Merge pull request #280 from mir-protocol/custom_serializer

Custom serializer for proofs
This commit is contained in:
wborgeaud 2021-10-04 10:32:08 +02:00 committed by GitHub
commit a0554cbb2c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 600 additions and 17 deletions

View File

@ -17,3 +17,9 @@ pub struct FriConfig {
/// Number of query rounds to perform.
pub num_query_rounds: usize,
}
impl FriConfig {
pub(crate) fn total_arities(&self) -> usize {
self.reduction_arity_bits.iter().sum()
}
}

View File

@ -83,6 +83,8 @@ pub struct FriQueryRoundTarget<const D: usize> {
#[derive(Serialize, Deserialize, Clone, Debug, Eq, PartialEq)]
#[serde(bound = "")]
pub struct CompressedFriQueryRounds<F: Extendable<D>, const D: usize> {
/// Query indices.
pub indices: Vec<usize>,
/// Map from initial indices `i` to the `FriInitialProof` for the `i`th leaf.
pub initial_trees_proofs: HashMap<usize, FriInitialTreeProof<F>>,
/// For each FRI query step, a map from indices `i` to the `FriQueryStep` for the `i`th leaf.
@ -182,6 +184,7 @@ impl<F: RichField + Extendable<D>, const D: usize> FriProof<F, D> {
.collect::<Vec<_>>();
let mut compressed_query_proofs = CompressedFriQueryRounds {
indices: indices.to_vec(),
initial_trees_proofs: HashMap::new(),
steps: vec![HashMap::new(); num_reductions],
};

View File

@ -81,15 +81,14 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
common_data: &CommonCircuitData<F, D>,
) {
let config = &common_data.config;
let total_arities = config.fri_config.reduction_arity_bits.iter().sum::<usize>();
debug_assert_eq!(
common_data.degree_bits,
log2_strict(proof.final_poly.len()) + total_arities,
common_data.final_poly_len(),
proof.final_poly.len(),
"Final polynomial has wrong degree."
);
// Size of the LDE domain.
let n = proof.final_poly.len() << (total_arities + config.rate_bits);
let n = common_data.lde_size();
challenger.observe_opening_set(os);

View File

@ -64,14 +64,13 @@ pub(crate) fn verify_fri_proof<F: RichField + Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
) -> Result<()> {
let config = &common_data.config;
let total_arities = config.fri_config.reduction_arity_bits.iter().sum::<usize>();
ensure!(
common_data.degree_bits == log2_strict(proof.final_poly.len()) + total_arities,
common_data.final_poly_len() == proof.final_poly.len(),
"Final polynomial has wrong degree."
);
// Size of the LDE domain.
let n = proof.final_poly.len() << (total_arities + config.rate_bits);
let n = common_data.lde_size();
// Check PoW.
fri_verify_proof_of_work(challenges.fri_pow_response, &config.fri_config)?;

View File

@ -579,12 +579,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
info!("Degree after blinding & padding: {}", degree);
let degree_bits = log2_strict(degree);
assert!(
self.config
.fri_config
.reduction_arity_bits
.iter()
.sum::<usize>()
<= degree_bits,
self.config.fri_config.total_arities() <= degree_bits,
"FRI total reduction arity is too large."
);

View File

@ -252,6 +252,10 @@ impl<F: RichField + Extendable<D>, const D: usize> CommonCircuitData<F, D> {
pub fn partial_products_range(&self) -> RangeFrom<usize> {
self.config.num_challenges..
}
pub fn final_poly_len(&self) -> usize {
1 << (self.degree_bits - self.config.fri_config.total_arities())
}
}
/// The `Target` version of `VerifierCircuitData`, for use inside recursive circuits. Note that this

