mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-13 03:03:05 +00:00
Increase degree
This commit is contained in:
parent
bd1672cbf2
commit
9617c22173
@ -777,7 +777,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
.expect("No gates?");
|
||||
|
||||
let num_partial_products =
|
||||
num_partial_products(self.config.num_routed_wires, quotient_degree_factor - 1);
|
||||
num_partial_products(self.config.num_routed_wires, quotient_degree_factor);
|
||||
|
||||
// TODO: This should also include an encoding of gate constraints.
|
||||
let circuit_digest_parts = [
|
||||
|
||||
@ -63,7 +63,6 @@ pub(crate) fn prove<F: RichField + Extendable<D>, const D: usize>(
|
||||
.map(|column| PolynomialValues::new(column.clone()))
|
||||
.collect()
|
||||
);
|
||||
let wires = wires_values.iter().map(|v| v.values[0]).collect::<Vec<_>>();
|
||||
|
||||
let wires_commitment = timed!(
|
||||
timing,
|
||||
@ -109,33 +108,6 @@ pub(crate) fn prove<F: RichField + Extendable<D>, const D: usize>(
|
||||
partial_products.iter_mut().for_each(|part| {
|
||||
part.remove(0);
|
||||
});
|
||||
// let part = partial_products[0].clone();
|
||||
// let v = part.iter().map(|v| v.values[0]).collect::<Vec<_>>();
|
||||
// dbg!();
|
||||
// let numerator_values = (0..common_data.config.num_routed_wires)
|
||||
// .map(|j| {
|
||||
// let wire_value = wires[j];
|
||||
// let k_i = common_data.k_is[j];
|
||||
// let s_id = k_i;
|
||||
// wire_value + s_id * betas[0] + gammas[0]
|
||||
// })
|
||||
// .collect::<Vec<_>>();
|
||||
// let denominator_values = (0..common_data.config.num_routed_wires)
|
||||
// .map(|j| {
|
||||
// let wire_value = wires[j];
|
||||
// let s_sigma = s_sigmas[j];
|
||||
// wire_value + s_sigma * betas[0] + gammas[0]
|
||||
// })
|
||||
// .collect::<Vec<_>>();
|
||||
// let quotient_values = (0..common_data.config.num_routed_wires)
|
||||
// .map(|j| numerator_values[j] / denominator_values[j])
|
||||
// .collect::<Vec<_>>();
|
||||
//
|
||||
// // // The partial products considered for this iteration of `i`.
|
||||
// // let current_partial_products = &partial_products[i * num_prods..(i + 1) * num_prods];
|
||||
// // Check the quotient partial products.
|
||||
// let mut partial_product_check = check_partial_products("ient_values, &v, quotient_degree);
|
||||
// dbg!(partial_product_check);
|
||||
|
||||
let zs_partial_products = [plonk_z_vecs, partial_products.concat()].concat();
|
||||
let zs_partial_products_commitment = timed!(
|
||||
@ -266,7 +238,7 @@ fn wires_permutation_partial_products<F: RichField + Extendable<D>, const D: usi
|
||||
prover_data: &ProverOnlyCircuitData<F, D>,
|
||||
common_data: &CommonCircuitData<F, D>,
|
||||
) -> Vec<PolynomialValues<F>> {
|
||||
let degree = common_data.quotient_degree_factor - 1;
|
||||
let degree = common_data.quotient_degree_factor;
|
||||
let subgroup = &prover_data.subgroup;
|
||||
let k_is = &common_data.k_is;
|
||||
let values = subgroup
|
||||
@ -294,11 +266,6 @@ fn wires_permutation_partial_products<F: RichField + Extendable<D>, const D: usi
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let quotient_partials = partial_products("ient_values, degree);
|
||||
dbg!(check_partial_products(
|
||||
"ient_values,
|
||||
"ient_partials,
|
||||
degree
|
||||
));
|
||||
|
||||
// This is the final product for the quotient.
|
||||
let quotient = *quotient_partials.last().unwrap()
|
||||
|
||||
@ -27,7 +27,7 @@ pub(crate) fn eval_vanishing_poly<F: RichField + Extendable<D>, const D: usize>(
|
||||
gammas: &[F],
|
||||
alphas: &[F],
|
||||
) -> Vec<F::Extension> {
|
||||
let max_degree = common_data.quotient_degree_factor - 1;
|
||||
let max_degree = common_data.quotient_degree_factor;
|
||||
let (num_prods, final_num_prod) = common_data.num_partial_products;
|
||||
|
||||
let constraint_terms =
|
||||
@ -74,15 +74,9 @@ pub(crate) fn eval_vanishing_poly<F: RichField + Extendable<D>, const D: usize>(
|
||||
// The first checks are of the form `q - n/d` which is a rational function not a polynomial.
