Fix & cleanup partial products (#355)

My previous change introduced a bug -- when `num_routed_wires` was a multiple of 8, the partial products "consumed" all `num_routed_wires` terms, whereas we actually want to leave 8 terms for the final product.

This also changes `check_partial_products` to include the final product constraint, and merges `vanishing_v_shift_terms` into `vanishing_partial_products_terms`. I think this is natural since `Z(x)`, partial products, and `Z(g x)` are all part of the product accumulator chain.
This commit is contained in:
Daniel Lubarov 2021-11-14 11:58:44 -08:00 committed by GitHub
parent fe1e67165a
commit 7185c2d7d2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 64 additions and 95 deletions

View File

@ -28,7 +28,7 @@ pub(crate) fn eval_vanishing_poly<F: RichField + Extendable<D>, const D: usize>(
alphas: &[F],
) -> Vec<F::Extension> {
let max_degree = common_data.quotient_degree_factor;
let (num_prods, final_num_prod) = common_data.num_partial_products;
let (num_prods, _final_num_prod) = common_data.num_partial_products;
let constraint_terms =
evaluate_gate_constraints(&common_data.gates, common_data.num_gate_constraints, vars);
@ -37,8 +37,6 @@ pub(crate) fn eval_vanishing_poly<F: RichField + Extendable<D>, const D: usize>(
let mut vanishing_z_1_terms = Vec::new();
// The terms checking the partial products.
let mut vanishing_partial_products_terms = Vec::new();
// The Z(x) f'(x) - g'(x) Z(g x) terms.
let mut vanishing_v_shift_terms = Vec::new();
let l1_x = plonk_common::eval_l_1(common_data.degree(), x);
@ -71,24 +69,15 @@ pub(crate) fn eval_vanishing_poly<F: RichField + Extendable<D>, const D: usize>(
&denominator_values,
current_partial_products,
z_x,
z_gz,
max_degree,
);
vanishing_partial_products_terms.extend(partial_product_checks);
let final_nume_product = numerator_values[final_num_prod..].iter().copied().product();
let final_deno_product = denominator_values[final_num_prod..]
.iter()
.copied()
.product();
let last_partial = *current_partial_products.last().unwrap();
let v_shift_term = last_partial * final_nume_product - z_gz * final_deno_product;
vanishing_v_shift_terms.push(v_shift_term);
}
let vanishing_terms = [
vanishing_z_1_terms,
vanishing_partial_products_terms,
vanishing_v_shift_terms,
constraint_terms,
]
.concat();
@ -121,7 +110,7 @@ pub(crate) fn eval_vanishing_poly_base_batch<F: RichField + Extendable<D>, const
assert_eq!(s_sigmas_batch.len(), n);
let max_degree = common_data.quotient_degree_factor;
let (num_prods, final_num_prod) = common_data.num_partial_products;
let (num_prods, _final_num_prod) = common_data.num_partial_products;
let num_gate_constraints = common_data.num_gate_constraints;
@ -139,8 +128,6 @@ pub(crate) fn eval_vanishing_poly_base_batch<F: RichField + Extendable<D>, const
let mut vanishing_z_1_terms = Vec::with_capacity(num_challenges);
// The terms checking the partial products.
let mut vanishing_partial_products_terms = Vec::new();