View File

@ -11,6 +11,7 @@ use crate::hash::hashing::hash_n_to_hash;
use crate::hash::merkle_tree::MerkleCap;
use crate::iop::target::Target;
use crate::plonk::circuit_data::CommonCircuitData;
use crate::util::serialization::Buffer;
#[derive(Serialize, Deserialize, Clone, Debug, Eq, PartialEq)]
#[serde(bound = "")]
@ -83,6 +84,21 @@ impl<F: RichField + Extendable<D>, const D: usize> ProofWithPublicInputs<F, D> {
pub(crate) fn get_public_inputs_hash(&self) -> HashOut<F> {
hash_n_to_hash(self.public_inputs.clone(), true)
}
pub fn to_bytes(&self) -> anyhow::Result<Vec<u8>> {
let mut buffer = Buffer::new(Vec::new());
buffer.write_proof_with_public_inputs(self)?;
Ok(buffer.bytes())
}
pub fn from_bytes(
bytes: Vec<u8>,
common_data: &CommonCircuitData<F, D>,
) -> anyhow::Result<Self> {
let mut buffer = Buffer::new(bytes);
let proof = buffer.read_proof_with_public_inputs(common_data)?;
Ok(proof)
}
}
#[derive(Serialize, Deserialize, Clone, Debug, Eq, PartialEq)]
@ -148,6 +164,21 @@ impl<F: RichField + Extendable<D>, const D: usize> CompressedProofWithPublicInpu
pub(crate) fn get_public_inputs_hash(&self) -> HashOut<F> {
hash_n_to_hash(self.public_inputs.clone(), true)
}
pub fn to_bytes(&self) -> anyhow::Result<Vec<u8>> {
let mut buffer = Buffer::new(Vec::new());
buffer.write_compressed_proof_with_public_inputs(self)?;
Ok(buffer.bytes())
}
pub fn from_bytes(
bytes: Vec<u8>,
common_data: &CommonCircuitData<F, D>,
) -> anyhow::Result<Self> {
let mut buffer = Buffer::new(bytes);
let proof = buffer.read_compressed_proof_with_public_inputs(common_data)?;
Ok(proof)
}
}
pub(crate) struct ProofChallenges<F: RichField + Extendable<D>, const D: usize> {

View File

@ -136,7 +136,10 @@ mod tests {
use crate::gadgets::polynomial::PolynomialCoeffsExtTarget;
use crate::hash::merkle_proofs::MerkleProofTarget;
use crate::iop::witness::{PartialWitness, Witness};
use crate::plonk::proof::{OpeningSetTarget, Proof, ProofTarget, ProofWithPublicInputs};
use crate::plonk::proof::{
CompressedProofWithPublicInputs, OpeningSetTarget, Proof, ProofTarget,
ProofWithPublicInputs,
};
use crate::plonk::verifier::verify;
use crate::util::log2_strict;
@ -480,6 +483,10 @@ mod tests {
builder.print_gate_counts(0);
let data = builder.build();
let recursive_proof = data.prove(pw)?;
let proof_bytes = recursive_proof.to_bytes()?;
info!("Proof length: {} bytes", proof_bytes.len());
let proof_from_bytes = ProofWithPublicInputs::from_bytes(proof_bytes, &data.common)?;
assert_eq!(recursive_proof, proof_from_bytes);
let now = std::time::Instant::now();
let compressed_recursive_proof = recursive_proof.clone().compress(&data.common)?;
let decompressed_compressed_proof = compressed_recursive_proof
@ -487,13 +494,14 @@ mod tests {
.decompress(&data.common)?;
assert_eq!(recursive_proof, decompressed_compressed_proof);
info!("{:.4} to compress proof", now.elapsed().as_secs_f64());
let proof_bytes = serde_cbor::to_vec(&recursive_proof).unwrap();
info!("Proof length: {} bytes", proof_bytes.len());
let compressed_proof_bytes = serde_cbor::to_vec(&compressed_recursive_proof).unwrap();
let compressed_proof_bytes = compressed_recursive_proof.to_bytes()?;
info!(
"Compressed proof length: {} bytes",
compressed_proof_bytes.len()
);
let compressed_proof_from_bytes =
CompressedProofWithPublicInputs::from_bytes(compressed_proof_bytes, &data.common)?;
assert_eq!(compressed_recursive_proof, compressed_proof_from_bytes);
verify(recursive_proof, &data.verifier_only, &data.common)
}
}

