Merge branch 'main' into order_bigint

This commit is contained in:
Nicholas Ward 2021-07-20 15:42:51 -07:00
commit 906a0c00f4
8 changed files with 124 additions and 69 deletions

View File

@ -39,7 +39,7 @@ mod tests {
let generator = F::primitive_root_of_unity(SUBGROUP_BITS);
let subgroup_size = 1 << SUBGROUP_BITS;
let shifts = get_unique_coset_shifts::<F>(SUBGROUP_BITS, NUM_SHIFTS);
let shifts = get_unique_coset_shifts::<F>(subgroup_size, NUM_SHIFTS);
let mut union = HashSet::new();
for shift in shifts {

View File

@ -118,14 +118,16 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
"Number of reductions should be non-zero."
);
let precomputed_reduced_evals =
PrecomputedReducedEvalsTarget::from_os_and_alpha(os, alpha, self);
for (i, round_proof) in proof.query_round_proofs.iter().enumerate() {
context!(
self,
&format!("verify {}'th FRI query", i),
self.fri_verifier_query_round(
os,
zeta,
alpha,
precomputed_reduced_evals,
initial_merkle_roots,
proof,
challenger,
@ -162,9 +164,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
&mut self,
proof: &FriInitialTreeProofTarget,
alpha: ExtensionTarget<D>,
os: &OpeningSetTarget<D>,
zeta: ExtensionTarget<D>,
subgroup_x: Target,
precomputed_reduced_evals: PrecomputedReducedEvalsTarget<D>,
common_data: &CommonCircuitData<F, D>,
) -> ExtensionTarget<D> {
assert!(D > 1, "Not implemented for D=1.");
@ -192,19 +194,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
)
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
let single_openings = os
.constants
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.wires)
.chain(&os.quotient_polys)
.chain(&os.partial_products)
.copied()
.collect::<Vec<_>>();
let mut single_numerator = alpha.reduce(&single_evals, self);
// TODO: Precompute the rhs as it is the same in all FRI rounds.
let rhs = alpha.reduce(&single_openings, self);
single_numerator = self.sub_extension(single_numerator, rhs);
let single_composition_eval = alpha.reduce(&single_evals, self);
let single_numerator =
self.sub_extension(single_composition_eval, precomputed_reduced_evals.single);
let single_denominator = self.sub_extension(subgroup_x, zeta);
let quotient = self.div_unsafe_extension(single_numerator, single_denominator);
sum = self.add_extension(sum, quotient);
@ -217,14 +209,15 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
.take(common_data.zs_range().end)
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
let zs_composition_eval = alpha.clone().reduce(&zs_evals, self);
let zs_composition_eval = alpha.reduce(&zs_evals, self);
let g = self.constant_extension(F::Extension::primitive_root_of_unity(degree_log));
let zeta_right = self.mul_extension(g, zeta);
let zs_ev_zeta = alpha.clone().reduce(&os.plonk_zs, self);
let zs_ev_zeta_right = alpha.reduce(&os.plonk_zs_right, self);
let interpol_val = self.interpolate2(
[(zeta, zs_ev_zeta), (zeta_right, zs_ev_zeta_right)],
[
(zeta, precomputed_reduced_evals.zs),
(zeta_right, precomputed_reduced_evals.zs_right),
],
subgroup_x,
);
let zs_numerator = self.sub_extension(zs_composition_eval, interpol_val);
@ -240,9 +233,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
