Change file structure

This commit is contained in:
wborgeaud 2021-11-22 11:39:56 +01:00
parent 442c8560b0
commit 8522026c36
3 changed files with 553 additions and 150 deletions

View File

@ -1,10 +1,10 @@
use std::marker::PhantomData;
use std::ops::Range;
use crate::field::extension_field::algebra::{ExtensionAlgebra, PolynomialCoeffsAlgebra};
use crate::field::extension_field::algebra::PolynomialCoeffsAlgebra;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field_types::{Field, RichField};
use crate::field::field_types::RichField;
use crate::field::interpolation::interpolant;
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
use crate::gates::gate::Gate;
@ -90,26 +90,9 @@ impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D> {
start..start + D
}
pub fn powers_init(&self, i: usize) -> usize {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wire_shift();
}
self.start_coeffs() + self.num_points() * D + i
}
pub fn powers_eval(&self, i: usize) -> Range<usize> {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wires_evaluation_point();
}
let start = self.start_coeffs() + self.num_points() * D + self.num_points() - 1 + i * D;
start..start + D
}
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.powers_eval(self.num_points() - 1).end
self.start_coeffs() + self.num_points() * D
}
/// The domain of the points we're interpolating.
@ -155,45 +138,19 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for InterpolationG
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_init = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_init(i)])
.collect::<Vec<_>>();
powers_init.insert(0, F::Extension::ONE);
let wire_shift = powers_init[1];
for i in 2..self.num_points() {
constraints.push(powers_init[i - 1] * wire_shift - powers_init[i]);
}
let ocoeffs = coeffs
.iter()
.zip(powers_init)
.map(|(&c, p)| c.scalar_mul(p))
.collect::<Vec<_>>();
.collect();
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
let ointerpolant = PolynomialCoeffsAlgebra::new(ocoeffs);
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let coset = self.coset_ext(vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = ointerpolant.eval_base(point);
let computed_value = interpolant.eval_base(point);
constraints.extend(&(value - computed_value).to_basefield_array());
}
let mut evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.powers_eval(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
constraints.extend(
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
.to_basefield_array(),
);
}
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
let computed_evaluation_value = interpolant.eval(evaluation_point);
constraints.extend(&(evaluation_value - computed_evaluation_value).to_basefield_array());
constraints
@ -204,44 +161,19 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for InterpolationG
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_init = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_init(i)])
.collect::<Vec<_>>();
powers_init.insert(0, F::ONE);
let wire_shift = powers_init[1];
for i in 2..self.num_points() {
constraints.push(powers_init[i - 1] * wire_shift - powers_init[i]);
}
let ocoeffs = coeffs
.iter()
.zip(powers_init)
.map(|(&c, p)| c.scalar_mul(p))
.collect::<Vec<_>>();
.collect();
let interpolant = PolynomialCoeffs::new(coeffs);
let ointerpolant = PolynomialCoeffs::new(ocoeffs);
for (i, point) in F::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let coset = self.coset(vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext(self.wires_value(i));
let computed_value = ointerpolant.eval_base(point);
let computed_value = interpolant.eval_base(point);
constraints.extend(&(value - computed_value).to_basefield_array());
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext(self.powers_eval(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
constraints.extend(
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
.to_basefield_array(),
);
}
let evaluation_point = vars.get_local_ext(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
let computed_evaluation_value = interpolant.eval(evaluation_point);
constraints.extend(&(evaluation_value - computed_evaluation_value).to_basefield_array());
constraints
@ -256,34 +188,13 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for InterpolationG
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_init = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_init(i)])
.collect::<Vec<_>>();
powers_init.insert(0, builder.one_extension());
let wire_shift = powers_init[1];