View File

@ -6,6 +6,7 @@ pub(crate) mod context_tree;
pub(crate) mod marking;
pub(crate) mod partial_products;
pub mod reducing;
pub mod serialization;
pub(crate) mod timing;
pub(crate) fn bits_u64(n: u64) -> usize {

537
src/util/serialization.rs Normal file
View File

@ -0,0 +1,537 @@
use std::collections::HashMap;
use std::convert::TryInto;
use std::io::Cursor;
use std::io::{Read, Result, Write};
use std::iter::FromIterator;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field_types::{PrimeField, RichField};
use crate::fri::proof::{
CompressedFriProof, CompressedFriQueryRounds, FriInitialTreeProof, FriProof, FriQueryRound,
FriQueryStep,
};
use crate::hash::hash_types::HashOut;
use crate::hash::merkle_proofs::MerkleProof;
use crate::hash::merkle_tree::MerkleCap;
use crate::plonk::circuit_data::CommonCircuitData;
use crate::plonk::proof::{
CompressedProof, CompressedProofWithPublicInputs, OpeningSet, Proof, ProofWithPublicInputs,
};
use crate::polynomial::polynomial::PolynomialCoeffs;
#[derive(Debug)]
pub struct Buffer(Cursor<Vec<u8>>);
impl Buffer {
pub fn new(buffer: Vec<u8>) -> Self {
Self(Cursor::new(buffer))
}
pub fn len(&self) -> usize {
self.0.get_ref().len()
}
pub fn bytes(self) -> Vec<u8> {
self.0.into_inner()
}
fn write_u8(&mut self, x: u8) -> Result<()> {
self.0.write_all(&[x])
}
fn read_u8(&mut self) -> Result<u8> {
let mut buf = [0; std::mem::size_of::<u8>()];
self.0.read_exact(&mut buf)?;
Ok(buf[0])
}
fn write_u32(&mut self, x: u32) -> Result<()> {
self.0.write_all(&x.to_le_bytes())
}
fn read_u32(&mut self) -> Result<u32> {
let mut buf = [0; std::mem::size_of::<u32>()];
self.0.read_exact(&mut buf)?;
Ok(u32::from_le_bytes(buf))
}
fn write_field<F: PrimeField>(&mut self, x: F) -> Result<()> {
self.0.write_all(&x.to_canonical_u64().to_le_bytes())
}
fn read_field<F: PrimeField>(&mut self) -> Result<F> {
let mut buf = [0; std::mem::size_of::<u64>()];
self.0.read_exact(&mut buf)?;
Ok(F::from_canonical_u64(u64::from_le_bytes(
buf.try_into().unwrap(),
)))
}
fn write_field_ext<F: Extendable<D>, const D: usize>(&mut self, x: F::Extension) -> Result<()> {
for &a in &x.to_basefield_array() {
self.write_field(a)?;
}
Ok(())
}
fn read_field_ext<F: Extendable<D>, const D: usize>(&mut self) -> Result<F::Extension> {
let mut arr = [F::ZERO; D];
for a in arr.iter_mut() {
*a = self.read_field()?;
}
Ok(<F::Extension as FieldExtension<D>>::from_basefield_array(
arr,
))
}
fn write_hash<F: PrimeField>(&mut self, h: HashOut<F>) -> Result<()> {
for &a in &h.elements {
self.write_field(a)?;
}
Ok(())
}
fn read_hash<F: PrimeField>(&mut self) -> Result<HashOut<F>> {
let mut elements = [F::ZERO; 4];
for a in elements.iter_mut() {
*a = self.read_field()?;
}
Ok(HashOut { elements })
}
fn write_merkle_cap<F: PrimeField>(&mut self, cap: &MerkleCap<F>) -> Result<()> {
for &a in &cap.0 {
self.write_hash(a)?;
}
Ok(())
}
fn read_merkle_cap<F: PrimeField>(&mut self, cap_height: usize) -> Result<MerkleCap<F>> {
let cap_length = 1 << cap_height;
Ok(MerkleCap(
(0..cap_length)
.map(|_| self.read_hash())