fn fri_verifier_query_round(
&mut self,
os: &OpeningSetTarget<D>,
zeta: ExtensionTarget<D>,
alpha: ExtensionTarget<D>,
precomputed_reduced_evals: PrecomputedReducedEvalsTarget<D>,
initial_merkle_roots: &[HashTarget],
proof: &FriProofTarget<D>,
challenger: &mut RecursiveChallenger,
@ -253,7 +246,6 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
) {
let config = &common_data.config.fri_config;
let n_log = log2_strict(n);
let mut evaluations: Vec<Vec<ExtensionTarget<D>>> = Vec::new();
// TODO: Do we need to range check `x_index` to a target smaller than `p`?
let mut x_index = challenger.get_challenge(self);
x_index = self.split_low_high(x_index, n_log, 64).0;
@ -280,6 +272,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.mul(g, phi)
});
let mut evaluations: Vec<Vec<ExtensionTarget<D>>> = Vec::new();
for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() {
let next_domain_size = domain_size >> arity_bits;
let e_x = if i == 0 {
@ -289,9 +282,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.fri_combine_initial(
&round_proof.initial_trees_proof,
alpha,
os,
zeta,
subgroup_x,
precomputed_reduced_evals,
common_data,
)
)
@ -315,23 +308,21 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let (low_x_index, high_x_index) =
self.split_low_high(x_index, arity_bits, x_index_num_bits);
evals = self.insert(low_x_index, e_x, evals);
evaluations.push(evals);
context!(
self,
"verify FRI round Merkle proof.",
self.verify_merkle_proof(
flatten_target(&evaluations[i]),
flatten_target(&evals),
high_x_index,
proof.commit_phase_merkle_roots[i],
&round_proof.steps[i].merkle_proof,
)
);
evaluations.push(evals);
if i > 0 {
// Update the point x to x^arity.
for _ in 0..config.reduction_arity_bits[i - 1] {
subgroup_x = self.square(subgroup_x);
}
subgroup_x = self.exp_power_of_2(subgroup_x, config.reduction_arity_bits[i - 1]);
}
domain_size = next_domain_size;
old_x_index = low_x_index;
@ -352,9 +343,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
*betas.last().unwrap(),
)
);
for _ in 0..final_arity_bits {
subgroup_x = self.square(subgroup_x);
}
subgroup_x = self.exp_power_of_2(subgroup_x, final_arity_bits);
// Final check of FRI. After all the reductions, we check that the final polynomial is equal
// to the one sent by the prover.
@ -366,3 +355,39 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.assert_equal_extension(eval, purported_eval);
}
}
#[derive(Copy, Clone)]
struct PrecomputedReducedEvalsTarget<const D: usize> {
pub single: ExtensionTarget<D>,
pub zs: ExtensionTarget<D>,
pub zs_right: ExtensionTarget<D>,
}
impl<const D: usize> PrecomputedReducedEvalsTarget<D> {
fn from_os_and_alpha<F: Extendable<D>>(
os: &OpeningSetTarget<D>,
alpha: ExtensionTarget<D>,
builder: &mut CircuitBuilder<F, D>,
) -> Self {
let mut alpha = ReducingFactorTarget::new(alpha);
let single = alpha.reduce(
&os.constants
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.wires)
.chain(&os.quotient_polys)
.chain(&os.partial_products)
.copied()
.collect::<Vec<_>>(),
builder,
);
let zs = alpha.reduce(&os.plonk_zs, builder);
let zs_right = alpha.reduce(&os.plonk_zs_right, builder);
Self {
single,
zs,
zs_right,
}
}
}