for i in 2..self.num_points() {
constraints.push(builder.mul_sub_extension(
powers_init[i - 1],
wire_shift,
powers_init[i],
));
}
let ocoeffs = coeffs
.iter()
.zip(powers_init)
.map(|(&c, p)| builder.scalar_mul_ext_algebra(p, c))
.collect::<Vec<_>>();
.collect();
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
let ointerpolant = PolynomialCoeffsExtAlgebraTarget(ocoeffs);
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let coset = self.coset_ext_recursive(builder, vars.local_wires[self.wire_shift()]);
for (i, point) in coset.into_iter().enumerate() {
let value = vars.get_local_ext_algebra(self.wires_value(i));
let point = builder.constant_extension(point);
let computed_value = ointerpolant.eval_scalar(builder, point);
let computed_value = interpolant.eval_scalar(builder, point);
constraints.extend(
&builder
.sub_ext_algebra(value, computed_value)
@ -291,27 +202,9 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for InterpolationG
);
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.powers_eval(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
let neg_one_ext = builder.neg_one_extension();
let neg_new_power =
builder.scalar_mul_ext_algebra(neg_one_ext, evaluation_point_powers[i]);
let constraint = builder.mul_add_ext_algebra(
evaluation_point,
evaluation_point_powers[i - 1],
neg_new_power,
);
constraints.extend(constraint.to_ext_target_array());
}
let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value =
interpolant.eval_with_powers(builder, &evaluation_point_powers);
// let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
// let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
// let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
constraints.extend(
&builder
.sub_ext_algebra(evaluation_value, computed_evaluation_value)
@ -345,14 +238,13 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for InterpolationG
fn degree(&self) -> usize {
// The highest power of x is `num_points - 1`, and then multiplication by the coefficient
// adds 1.
2
self.num_points()
}
fn num_constraints(&self) -> usize {
// `num_points * D` constraints to check for consistency between the coefficients and the
// point-value pairs, plus `D` constraints for the evaluation value, plus `(D+1)*(num_points-2)`
// to check power constraints for evaluation point and wire shift.
self.num_points() * D + D + (D + 1) * (self.num_points() - 2)
// num_points * D constraints to check for consistency between the coefficients and the
// point-value pairs, plus D constraints for the evaluation value.
self.num_points() * D + D
}
}
@ -402,17 +294,8 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
F::Extension::from_basefield_array(arr)
};
let wire_shift = get_local_wire(self.gate.wire_shift());
for i in 2..self.gate.num_points() {
out_buffer.set_wire(
local_wire(self.gate.powers_init(i)),
wire_shift.exp_u64(i as u64),
);
}
// Compute the interpolant.
let points = self.gate.coset(wire_shift);
let points = self.gate.coset(get_local_wire(self.gate.wire_shift()));
let points = points
.into_iter()
.enumerate()
@ -426,12 +309,6 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
}
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
for i in 2..self.gate.num_points() {
out_buffer.set_extension_target(
ExtensionTarget::from_range(self.gate_index, self.gate.powers_eval(i)),
evaluation_point.exp_u64(i as u64),
);
}
let evaluation_value = interpolant.eval(evaluation_point);
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
out_buffer.set_ext_wires(evaluation_value_wires, evaluation_value);
@ -480,7 +357,7 @@ mod tests {
#[test]
fn eval_fns() -> Result<()> {
test_eval_fns::<GoldilocksField, _, 4>(InterpolationGate::new(3))
test_eval_fns::<GoldilocksField, _, 4>(InterpolationGate::new(2))
}
#[test]

View File

@ -0,0 +1,525 @@
use std::marker::PhantomData;
use std::ops::Range;
use crate::field::extension_field::algebra::{ExtensionAlgebra, PolynomialCoeffsAlgebra};
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field_types::{Field, RichField};
use crate::field::interpolation::interpolant;
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
use crate::gates::gate::Gate;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
use crate::polynomial::polynomial::PolynomialCoeffs;
/// Interpolates a polynomial, whose points are a (base field) coset of the multiplicative subgroup
/// with the given size, and whose values are extension field elements, given by input wires.
/// Outputs the evaluation of the interpolant at a given (extension field) evaluation point.