.collect::<Result<Vec<_>>>()?,
))
}
fn write_field_vec<F: PrimeField>(&mut self, v: &[F]) -> Result<()> {
for &a in v {
self.write_field(a)?;
}
Ok(())
}
fn read_field_vec<F: PrimeField>(&mut self, length: usize) -> Result<Vec<F>> {
(0..length)
.map(|_| self.read_field())
.collect::<Result<Vec<_>>>()
}
fn write_field_ext_vec<F: Extendable<D>, const D: usize>(
&mut self,
v: &[F::Extension],
) -> Result<()> {
for &a in v {
self.write_field_ext::<F, D>(a)?;
}
Ok(())
}
fn read_field_ext_vec<F: Extendable<D>, const D: usize>(
&mut self,
length: usize,
) -> Result<Vec<F::Extension>> {
(0..length)
.map(|_| self.read_field_ext::<F, D>())
.collect::<Result<Vec<_>>>()
}
fn write_opening_set<F: Extendable<D>, const D: usize>(
&mut self,
os: &OpeningSet<F, D>,
) -> Result<()> {
self.write_field_ext_vec::<F, D>(&os.constants)?;
self.write_field_ext_vec::<F, D>(&os.plonk_sigmas)?;
self.write_field_ext_vec::<F, D>(&os.wires)?;
self.write_field_ext_vec::<F, D>(&os.plonk_zs)?;
self.write_field_ext_vec::<F, D>(&os.plonk_zs_right)?;
self.write_field_ext_vec::<F, D>(&os.partial_products)?;
self.write_field_ext_vec::<F, D>(&os.quotient_polys)
}
fn read_opening_set<F: RichField + Extendable<D>, const D: usize>(
&mut self,
common_data: &CommonCircuitData<F, D>,
) -> Result<OpeningSet<F, D>> {
let config = &common_data.config;
let constants = self.read_field_ext_vec::<F, D>(common_data.num_constants)?;
let plonk_sigmas = self.read_field_ext_vec::<F, D>(config.num_routed_wires)?;
let wires = self.read_field_ext_vec::<F, D>(config.num_wires)?;
let plonk_zs = self.read_field_ext_vec::<F, D>(config.num_challenges)?;
let plonk_zs_right = self.read_field_ext_vec::<F, D>(config.num_challenges)?;
let partial_products = self.read_field_ext_vec::<F, D>(
common_data.num_partial_products.0 * config.num_challenges,
)?;
let quotient_polys = self.read_field_ext_vec::<F, D>(
common_data.quotient_degree_factor * config.num_challenges,
)?;
Ok(OpeningSet {
constants,
plonk_sigmas,
wires,
plonk_zs,
plonk_zs_right,
partial_products,
quotient_polys,
})
}
fn write_merkle_proof<F: PrimeField>(&mut self, p: &MerkleProof<F>) -> Result<()> {
let length = p.siblings.len();
self.write_u8(
length
.try_into()
.expect("Merkle proof length must fit in u8."),
)?;
for &h in &p.siblings {
self.write_hash(h)?;
}
Ok(())
}
fn read_merkle_proof<F: PrimeField>(&mut self) -> Result<MerkleProof<F>> {
let length = self.read_u8()?;
Ok(MerkleProof {
siblings: (0..length)
.map(|_| self.read_hash())
.collect::<Result<Vec<_>>>()?,
})
}
fn write_fri_initial_proof<F: PrimeField>(
&mut self,
fitp: &FriInitialTreeProof<F>,
) -> Result<()> {
for (v, p) in &fitp.evals_proofs {
self.write_field_vec(v)?;
self.write_merkle_proof(p)?;
}
Ok(())
}
fn read_fri_initial_proof<F: RichField + Extendable<D>, const D: usize>(
&mut self,
common_data: &CommonCircuitData<F, D>,
) -> Result<FriInitialTreeProof<F>> {
let config = &common_data.config;
let mut evals_proofs = Vec::with_capacity(4);
let constants_sigmas_v =
self.read_field_vec(common_data.num_constants + config.num_routed_wires)?;
