check);
vanishing_partial_products_terms.extend(partial_product_checks);
// The quotient final product is the product of the last `final_num_prod` elements.
let quotient =
builder.mul_many_extension(&current_partial_products[num_prods - final_num_prod..]);
vanishing_v_shift_terms.push(builder.mul_sub_extension(quotient, z_x, z_gz));
let final_nume_product = builder.mul_many_extension(&numerator_values[final_num_prod..]);
let final_deno_product = builder.mul_many_extension(&denominator_values[final_num_prod..]);
let z_gz_denominators = builder.mul_extension(z_gz, final_deno_product);
let last_partial = *current_partial_products.last().unwrap();
let v_shift_term =
builder.mul_sub_extension(last_partial, final_nume_product, z_gz_denominators);
vanishing_v_shift_terms.push(v_shift_term);
}
let vanishing_terms = [

View File

@ -1,124 +1,146 @@
use std::iter::Product;
use std::ops::Sub;
use itertools::Itertools;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field_types::RichField;
use crate::field::field_types::{Field, RichField};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::util::ceil_div_usize;
pub(crate) fn quotient_chunk_products<F: Field>(
quotient_values: &[F],
max_degree: usize,
) -> Vec<F> {
debug_assert!(max_degree > 1);
assert!(quotient_values.len() > 0);
let chunk_size = max_degree;
quotient_values
.chunks(chunk_size)
.map(|chunk| chunk.iter().copied().product())
.collect()
}
/// Compute partial products of the original vector `v` such that all products consist of `max_degree`
/// or less elements. This is done until we've computed the product `P` of all elements in the vector.
pub fn partial_products<T: Product + Copy>(v: &[T], max_degree: usize) -> Vec<T> {
pub(crate) fn partial_products_and_z_gx<F: Field>(z_x: F, quotient_chunk_products: &[F]) -> Vec<F> {
assert!(quotient_chunk_products.len() > 0);
let mut res = Vec::new();
let mut remainder = v.to_vec();
while remainder.len() > max_degree {
let new_partials = remainder
.chunks(max_degree)
// TODO: can filter out chunks of length 1.
.map(|chunk| chunk.iter().copied().product())
.collect::<Vec<_>>();
res.extend_from_slice(&new_partials);
remainder = new_partials;
let mut acc = z_x;
for &quotient_chunk_product in quotient_chunk_products {
acc *= quotient_chunk_product;
res.push(acc);
}
res
}
/// Returns a tuple `(a,b)`, where `a` is the length of the output of `partial_products()` on a
/// vector of length `n`, and `b` is the number of elements needed to compute the final product.
/// vector of length `n`, and `b` is the number of original elements consumed in `partial_products()`.
pub fn num_partial_products(n: usize, max_degree: usize) -> (usize, usize) {
debug_assert!(max_degree > 1);
let mut res = 0;
let mut remainder = n;
while remainder > max_degree {
let new_partials_len = ceil_div_usize(remainder, max_degree);
res += new_partials_len;
remainder = new_partials_len;
}
let chunk_size = max_degree;
let num_chunks = n / chunk_size;
(res, remainder)
(num_chunks, num_chunks * chunk_size)
}
/// Checks that the partial products of `v` are coherent with those in `partials` by only computing
/// Checks that the partial products of `numerators/denominators` are coherent with those in `partials` by only computing
/// products of size `max_degree` or less.