#[derive(Clone, Debug)]
pub(crate) struct LowDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
pub subgroup_bits: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> LowDegreeInterpolationGate<F, D> {
pub fn new(subgroup_bits: usize) -> Self {
Self {
subgroup_bits,
_phantom: PhantomData,
}
}
fn num_points(&self) -> usize {
1 << self.subgroup_bits
}
/// Wire index of the coset shift.
pub fn wire_shift(&self) -> usize {
0
}
fn start_values(&self) -> usize {
1
}
/// Wire indices of the `i`th interpolant value.
pub fn wires_value(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_values() + i * D;
start..start + D
}
fn start_evaluation_point(&self) -> usize {
self.start_values() + self.num_points() * D
}
/// Wire indices of the point to evaluate the interpolant at.
pub fn wires_evaluation_point(&self) -> Range<usize> {
let start = self.start_evaluation_point();
start..start + D
}
fn start_evaluation_value(&self) -> usize {
self.start_evaluation_point() + D
}
/// Wire indices of the interpolated value.
pub fn wires_evaluation_value(&self) -> Range<usize> {
let start = self.start_evaluation_value();
start..start + D
}
fn start_coeffs(&self) -> usize {
self.start_evaluation_value() + D
}
/// The number of routed wires required in the typical usage of this gate, where the points to
/// interpolate, the evaluation point, and the corresponding value are all routed.
pub(crate) fn num_routed_wires(&self) -> usize {
self.start_coeffs()
}
/// Wire indices of the interpolant's `i`th coefficient.
pub fn wires_coeff(&self, i: usize) -> Range<usize> {
debug_assert!(i < self.num_points());
let start = self.start_coeffs() + i * D;
start..start + D
}
fn end_coeffs(&self) -> usize {
self.start_coeffs() + D * self.num_points()
}
pub fn powers_init(&self, i: usize) -> usize {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wire_shift();
}
self.end_coeffs() + i - 2
}
pub fn powers_eval(&self, i: usize) -> Range<usize> {
debug_assert!(0 < i && i < self.num_points());
if i == 1 {
return self.wires_evaluation_point();
}
let start = self.end_coeffs() + self.num_points() - 2 + (i - 2) * D;
start..start + D
}
/// End of wire indices, exclusive.
fn end(&self) -> usize {
self.powers_eval(self.num_points() - 1).end
}
/// The domain of the points we're interpolating.
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
g.powers().take(size).map(move |x| x * shift)
}
/// The domain of the points we're interpolating.
fn coset_ext(&self, shift: F::Extension) -> impl Iterator<Item = F::Extension> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
g.powers().take(size).map(move |x| shift.scalar_mul(x))
}
/// The domain of the points we're interpolating.
fn coset_ext_recursive(
&self,
builder: &mut CircuitBuilder<F, D>,
shift: ExtensionTarget<D>,
) -> Vec<ExtensionTarget<D>> {
let g = F::primitive_root_of_unity(self.subgroup_bits);
let size = 1 << self.subgroup_bits;
g.powers()
.take(size)
.map(move |x| {
let subgroup_element = builder.constant(x.into());
builder.scalar_mul_ext(subgroup_element, shift)
})
.collect()
}
}
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInterpolationGate<F, D> {
fn id(&self) -> String {
format!("{:?}<D={}>", self, D)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_init = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_init(i)])
.collect::<Vec<_>>();
powers_init.insert(0, F::Extension::ONE);
let wire_shift = powers_init[1];
for i in 2..self.num_points() {
constraints.push(powers_init[i - 1] * wire_shift - powers_init[i]);
}
let ocoeffs = coeffs
.iter()
.zip(powers_init)
.map(|(&c, p)| c.scalar_mul(p))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
let ointerpolant = PolynomialCoeffsAlgebra::new(ocoeffs);
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let value = vars.get_local_ext_algebra(self.wires_value(i));
let computed_value = ointerpolant.eval_base(point);
constraints.extend(&(value - computed_value).to_basefield_array());
}
let mut evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.powers_eval(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
constraints.extend(
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
.to_basefield_array(),
);
}
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
constraints.extend(&(evaluation_value - computed_evaluation_value).to_basefield_array());
constraints
}
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_init = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_init(i)])
.collect::<Vec<_>>();
powers_init.insert(0, F::ONE);
let wire_shift = powers_init[1];
for i in 2..self.num_points() {
constraints.push(powers_init[i - 1] * wire_shift - powers_init[i]);
}
let ocoeffs = coeffs
.iter()
.zip(powers_init)
.map(|(&c, p)| c.scalar_mul(p))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffs::new(coeffs);
let ointerpolant = PolynomialCoeffs::new(ocoeffs);