let constants_sigmas_p = self.read_merkle_proof()?;
evals_proofs.push((constants_sigmas_v, constants_sigmas_p));
let wires_v = self.read_field_vec(config.num_wires)?;
let wires_p = self.read_merkle_proof()?;
evals_proofs.push((wires_v, wires_p));
let zs_partial_v =
self.read_field_vec(config.num_challenges * (1 + common_data.num_partial_products.0))?;
let zs_partial_p = self.read_merkle_proof()?;
evals_proofs.push((zs_partial_v, zs_partial_p));
let quotient_v =
self.read_field_vec(config.num_challenges * common_data.quotient_degree_factor)?;
let quotient_p = self.read_merkle_proof()?;
evals_proofs.push((quotient_v, quotient_p));
Ok(FriInitialTreeProof { evals_proofs })
}
fn write_fri_query_step<F: Extendable<D>, const D: usize>(
&mut self,
fqs: &FriQueryStep<F, D>,
) -> Result<()> {
self.write_field_ext_vec::<F, D>(&fqs.evals)?;
self.write_merkle_proof(&fqs.merkle_proof)
}
fn read_fri_query_step<F: Extendable<D>, const D: usize>(
&mut self,
arity: usize,
) -> Result<FriQueryStep<F, D>> {
let evals = self.read_field_ext_vec::<F, D>(arity)?;
let merkle_proof = self.read_merkle_proof()?;
Ok(FriQueryStep {
evals,
merkle_proof,
})
}
fn write_fri_query_rounds<F: Extendable<D>, const D: usize>(
&mut self,
fqrs: &[FriQueryRound<F, D>],
) -> Result<()> {
for fqr in fqrs {
self.write_fri_initial_proof(&fqr.initial_trees_proof)?;
for fqs in &fqr.steps {
self.write_fri_query_step(fqs)?;
}
}
Ok(())
}
fn read_fri_query_rounds<F: RichField + Extendable<D>, const D: usize>(
&mut self,
common_data: &CommonCircuitData<F, D>,
) -> Result<Vec<FriQueryRound<F, D>>> {
let config = &common_data.config;
let mut fqrs = Vec::with_capacity(config.fri_config.num_query_rounds);
for _ in 0..config.fri_config.num_query_rounds {
let initial_trees_proof = self.read_fri_initial_proof(common_data)?;
let steps = config
.fri_config
.reduction_arity_bits
.iter()
.map(|&ar| self.read_fri_query_step(1 << ar))
.collect::<Result<_>>()?;
fqrs.push(FriQueryRound {
initial_trees_proof,
steps,
})
}
Ok(fqrs)
}
fn write_fri_proof<F: Extendable<D>, const D: usize>(
&mut self,
fp: &FriProof<F, D>,
) -> Result<()> {
for cap in &fp.commit_phase_merkle_caps {
self.write_merkle_cap(cap)?;
}
self.write_fri_query_rounds(&fp.query_round_proofs)?;
self.write_field_ext_vec::<F, D>(&fp.final_poly.coeffs)?;
self.write_field(fp.pow_witness)
}
fn read_fri_proof<F: RichField + Extendable<D>, const D: usize>(
&mut self,
common_data: &CommonCircuitData<F, D>,
) -> Result<FriProof<F, D>> {
let config = &common_data.config;
let commit_phase_merkle_caps = (0..config.fri_config.reduction_arity_bits.len())
.map(|_| self.read_merkle_cap(config.cap_height))
.collect::<Result<Vec<_>>>()?;
let query_round_proofs = self.read_fri_query_rounds(common_data)?;
let final_poly =
PolynomialCoeffs::new(self.read_field_ext_vec::<F, D>(common_data.final_poly_len())?);
let pow_witness = self.read_field()?;
Ok(FriProof {
commit_phase_merkle_caps,
query_round_proofs,
final_poly,
pow_witness,
})
}
pub fn write_proof<F: Extendable<D>, const D: usize>(
&mut self,