// The Z(x) f'(x) - g'(x) Z(g x) terms.
let mut vanishing_v_shift_terms = Vec::with_capacity(num_challenges);
let mut res_batch: Vec<Vec<F>> = Vec::with_capacity(n);
for k in 0..n {
@ -181,19 +168,11 @@ pub(crate) fn eval_vanishing_poly_base_batch<F: RichField + Extendable<D>, const
&denominator_values,
current_partial_products,
z_x,
z_gz,
max_degree,
);
vanishing_partial_products_terms.extend(partial_product_checks);
let final_nume_product = numerator_values[final_num_prod..].iter().copied().product();
let final_deno_product = denominator_values[final_num_prod..]
.iter()
.copied()
.product();
let last_partial = *current_partial_products.last().unwrap();
let v_shift_term = last_partial * final_nume_product - z_gz * final_deno_product;
vanishing_v_shift_terms.push(v_shift_term);
numerator_values.clear();
denominator_values.clear();
}
@ -201,14 +180,12 @@ pub(crate) fn eval_vanishing_poly_base_batch<F: RichField + Extendable<D>, const
let vanishing_terms = vanishing_z_1_terms
.iter()
.chain(vanishing_partial_products_terms.iter())
.chain(vanishing_v_shift_terms.iter())
.chain(constraint_terms);
let res = plonk_common::reduce_with_powers_multi(vanishing_terms, alphas);
res_batch.push(res);
vanishing_z_1_terms.clear();
vanishing_partial_products_terms.clear();
vanishing_v_shift_terms.clear();
}
res_batch
}
@ -314,7 +291,7 @@ pub(crate) fn eval_vanishing_poly_recursively<F: RichField + Extendable<D>, cons
alphas: &[Target],
) -> Vec<ExtensionTarget<D>> {
let max_degree = common_data.quotient_degree_factor;
let (num_prods, final_num_prod) = common_data.num_partial_products;
let (num_prods, _final_num_prod) = common_data.num_partial_products;
let constraint_terms = with_context!(
builder,
@ -331,8 +308,6 @@ pub(crate) fn eval_vanishing_poly_recursively<F: RichField + Extendable<D>, cons
let mut vanishing_z_1_terms = Vec::new();
// The terms checking the partial products.
let mut vanishing_partial_products_terms = Vec::new();
// The Z(x) f'(x) - g'(x) Z(g x) terms.
let mut vanishing_v_shift_terms = Vec::new();
let l1_x = eval_l_1_recursively(builder, common_data.degree(), x, x_pow_deg);
@ -377,23 +352,15 @@ pub(crate) fn eval_vanishing_poly_recursively<F: RichField + Extendable<D>, cons
&denominator_values,
current_partial_products,
z_x,
z_gz,
max_degree,
);
vanishing_partial_products_terms.extend(partial_product_checks);
let final_nume_product = builder.mul_many_extension(&numerator_values[final_num_prod..]);
let final_deno_product = builder.mul_many_extension(&denominator_values[final_num_prod..]);
let z_gz_denominators = builder.mul_extension(z_gz, final_deno_product);
let last_partial = *current_partial_products.last().unwrap();
let v_shift_term =
builder.mul_sub_extension(last_partial, final_nume_product, z_gz_denominators);
vanishing_v_shift_terms.push(v_shift_term);
}
let vanishing_terms = [
vanishing_z_1_terms,
vanishing_partial_products_terms,
vanishing_v_shift_terms,
constraint_terms,
]
.concat();

