Secp256K1 scalar field

This commit is contained in:
Nicholas Ward 2021-10-28 19:54:39 -07:00
parent db464f739e
commit 869a5860f4
5 changed files with 338 additions and 2 deletions

View File

@ -2,3 +2,4 @@ pub mod curve_adds;
pub mod curve_multiplication;
pub mod curve_summation;
pub mod curve_types;
//pub mod secp256k1_curve;

View File

@ -0,0 +1,81 @@
use crate::curve::curve_types::{AffinePoint, Curve};
use crate::field::field_types::Field;
use crate::field::secp256k1_base::Secp256K1Base;
use crate::field::secp256k1_scalar::Secp256K1Scalar;
// Parameters taken from the implementation of Bls12-377 in Zexe found here:
// https://github.com/scipr-lab/zexe/blob/master/algebra/src/curves/bls12_377/g1.rs
#[derive(Debug, Copy, Clone)]
pub struct Secp256K1;
impl Curve for Bls12377 {
type BaseField = Bls12377Base;
type ScalarField = Bls12377Scalar;
const A: Bls12377Base = Bls12377Base::ZERO;
const B: Bls12377Base = Bls12377Base::ONE;
const GENERATOR_AFFINE: AffinePoint<Self> = AffinePoint {
x: BLS12_377_GENERATOR_X,
y: BLS12_377_GENERATOR_Y,
zero: false,
};
}
/// 81937999373150964239938255573465948239988671502647976594219695644855304257327692006745978603320413799295628339695
const BLS12_377_GENERATOR_X: Bls12377Base = Bls12377Base {
limbs: [2742467569752756724, 14217256487979144792, 6635299530028159197, 8509097278468658840,
14518893593143693938, 46181716169194829]
};
/// 241266749859715473739788878240585681733927191168601896383759122102112907357779751001206799952863815012735208165030
const BLS12_377_GENERATOR_Y: Bls12377Base = Bls12377Base {
limbs: [9336971515457667571, 28021381849722296, 18085035374859187530, 14013031479170682136,
3369780711397861396, 35370409237953649]
};
#[cfg(test)]
mod tests {
use crate::{blake_hash_usize_to_curve, Bls12377, Bls12377Scalar, Curve, Field, ProjectivePoint};
#[test]
fn test_double_affine() {
for i in 0..100 {
let p = blake_hash_usize_to_curve::<Bls12377>(i);
assert_eq!(
p.double(),
p.to_projective().double().to_affine());
}
}
#[test]
fn test_naive_multiplication() {
let g = Bls12377::GENERATOR_PROJECTIVE;
let ten = Bls12377Scalar::from_canonical_u64(10);
let product = mul_naive(ten, g);
let sum = g + g + g + g + g + g + g + g + g + g;
assert_eq!(product, sum);
}
#[test]
fn test_g1_multiplication() {
let lhs = Bls12377Scalar::from_canonical([11111111, 22222222, 33333333, 44444444]);
assert_eq!(Bls12377::convert(lhs) * Bls12377::GENERATOR_PROJECTIVE, mul_naive(lhs, Bls12377::GENERATOR_PROJECTIVE));
}
/// A simple, somewhat inefficient implementation of multiplication which is used as a reference
/// for correctness.
fn mul_naive(lhs: Bls12377Scalar, rhs: ProjectivePoint<Bls12377>) -> ProjectivePoint<Bls12377> {
let mut g = rhs;
let mut sum = ProjectivePoint::ZERO;
for limb in lhs.to_canonical().iter() {
for j in 0..64 {
if (limb >> j & 1u64) != 0u64 {
sum = sum + g;
}
g = g.double();
}
}
sum
}
}

View File

@ -7,7 +7,8 @@ pub(crate) mod interpolation;
mod inversion;
pub(crate) mod packable;
pub(crate) mod packed_field;
pub mod secp256k1;
pub mod secp256k1_base;
pub mod secp256k1_scalar;
#[cfg(target_feature = "avx2")]
pub(crate) mod packed_avx2;

View File

@ -88,7 +88,7 @@ impl Field for Secp256K1Base {
// Sage: `g = GF(p).multiplicative_generator()`
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self([5, 0, 0, 0]);
// Sage: `g_2 = g^((p - 1) / 2)`
// Sage: `g_2 = power_mod(g, (p - 1) // 2), p)`
const POWER_OF_TWO_GENERATOR: Self = Self::NEG_ONE;
const BITS: usize = 256;