View File

@ -112,11 +112,12 @@ pub fn verify_fri_proof<F: Field + Extendable<D>, const D: usize>(
"Number of reductions should be non-zero."
);
let precomputed_reduced_evals = PrecomputedReducedEvals::from_os_and_alpha(os, alpha);
for round_proof in &proof.query_round_proofs {
fri_verifier_query_round(
os,
zeta,
alpha,
precomputed_reduced_evals,
initial_merkle_roots,
&proof,
challenger,
@ -142,12 +143,43 @@ fn fri_verify_initial_proof<F: Field>(
Ok(())
}
/// Holds the reduced (by `alpha`) evaluations at `zeta` for the polynomial opened just at
/// zeta, for `Z` at zeta and for `Z` at `g*zeta`.
#[derive(Copy, Clone)]
struct PrecomputedReducedEvals<F: Extendable<D>, const D: usize> {
pub single: F::Extension,
pub zs: F::Extension,
pub zs_right: F::Extension,
}
impl<F: Extendable<D>, const D: usize> PrecomputedReducedEvals<F, D> {
fn from_os_and_alpha(os: &OpeningSet<F, D>, alpha: F::Extension) -> Self {
let mut alpha = ReducingFactor::new(alpha);
let single = alpha.reduce(
os.constants
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.wires)
.chain(&os.quotient_polys)
.chain(&os.partial_products),
);
let zs = alpha.reduce(os.plonk_zs.iter());
let zs_right = alpha.reduce(os.plonk_zs_right.iter());
Self {
single,
zs,
zs_right,
}
}
}
fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
proof: &FriInitialTreeProof<F>,
alpha: F::Extension,
os: &OpeningSet<F, D>,
zeta: F::Extension,
subgroup_x: F,
precomputed_reduced_evals: PrecomputedReducedEvals<F, D>,
common_data: &CommonCircuitData<F, D>,
) -> F::Extension {
let config = &common_data.config;
@ -174,19 +206,8 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
[common_data.partial_products_range()],
)
.map(|&e| F::Extension::from_basefield(e));
let single_openings = os
.constants
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.wires)
.chain(&os.quotient_polys)
.chain(&os.partial_products);
let single_diffs = single_evals
.into_iter()
.zip(single_openings)
.map(|(e, &o)| e - o)
.collect::<Vec<_>>();
let single_numerator = alpha.reduce(single_diffs.iter());
let single_composition_eval = alpha.reduce(single_evals);
let single_numerator = single_composition_eval - precomputed_reduced_evals.single;
let single_denominator = subgroup_x - zeta;
sum += single_numerator / single_denominator;
alpha.reset();
@ -197,12 +218,12 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
.iter()
.map(|&e| F::Extension::from_basefield(e))
.take(common_data.zs_range().end);
let zs_composition_eval = alpha.clone().reduce(zs_evals);
let zs_composition_eval = alpha.reduce(zs_evals);
let zeta_right = F::Extension::primitive_root_of_unity(degree_log) * zeta;
let zs_interpol = interpolate2(
[
(zeta, alpha.clone().reduce(os.plonk_zs.iter())),
(zeta_right, alpha.reduce(os.plonk_zs_right.iter())),
(zeta, precomputed_reduced_evals.zs),
(zeta_right, precomputed_reduced_evals.zs_right),
],
subgroup_x,
);
@ -215,9 +236,9 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
}
fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
os: &OpeningSet<F, D>,
zeta: F::Extension,
alpha: F::Extension,
precomputed_reduced_evals: PrecomputedReducedEvals<F, D>,
initial_merkle_roots: &[Hash<F>],
proof: &FriProof<F, D>,
challenger: &mut Challenger<F>,
@ -227,7 +248,6 @@ fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
) -> Result<()> {
let config = &common_data.config.fri_config;
let mut evaluations: Vec<Vec<F::Extension>> = Vec::new();
let x = challenger.get_challenge();
let mut domain_size = n;
let mut x_index = x.to_canonical_u64() as usize % n;
@ -241,6 +261,8 @@ fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
let log_n = log2_strict(n);
let mut subgroup_x = F::MULTIPLICATIVE_GROUP_GENERATOR
* F::primitive_root_of_unity(log_n).exp(reverse_bits(x_index, log_n) as u64);
let mut evaluations: Vec<Vec<F::Extension>> = Vec::new();
for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() {
let arity = 1 << arity_bits;
let next_domain_size = domain_size >> arity_bits;
@ -248,9 +270,9 @@ fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
fri_combine_initial(
&round_proof.initial_trees_proof,
alpha,
os,
zeta,
subgroup_x,
precomputed_reduced_evals,
common_data,
)
} else {
@ -267,20 +289,18 @@ fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
let mut evals = round_proof.steps[i].evals.clone();
// Insert P(y) into the evaluation vector, since it wasn't included by the prover.
evals.insert(x_index & (arity - 1), e_x);
evaluations.push(evals);
verify_merkle_proof(
flatten(&evaluations[i]),
flatten(&evals),
x_index >> arity_bits,
proof.commit_phase_merkle_roots[i],
&round_proof.steps[i].merkle_proof,
false,
)?;
evaluations.push(evals);
if i > 0 {
// Update the point x to x^arity.
for _ in 0..config.reduction_arity_bits[i - 1] {
subgroup_x = subgroup_x.square();
}
subgroup_x = subgroup_x.exp_power_of_2(config.reduction_arity_bits[i - 1]);
}
domain_size = next_domain_size;
old_x_index = x_index & (arity - 1);
@ -296,9 +316,7 @@ fn fri_verifier_query_round<F: Field + Extendable<D>, const D: usize>(
last_evals,
*betas.last().unwrap(),
);
for _ in 0..final_arity_bits {
subgroup_x = subgroup_x.square();
}
subgroup_x = subgroup_x.exp_power_of_2(final_arity_bits);
// Final check of FRI. After all the reductions, we check that the final polynomial is equal
// to the one sent by the prover.