for (i, point) in F::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let value = vars.get_local_ext(self.wires_value(i));
let computed_value = ointerpolant.eval_base(point);
constraints.extend(&(value - computed_value).to_basefield_array());
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext(self.powers_eval(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
constraints.extend(
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
.to_basefield_array(),
);
}
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
constraints.extend(&(evaluation_value - computed_evaluation_value).to_basefield_array());
constraints
}
fn eval_unfiltered_recursively(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = Vec::with_capacity(self.num_constraints());
let coeffs = (0..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
.collect::<Vec<_>>();
let mut powers_init = (1..self.num_points())
.map(|i| vars.local_wires[self.powers_init(i)])
.collect::<Vec<_>>();
powers_init.insert(0, builder.one_extension());
let wire_shift = powers_init[1];
for i in 2..self.num_points() {
constraints.push(builder.mul_sub_extension(
powers_init[i - 1],
wire_shift,
powers_init[i],
));
}
let ocoeffs = coeffs
.iter()
.zip(powers_init)
.map(|(&c, p)| builder.scalar_mul_ext_algebra(p, c))
.collect::<Vec<_>>();
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
let ointerpolant = PolynomialCoeffsExtAlgebraTarget(ocoeffs);
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
.into_iter()
.enumerate()
{
let value = vars.get_local_ext_algebra(self.wires_value(i));
let point = builder.constant_extension(point);
let computed_value = ointerpolant.eval_scalar(builder, point);
constraints.extend(
&builder
.sub_ext_algebra(value, computed_value)
.to_ext_target_array(),
);
}
let evaluation_point_powers = (1..self.num_points())
.map(|i| vars.get_local_ext_algebra(self.powers_eval(i)))
.collect::<Vec<_>>();
let evaluation_point = evaluation_point_powers[0];
for i in 1..self.num_points() - 1 {
let neg_one_ext = builder.neg_one_extension();
let neg_new_power =
builder.scalar_mul_ext_algebra(neg_one_ext, evaluation_point_powers[i]);
let constraint = builder.mul_add_ext_algebra(
evaluation_point,
evaluation_point_powers[i - 1],
neg_new_power,
);
constraints.extend(constraint.to_ext_target_array());
}
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
let computed_evaluation_value =
interpolant.eval_with_powers(builder, &evaluation_point_powers);
// let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
// let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
// let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
constraints.extend(
&builder
.sub_ext_algebra(evaluation_value, computed_evaluation_value)
.to_ext_target_array(),
);
constraints
}
fn generators(
&self,
gate_index: usize,
_local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = InterpolationGenerator::<F, D> {
gate_index,
gate: self.clone(),
_phantom: PhantomData,
};
vec![Box::new(gen.adapter())]
}
fn num_wires(&self) -> usize {
self.end()
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
// The highest power of x is `num_points - 1`, and then multiplication by the coefficient
// adds 1.
2
}
fn num_constraints(&self) -> usize {
// `num_points * D` constraints to check for consistency between the coefficients and the
// point-value pairs, plus `D` constraints for the evaluation value, plus `(D+1)*(num_points-2)`
// to check power constraints for evaluation point and wire shift.
self.num_points() * D + D + (D + 1) * (self.num_points() - 2)
}
}
#[derive(Debug)]
struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
gate_index: usize,
gate: LowDegreeInterpolationGate<F, D>,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for InterpolationGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
let local_target = |input| {
Target::Wire(Wire {
gate: self.gate_index,
input,
})
};
let local_targets = |inputs: Range<usize>| inputs.map(local_target);
let num_points = self.gate.num_points();
let mut deps = Vec::with_capacity(1 + D + num_points * D);
deps.push(local_target(self.gate.wire_shift()));
deps.extend(local_targets(self.gate.wires_evaluation_point()));
for i in 0..num_points {
deps.extend(local_targets(self.gate.wires_value(i)));
}
deps
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let local_wire = |input| Wire {
gate: self.gate_index,
input,
};
let get_local_wire = |input| witness.get_wire(local_wire(input));
let get_local_ext = |wire_range: Range<usize>| {
debug_assert_eq!(wire_range.len(), D);
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
let arr = values.try_into().unwrap();
F::Extension::from_basefield_array(arr)
};
let wire_shift = get_local_wire(self.gate.wire_shift());
for i in 2..self.gate.num_points() {
out_buffer.set_wire(
local_wire(self.gate.powers_init(i)),
wire_shift.exp_u64(i as u64),
);
}
// Compute the interpolant.