proof: &Proof<F, D>,
) -> Result<()> {
self.write_merkle_cap(&proof.wires_cap)?;
self.write_merkle_cap(&proof.plonk_zs_partial_products_cap)?;
self.write_merkle_cap(&proof.quotient_polys_cap)?;
self.write_opening_set(&proof.openings)?;
self.write_fri_proof(&proof.opening_proof)
}
pub fn read_proof<F: RichField + Extendable<D>, const D: usize>(
&mut self,
common_data: &CommonCircuitData<F, D>,
) -> Result<Proof<F, D>> {
let config = &common_data.config;
let wires_cap = self.read_merkle_cap(config.cap_height)?;
let plonk_zs_partial_products_cap = self.read_merkle_cap(config.cap_height)?;
let quotient_polys_cap = self.read_merkle_cap(config.cap_height)?;
let openings = self.read_opening_set(common_data)?;
let opening_proof = self.read_fri_proof(common_data)?;
Ok(Proof {
wires_cap,
plonk_zs_partial_products_cap,
quotient_polys_cap,
openings,
opening_proof,
})
}
pub fn write_proof_with_public_inputs<F: RichField + Extendable<D>, const D: usize>(
&mut self,
proof_with_pis: &ProofWithPublicInputs<F, D>,
) -> Result<()> {
let ProofWithPublicInputs {
proof,
public_inputs,
} = proof_with_pis;
self.write_proof(proof)?;
self.write_field_vec(public_inputs)
}
pub fn read_proof_with_public_inputs<F: RichField + Extendable<D>, const D: usize>(
&mut self,
common_data: &CommonCircuitData<F, D>,
) -> Result<ProofWithPublicInputs<F, D>> {
let proof = self.read_proof(common_data)?;
let public_inputs = self.read_field_vec(
(self.len() - self.0.position() as usize) / std::mem::size_of::<u64>(),
)?;
Ok(ProofWithPublicInputs {
proof,
public_inputs,
})
}
fn write_compressed_fri_query_rounds<F: Extendable<D>, const D: usize>(
&mut self,
cfqrs: &CompressedFriQueryRounds<F, D>,
) -> Result<()> {
for &i in &cfqrs.indices {
self.write_u32(i as u32)?;
}
let mut initial_trees_proofs = cfqrs.initial_trees_proofs.iter().collect::<Vec<_>>();
initial_trees_proofs.sort_by_key(|&x| x.0);
for (_, itp) in initial_trees_proofs {
self.write_fri_initial_proof(itp)?;
}
for h in &cfqrs.steps {
let mut fri_query_steps = h.iter().collect::<Vec<_>>();
fri_query_steps.sort_by_key(|&x| x.0);
for (_, fqs) in fri_query_steps {
self.write_fri_query_step(fqs)?;
}
}
Ok(())
}
fn read_compressed_fri_query_rounds<F: RichField + Extendable<D>, const D: usize>(
&mut self,
common_data: &CommonCircuitData<F, D>,
) -> Result<CompressedFriQueryRounds<F, D>> {
let config = &common_data.config;
let original_indices = (0..config.fri_config.num_query_rounds)
.map(|_| self.read_u32().map(|i| i as usize))
.collect::<Result<Vec<_>>>()?;
let mut indices = original_indices.clone();
indices.sort_unstable();
indices.dedup();
let mut pairs = Vec::new();
for &i in &indices {
pairs.push((i, self.read_fri_initial_proof(common_data)?));
}
let initial_trees_proofs = HashMap::from_iter(pairs);
let mut steps = Vec::with_capacity(config.fri_config.reduction_arity_bits.len());
for &a in &config.fri_config.reduction_arity_bits {
indices.iter_mut().for_each(|x| {
*x >>= a;
});
indices.dedup();
let query_steps = (0..indices.len())
.map(|_| self.read_fri_query_step(1 << a))