|
||||
// We multiply them by `d` to get checks of the form `q*d - n` which low-degree polynomials.
|
||||
for (j, q) in partial_product_check.iter_mut().enumerate() {
|
||||
let range = j * (max_degree - 1)..(j + 1) * (max_degree - 1);
|
||||
let range = j * max_degree..(j + 1) * max_degree;
|
||||
*q *= denominator_values[range].iter().copied().product();
|
||||
}
|
||||
// denominator_values
|
||||
// .chunks(max_degree)
|
||||
// .zip(partial_product_check.iter_mut())
|
||||
// .for_each(|(d, q)| {
|
||||
// *q *= d.iter().copied().product();
|
||||
// });
|
||||
vanishing_partial_products_terms.extend(partial_product_check);
|
||||
|
||||
// The quotient final product is the product of the last `final_num_prod` elements.
|
||||
@ -131,7 +125,7 @@ pub(crate) fn eval_vanishing_poly_base_batch<F: RichField + Extendable<D>, const
|
||||
assert_eq!(partial_products_batch.len(), n);
|
||||
assert_eq!(s_sigmas_batch.len(), n);
|
||||
|
||||
let max_degree = common_data.quotient_degree_factor - 1;
|
||||
let max_degree = common_data.quotient_degree_factor;
|
||||
let (num_prods, final_num_prod) = common_data.num_partial_products;
|
||||
|
||||
let num_gate_constraints = common_data.num_gate_constraints;
|
||||
@ -197,24 +191,14 @@ pub(crate) fn eval_vanishing_poly_base_batch<F: RichField + Extendable<D>, const
|
||||
// The first checks are of the form `q - n/d` which is a rational function not a polynomial.
|
||||
// We multiply them by `d` to get checks of the form `q*d - n` which low-degree polynomials.
|
||||
for (j, q) in partial_product_check.iter_mut().enumerate() {
|
||||
let range = j * (max_degree - 1)..(j + 1) * (max_degree - 1);
|
||||
let range = j * max_degree..(j + 1) * max_degree;
|
||||
*q *= denominator_values[range].iter().copied().product();
|
||||
}
|
||||
// denominator_values
|
||||
// .chunks(max_degree)
|
||||
// .zip(partial_product_check.iter_mut())
|
||||
// .for_each(|(d, q)| {
|
||||
// *q *= d.iter().copied().product();
|
||||
// });
|
||||
vanishing_partial_products_terms.extend(partial_product_check);
|
||||
|
||||
// The quotient final product is the product of the last `final_num_prod` elements.
|
||||
let quotient: F = *current_partial_products.last().unwrap()
|
||||
* quotient_values[final_num_prod..].iter().copied().product();
|
||||
// let quotient: F = current_partial_products[num_prods - final_num_prod..]
|
||||
// .iter()
|
||||
// .copied()
|
||||
// .product();
|
||||
let mut wanted = quotient * z_x - z_gz;
|
||||
wanted *= denominator_values[final_num_prod..]
|
||||
.iter()
|
||||
|
||||
@ -13,7 +13,7 @@ pub fn partial_products<F: Field>(v: &[F], max_degree: usize) -> Vec<F> {
|
||||
debug_assert!(max_degree > 1);
|
||||
let mut res = Vec::new();
|
||||
let mut acc = F::ONE;
|
||||
let chunk_size = max_degree - 1;
|
||||
let chunk_size = max_degree;
|
||||
let num_chunks = ceil_div_usize(v.len(), chunk_size) - 1;
|
||||
for i in 0..num_chunks {
|
||||
acc *= v[i * chunk_size..(i + 1) * chunk_size]
|
||||
@ -30,7 +30,7 @@ pub fn partial_products<F: Field>(v: &[F], max_degree: usize) -> Vec<F> {
|
||||
/// vector of length `n`, and `b` is the number of elements needed to compute the final product.
|
||||
pub fn num_partial_products(n: usize, max_degree: usize) -> (usize, usize) {
|
||||
debug_assert!(max_degree > 1);
|
||||
let chunk_size = max_degree - 1;
|
||||
let chunk_size = max_degree;
|
||||
let num_chunks = ceil_div_usize(n, chunk_size) - 1;
|
||||
|
||||
(num_chunks, num_chunks * chunk_size)
|
||||
@ -43,7 +43,7 @@ pub fn check_partial_products<F: Field>(v: &[F], mut partials: &[F], max_degree:
|
||||
let mut partials = partials.iter();
|
||||
let mut res = Vec::new();
|
||||
let mut acc = F::ONE;
|
||||
let chunk_size = max_degree - 1;
|
||||
let chunk_size = max_degree;
|
||||
let num_chunks = ceil_div_usize(v.len(), chunk_size) - 1;
|
||||
for i in 0..num_chunks {
|
||||
acc *= v[i * chunk_size..(i + 1) * chunk_size]
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user