let points = self.gate.coset(wire_shift);
let points = points
.into_iter()
.enumerate()
.map(|(i, point)| (point.into(), get_local_ext(self.gate.wires_value(i))))
.collect::<Vec<_>>();
let interpolant = interpolant(&points);
for (i, &coeff) in interpolant.coeffs.iter().enumerate() {
let wires = self.gate.wires_coeff(i).map(local_wire);
out_buffer.set_ext_wires(wires, coeff);
}
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
for i in 2..self.gate.num_points() {
out_buffer.set_extension_target(
ExtensionTarget::from_range(self.gate_index, self.gate.powers_eval(i)),
evaluation_point.exp_u64(i as u64),
);
}
let evaluation_value = interpolant.eval(evaluation_point);
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
out_buffer.set_ext_wires(evaluation_value_wires, evaluation_value);
}
}
#[cfg(test)]
mod tests {
use std::marker::PhantomData;
use anyhow::Result;
use crate::field::extension_field::quadratic::QuadraticExtension;
use crate::field::extension_field::quartic::QuarticExtension;
use crate::field::field_types::Field;
use crate::field::goldilocks_field::GoldilocksField;
use crate::gates::gate::Gate;
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
use crate::hash::hash_types::HashOut;
use crate::plonk::vars::EvaluationVars;
use crate::polynomial::polynomial::PolynomialCoeffs;
#[test]
fn low_degree() {
test_low_degree::<GoldilocksField, _, 4>(LowDegreeInterpolationGate::new(4));
}
#[test]
fn eval_fns() -> Result<()> {
test_eval_fns::<GoldilocksField, _, 4>(LowDegreeInterpolationGate::new(4))
}
#[test]
fn test_gate_constraint() {
type F = GoldilocksField;
type FF = QuadraticExtension<GoldilocksField>;
const D: usize = 2;
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
fn get_wires(
gate: &LowDegreeInterpolationGate<F, D>,
shift: F,
coeffs: PolynomialCoeffs<FF>,
eval_point: FF,
) -> Vec<FF> {
let points = gate.coset(shift);
let mut v = vec![shift];
for x in points {
v.extend(coeffs.eval(x.into()).0);
}
v.extend(eval_point.0);
v.extend(coeffs.eval(eval_point).0);
for i in 0..coeffs.len() {
v.extend(coeffs.coeffs[i].0);
}
v.extend(shift.powers().skip(2).take(gate.num_points() - 2));
v.extend(
eval_point
.powers()
.skip(2)
.take(gate.num_points() - 2)
.flat_map(|ff| ff.0),
);
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
}
// Get a working row for LowDegreeInterpolationGate.
let subgroup_bits = 4;
let shift = F::rand();
let coeffs = PolynomialCoeffs::new(FF::rand_vec(1 << subgroup_bits));
let eval_point = FF::rand();
let gate = LowDegreeInterpolationGate::<F, D>::new(subgroup_bits);
dbg!(gate.end_coeffs());
dbg!(gate.powers_eval(15));
let vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(&gate, shift, coeffs, eval_point),
public_inputs_hash: &HashOut::rand(),
};
assert!(
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
"Gate constraints are not satisfied."
);
}
}

View File

@ -14,6 +14,7 @@ pub mod gate_tree;
pub mod gmimc;
pub mod insertion;
pub mod interpolation;
pub mod low_degree_interpolation;
pub mod noop;
pub mod poseidon;
pub(crate) mod poseidon_mds;