.collect::<Result<Vec<_>>>()?;
steps.push(
indices
.iter()
.copied()
.zip(query_steps)
.collect::<HashMap<_, _>>(),
);
}
Ok(CompressedFriQueryRounds {
indices: original_indices,
initial_trees_proofs,
steps,
})
}
fn write_compressed_fri_proof<F: Extendable<D>, const D: usize>(
&mut self,
fp: &CompressedFriProof<F, D>,
) -> Result<()> {
for cap in &fp.commit_phase_merkle_caps {
self.write_merkle_cap(cap)?;
}
self.write_compressed_fri_query_rounds(&fp.query_round_proofs)?;
self.write_field_ext_vec::<F, D>(&fp.final_poly.coeffs)?;
self.write_field(fp.pow_witness)
}
fn read_compressed_fri_proof<F: RichField + Extendable<D>, const D: usize>(
&mut self,
common_data: &CommonCircuitData<F, D>,
) -> Result<CompressedFriProof<F, D>> {
let config = &common_data.config;
let commit_phase_merkle_caps = (0..config.fri_config.reduction_arity_bits.len())
.map(|_| self.read_merkle_cap(config.cap_height))
.collect::<Result<Vec<_>>>()?;
let query_round_proofs = self.read_compressed_fri_query_rounds(common_data)?;
let final_poly =
PolynomialCoeffs::new(self.read_field_ext_vec::<F, D>(common_data.final_poly_len())?);
let pow_witness = self.read_field()?;
Ok(CompressedFriProof {
commit_phase_merkle_caps,
query_round_proofs,
final_poly,
pow_witness,
})
}
pub fn write_compressed_proof<F: Extendable<D>, const D: usize>(
&mut self,
proof: &CompressedProof<F, D>,
) -> Result<()> {
self.write_merkle_cap(&proof.wires_cap)?;
self.write_merkle_cap(&proof.plonk_zs_partial_products_cap)?;
self.write_merkle_cap(&proof.quotient_polys_cap)?;
self.write_opening_set(&proof.openings)?;
self.write_compressed_fri_proof(&proof.opening_proof)
}
pub fn read_compressed_proof<F: RichField + Extendable<D>, const D: usize>(
&mut self,
common_data: &CommonCircuitData<F, D>,
) -> Result<CompressedProof<F, D>> {
let config = &common_data.config;
let wires_cap = self.read_merkle_cap(config.cap_height)?;
let plonk_zs_partial_products_cap = self.read_merkle_cap(config.cap_height)?;
let quotient_polys_cap = self.read_merkle_cap(config.cap_height)?;
let openings = self.read_opening_set(common_data)?;
let opening_proof = self.read_compressed_fri_proof(common_data)?;
Ok(CompressedProof {
wires_cap,
plonk_zs_partial_products_cap,
quotient_polys_cap,
openings,
opening_proof,
})
}
pub fn write_compressed_proof_with_public_inputs<
F: RichField + Extendable<D>,
const D: usize,
>(
&mut self,
proof_with_pis: &CompressedProofWithPublicInputs<F, D>,
) -> Result<()> {
let CompressedProofWithPublicInputs {
proof,
public_inputs,
} = proof_with_pis;
self.write_compressed_proof(proof)?;
self.write_field_vec(public_inputs)
}
pub fn read_compressed_proof_with_public_inputs<
F: RichField + Extendable<D>,
const D: usize,
>(
&mut self,
common_data: &CommonCircuitData<F, D>,
) -> Result<CompressedProofWithPublicInputs<F, D>> {
let proof = self.read_compressed_proof(common_data)?;
let public_inputs = self.read_field_vec(
(self.len() - self.0.position() as usize) / std::mem::size_of::<u64>(),
)?;
Ok(CompressedProofWithPublicInputs {
proof,
public_inputs,
})
}
}