pub fn check_partial_products<T: Product + Copy + Sub<Output = T>>(
v: &[T],
mut partials: &[T],
pub(crate) fn check_partial_products<F: Field>(
numerators: &[F],
denominators: &[F],
partials: &[F],
z_x: F,
max_degree: usize,
) -> Vec<T> {
) -> Vec<F> {
debug_assert!(max_degree > 1);
let mut acc = z_x;
let mut partials = partials.iter();
let mut res = Vec::new();
let mut remainder = v;
while remainder.len() > max_degree {
let products = remainder
.chunks(max_degree)
.map(|chunk| chunk.iter().copied().product::<T>());
let products_len = products.len();
res.extend(products.zip(partials).map(|(a, &b)| a - b));
(remainder, partials) = partials.split_at(products_len);
let chunk_size = max_degree;
for (nume_chunk, deno_chunk) in numerators
.chunks_exact(chunk_size)
.zip_eq(denominators.chunks_exact(chunk_size))
{
let num_chunk_product = nume_chunk.iter().copied().product();
let den_chunk_product = deno_chunk.iter().copied().product();
let new_acc = *partials.next().unwrap();
res.push(acc * num_chunk_product - new_acc * den_chunk_product);
acc = new_acc;
}
debug_assert!(partials.next().is_none());
res
}
pub fn check_partial_products_recursively<F: RichField + Extendable<D>, const D: usize>(
pub(crate) fn check_partial_products_recursively<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
v: &[ExtensionTarget<D>],
numerators: &[ExtensionTarget<D>],
denominators: &[ExtensionTarget<D>],
partials: &[ExtensionTarget<D>],
mut acc: ExtensionTarget<D>,
max_degree: usize,
) -> Vec<ExtensionTarget<D>> {
debug_assert!(max_degree > 1);
let mut partials = partials.iter();
let mut res = Vec::new();
let mut remainder = v.to_vec();
let mut partials = partials.to_vec();
while remainder.len() > max_degree {
let products = remainder
.chunks(max_degree)
.map(|chunk| builder.mul_many_extension(chunk))
.collect::<Vec<_>>();
res.extend(
products
.iter()
.zip(&partials)
.map(|(&a, &b)| builder.sub_extension(a, b)),
);
remainder = partials.drain(..products.len()).collect();
let chunk_size = max_degree;
for (nume_chunk, deno_chunk) in numerators
.chunks_exact(chunk_size)
.zip(denominators.chunks_exact(chunk_size))
{
let nume_product = builder.mul_many_extension(nume_chunk);
let deno_product = builder.mul_many_extension(deno_chunk);
let new_acc = *partials.next().unwrap();
let new_acc_deno = builder.mul_extension(new_acc, deno_product);
// Assert that new_acc*deno_product = acc * nume_product.
res.push(builder.mul_sub_extension(acc, nume_product, new_acc_deno));
acc = new_acc;
}
debug_assert!(partials.next().is_none());
res
}
#[cfg(test)]
mod tests {
use num::Zero;
use super::*;
use crate::field::goldilocks_field::GoldilocksField;
#[test]
fn test_partial_products() {
let v = vec![1, 2, 3, 4, 5, 6];
let p = partial_products(&v, 2);
assert_eq!(p, vec![2, 12, 30, 24, 30]);
type F = GoldilocksField;
let denominators = vec![F::ONE; 6];
let v = field_vec(&[1, 2, 3, 4, 5, 6]);
let quotient_chunks_prods = quotient_chunk_products(&v, 2);
assert_eq!(quotient_chunks_prods, field_vec(&[2, 12, 30]));
let p = partial_products_and_z_gx(F::ONE, &quotient_chunks_prods);
assert_eq!(p, field_vec(&[2, 24, 720]));
let nums = num_partial_products(v.len(), 2);
assert_eq!(p.len(), nums.0);
assert!(check_partial_products(&v, &p, 2)
assert!(check_partial_products(&v, &denominators, &p, F::ONE, 2)
.iter()
.all(|x| x.is_zero()));
assert_eq!(
v.into_iter().product::<i32>(),
p[p.len() - nums.1..].iter().copied().product(),
*p.last().unwrap() * v[nums.1..].iter().copied().product::<F>(),
v.into_iter().product::<F>(),
);
let v = vec![1, 2, 3, 4, 5, 6];
let p = partial_products(&v, 3);
assert_eq!(p, vec![6, 120]);
let v = field_vec(&[1, 2, 3, 4, 5, 6]);
let quotient_chunks_prods = quotient_chunk_products(&v, 3);
assert_eq!(quotient_chunks_prods, field_vec(&[6, 120]));
let p = partial_products_and_z_gx(F::ONE, &quotient_chunks_prods);
assert_eq!(p, field_vec(&[6, 720]));
let nums = num_partial_products(v.len(), 3);
assert_eq!(p.len(), nums.0);
assert!(check_partial_products(&v, &p, 3)
assert!(check_partial_products(&v, &denominators, &p, F::ONE, 3)
.iter()
.all(|x| x.is_zero()));
assert_eq!(
v.into_iter().product::<i32>(),
p[p.len() - nums.1..].iter().copied().product(),
*p.last().unwrap() * v[nums.1..].iter().copied().product::<F>(),
v.into_iter().product::<F>(),
);
}
fn field_vec<F: Field>(xs: &[usize]) -> Vec<F> {
xs.iter().map(|&x| F::from_canonical_usize(x)).collect()
}
}