View File

@ -153,6 +153,15 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
product
}
/// Exponentiate `base` to the power of `2^power_log`.
// TODO: Test
pub fn exp_power_of_2(&mut self, mut base: Target, power_log: usize) -> Target {
for _ in 0..power_log {
base = self.square(base);
}
base
}
// TODO: Optimize this, maybe with a new gate.
// TODO: Test
/// Exponentiate `base` to the power of `exponent`, where `exponent < 2^num_bits`.

View File

@ -292,7 +292,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Exponentiate `base` to the power of `2^power_log`.
// TODO: Test
pub fn exp_power_of_2(
pub fn exp_power_of_2_extension(
&mut self,
mut base: ExtensionTarget<D>,
power_log: usize,

View File

@ -59,7 +59,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let s_sigmas = &proof.openings.plonk_sigmas;
let partial_products = &proof.openings.partial_products;
let zeta_pow_deg = self.exp_power_of_2(zeta, inner_common_data.degree_bits);
let zeta_pow_deg = self.exp_power_of_2_extension(zeta, inner_common_data.degree_bits);
let vanishing_polys_zeta = context!(
self,
"evaluate the vanishing polynomial at our challenge point, zeta.",
@ -89,7 +89,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
{
let recombined_quotient = scale.reduce(chunk, self);
let computed_vanishing_poly = self.mul_extension(z_h_zeta, recombined_quotient);
self.named_route_extension(
self.named_assert_equal_extension(
vanishing_polys_zeta[i],
computed_vanishing_poly,
format!("Vanishing polynomial == Z_H * quotient, challenge {}", i),

View File

@ -16,7 +16,7 @@ use crate::polynomial::polynomial::PolynomialCoeffs;
/// This struct abstract away these operations by implementing Horner's method and keeping track
/// of the number of multiplications by `a` to compute the scaling factor.
/// See https://github.com/mir-protocol/plonky2/pull/69 for more details and discussions.
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Clone)]
pub struct ReducingFactor<F: Field> {
base: F,
count: u64,
@ -79,7 +79,7 @@ impl<F: Field> ReducingFactor<F> {
}
}
#[derive(Debug, Copy, Clone)]
#[derive(Debug, Clone)]
pub struct ReducingFactorTarget<const D: usize> {
base: ExtensionTarget<D>,
count: u64,

View File

@ -236,10 +236,13 @@ pub fn evaluate_gate_constraints_recursively<F: Extendable<D>, const D: usize>(
) -> Vec<ExtensionTarget<D>> {
let mut constraints = vec![builder.zero_extension(); num_gate_constraints];
for gate in gates {
let gate_constraints = gate
.gate
.0
.eval_filtered_recursively(builder, vars, &gate.prefix);
let gate_constraints = context!(
builder,
&format!("evaluate {} constraints", gate.gate.0.id()),
gate.gate
.0
.eval_filtered_recursively(builder, vars, &gate.prefix)
);
for (i, c) in gate_constraints.into_iter().enumerate() {
constraints[i] = builder.add_extension(constraints[i], c);
}