View File

@ -0,0 +1,253 @@
use std::convert::TryInto;
use std::fmt;
use std::fmt::{Debug, Display, Formatter};
use std::hash::{Hash, Hasher};
use std::iter::{Product, Sum};
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use itertools::Itertools;
use num::bigint::{BigUint, RandBigInt};
use num::{Integer, One};
use rand::Rng;
use serde::{Deserialize, Serialize};
use crate::field::field_types::Field;
use crate::field::goldilocks_field::GoldilocksField;
/// The base field of the secp256k1 elliptic curve.
///
/// Its order is
/// ```ignore
/// P = 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141
/// = 115792089237316195423570985008687907852837564279074904382605163141518161494337
/// = 2**256 - 432420386565659656852420866394968145599
/// ```
#[derive(Copy, Clone, Serialize, Deserialize)]
pub struct Secp256K1Scalar(pub [u64; 4]);
fn biguint_from_array(arr: [u64; 4]) -> BigUint {
BigUint::from_slice(&[
arr[0] as u32,
(arr[0] >> 32) as u32,
arr[1] as u32,
(arr[1] >> 32) as u32,
arr[2] as u32,
(arr[2] >> 32) as u32,
arr[3] as u32,
(arr[3] >> 32) as u32,
])
}
impl Default for Secp256K1Scalar {
fn default() -> Self {
Self::ZERO
}
}
impl PartialEq for Secp256K1Scalar {
fn eq(&self, other: &Self) -> bool {
self.to_biguint() == other.to_biguint()
}
}
impl Eq for Secp256K1Scalar {}
impl Hash for Secp256K1Scalar {
fn hash<H: Hasher>(&self, state: &mut H) {
self.to_biguint().hash(state)
}
}
impl Display for Secp256K1Scalar {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Display::fmt(&self.to_biguint(), f)
}
}
impl Debug for Secp256K1Scalar {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Debug::fmt(&self.to_biguint(), f)
}
}
impl Field for Secp256K1Scalar {
// TODO: fix
type PrimeField = GoldilocksField;
const ZERO: Self = Self([0; 4]);
const ONE: Self = Self([1, 0, 0, 0]);
const TWO: Self = Self([2, 0, 0, 0]);
const NEG_ONE: Self = Self([
0xBFD25E8CD0364140,
0xBAAEDCE6AF48A03B,
0xFFFFFFFFFFFFFC2F,
0xFFFFFFFFFFFFFFFF
]);
// TODO: fix
const CHARACTERISTIC: u64 = 0;
const TWO_ADICITY: usize = 6;
// Sage: `g = GF(p).multiplicative_generator()`
const MULTIPLICATIVE_GROUP_GENERATOR: Self = Self([7, 0, 0, 0]);
// Sage: `g_2 = power_mod(g, (p - 1) // 2^6), p)`
// 5480320495727936603795231718619559942670027629901634955707709633242980176626
const POWER_OF_TWO_GENERATOR: Self = Self([
0x992f4b5402b052f2,
0x98BDEAB680756045,
0xDF9879A3FBC483A8,
0xC1DC060E7A91986,
]);
const BITS: usize = 256;
fn order() -> BigUint {
BigUint::from_slice(&[
0xD0364141, 0xBFD25E8C, 0xAF48A03B, 0xBAAEDCE6, 0xFFFFFC2F, 0xFFFFFFFF, 0xFFFFFFFF,
0xFFFFFFFF
])
}
fn try_inverse(&self) -> Option<Self> {
if self.is_zero() {
return None;
}
// Fermat's Little Theorem
Some(self.exp_biguint(&(Self::order() - BigUint::one() - BigUint::one())))
}
fn to_biguint(&self) -> BigUint {
let mut result = biguint_from_array(self.0);
if result >= Self::order() {
result -= Self::order();
}
result
}
fn from_biguint(val: BigUint) -> Self {
Self(
val.to_u64_digits()
.into_iter()
.pad_using(4, |_| 0)
.collect::<Vec<_>>()[..]
.try_into()
.expect("error converting to u64 array"),
)
}
#[inline]
fn from_canonical_u64(n: u64) -> Self {
Self([n, 0, 0, 0])
}
#[inline]
fn from_noncanonical_u128(n: u128) -> Self {
Self([n as u64, (n >> 64) as u64, 0, 0])
}
#[inline]
fn from_noncanonical_u96(n: (u64, u32)) -> Self {
Self([n.0, n.1 as u64, 0, 0])
}
fn rand_from_rng<R: Rng>(rng: &mut R) -> Self {
Self::from_biguint(rng.gen_biguint_below(&Self::order()))
}
}
impl Neg for Secp256K1Scalar {
type Output = Self;
#[inline]
fn neg(self) -> Self {
if self.is_zero() {
Self::ZERO
} else {
Self::from_biguint(Self::order() - self.to_biguint())
}
}
}
impl Add for Secp256K1Scalar {
type Output = Self;
#[inline]
fn add(self, rhs: Self) -> Self {
let mut result = self.to_biguint() + rhs.to_biguint();
if result >= Self::order() {
result -= Self::order();
}
Self::from_biguint(result)
}
}
impl AddAssign for Secp256K1Scalar {
#[inline]
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl Sum for Secp256K1Scalar {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::ZERO, |acc, x| acc + x)
}
}
impl Sub for Secp256K1Scalar {
type Output = Self;
#[inline]
#[allow(clippy::suspicious_arithmetic_impl)]
fn sub(self, rhs: Self) -> Self {
self + -rhs
}
}
impl SubAssign for Secp256K1Scalar {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl Mul for Secp256K1Scalar {
type Output = Self;
#[inline]
fn mul(self, rhs: Self) -> Self {
Self::from_biguint((self.to_biguint() * rhs.to_biguint()).mod_floor(&Self::order()))
}
}
impl MulAssign for Secp256K1Scalar {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl Product for Secp256K1Scalar {
#[inline]
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.reduce(|acc, x| acc * x).unwrap_or(Self::ONE)
}
}
impl Div for Secp256K1Scalar {
type Output = Self;
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inverse()
}
}
impl DivAssign for Secp256K1Scalar {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}