View File

@ -1,9 +1,12 @@
use std::iter;
use itertools::Itertools;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field_types::{Field, RichField};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::util::ceil_div_usize;
pub(crate) fn quotient_chunk_products<F: Field>(
quotient_values: &[F],
@ -33,70 +36,74 @@ pub(crate) fn partial_products_and_z_gx<F: Field>(z_x: F, quotient_chunk_product
/// Returns a tuple `(a,b)`, where `a` is the length of the output of `partial_products()` on a
/// vector of length `n`, and `b` is the number of original elements consumed in `partial_products()`.
pub fn num_partial_products(n: usize, max_degree: usize) -> (usize, usize) {
pub(crate) fn num_partial_products(n: usize, max_degree: usize) -> (usize, usize) {
debug_assert!(max_degree > 1);
let chunk_size = max_degree;
let num_chunks = n / chunk_size;
// We'll split the product into `ceil_div_usize(n, chunk_size)` chunks, but the last chunk will
// be associated with Z(gx) itself. Thus we subtract one to get the chunks associated with
// partial products.
let num_chunks = ceil_div_usize(n, chunk_size) - 1;
(num_chunks, num_chunks * chunk_size)
}
/// Checks that the partial products of `numerators/denominators` are coherent with those in `partials` by only computing
/// products of size `max_degree` or less.
/// Checks the relationship between each pair of partial product accumulators. In particular, this
/// sequence of accumulators starts with `Z(x)`, then contains each partial product polynomials
/// `p_i(x)`, and finally `Z(g x)`. See the partial products section of the Plonky2 paper.
pub(crate) fn check_partial_products<F: Field>(
numerators: &[F],
denominators: &[F],
partials: &[F],
z_x: F,
z_gx: F,
max_degree: usize,
) -> Vec<F> {
debug_assert!(max_degree > 1);
let mut acc = z_x;
let mut partials = partials.iter();
let mut res = Vec::new();
let product_accs = iter::once(&z_x)
.chain(partials.iter())
.chain(iter::once(&z_gx));
let chunk_size = max_degree;
for (nume_chunk, deno_chunk) in numerators
.chunks_exact(chunk_size)
.zip_eq(denominators.chunks_exact(chunk_size))
{
let num_chunk_product = nume_chunk.iter().copied().product();
let den_chunk_product = deno_chunk.iter().copied().product();
let new_acc = *partials.next().unwrap();
res.push(acc * num_chunk_product - new_acc * den_chunk_product);
acc = new_acc;
}
debug_assert!(partials.next().is_none());
res
numerators
.chunks(chunk_size)
.zip_eq(denominators.chunks(chunk_size))
.zip_eq(product_accs.tuple_windows())
.map(|((nume_chunk, deno_chunk), (&prev_acc, &next_acc))| {
let num_chunk_product = nume_chunk.iter().copied().product();
let den_chunk_product = deno_chunk.iter().copied().product();
// Assert that next_acc * deno_product = prev_acc * nume_product.
prev_acc * num_chunk_product - next_acc * den_chunk_product
})
.collect()
}
/// Checks the relationship between each pair of partial product accumulators. In particular, this
/// sequence of accumulators starts with `Z(x)`, then contains each partial product polynomials
/// `p_i(x)`, and finally `Z(g x)`. See the partial products section of the Plonky2 paper.
pub(crate) fn check_partial_products_recursively<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
numerators: &[ExtensionTarget<D>],
denominators: &[ExtensionTarget<D>],
partials: &[ExtensionTarget<D>],
mut acc: ExtensionTarget<D>,
z_x: ExtensionTarget<D>,
z_gx: ExtensionTarget<D>,
max_degree: usize,
) -> Vec<ExtensionTarget<D>> {
debug_assert!(max_degree > 1);
let mut partials = partials.iter();
let mut res = Vec::new();
let product_accs = iter::once(&z_x)
.chain(partials.iter())
.chain(iter::once(&z_gx));
let chunk_size = max_degree;
for (nume_chunk, deno_chunk) in numerators
.chunks_exact(chunk_size)
.zip(denominators.chunks_exact(chunk_size))
{
let nume_product = builder.mul_many_extension(nume_chunk);
let deno_product = builder.mul_many_extension(deno_chunk);
let new_acc = *partials.next().unwrap();
let new_acc_deno = builder.mul_extension(new_acc, deno_product);
// Assert that new_acc*deno_product = acc * nume_product.
res.push(builder.mul_sub_extension(acc, nume_product, new_acc_deno));
acc = new_acc;
}
debug_assert!(partials.next().is_none());
res
numerators
.chunks(chunk_size)
.zip_eq(denominators.chunks(chunk_size))
.zip_eq(product_accs.tuple_windows())
.map(|((nume_chunk, deno_chunk), (&prev_acc, &next_acc))| {
let nume_product = builder.mul_many_extension(nume_chunk);
let deno_product = builder.mul_many_extension(deno_chunk);
let next_acc_deno = builder.mul_extension(next_acc, deno_product);
// Assert that next_acc * deno_product = prev_acc * nume_product.
builder.mul_sub_extension(prev_acc, nume_product, next_acc_deno)
})
.collect()
}
#[cfg(test)]
@ -108,36 +115,31 @@ mod tests {
fn test_partial_products() {
type F = GoldilocksField;
let denominators = vec![F::ONE; 6];
let z_x = F::ONE;
let v = field_vec(&[1, 2, 3, 4, 5, 6]);
let z_gx = F::from_canonical_u64(720);
let quotient_chunks_prods = quotient_chunk_products(&v, 2);
assert_eq!(quotient_chunks_prods, field_vec(&[2, 12, 30]));
let p = partial_products_and_z_gx(F::ONE, &quotient_chunks_prods);
assert_eq!(p, field_vec(&[2, 24, 720]));
let pps_and_z_gx = partial_products_and_z_gx(z_x, &quotient_chunks_prods);
let pps = &pps_and_z_gx[..pps_and_z_gx.len() - 1];
assert_eq!(pps_and_z_gx, field_vec(&[2, 24, 720]));
let nums = num_partial_products(v.len(), 2);
assert_eq!(p.len(), nums.0);
assert!(check_partial_products(&v, &denominators, &p, F::ONE, 2)
assert_eq!(pps.len(), nums.0);
assert!(check_partial_products(&v, &denominators, pps, z_x, z_gx, 2)
.iter()
.all(|x| x.is_zero()));
assert_eq!(
*p.last().unwrap() * v[nums.1..].iter().copied().product::<F>(),
v.into_iter().product::<F>(),
);
let v = field_vec(&[1, 2, 3, 4, 5, 6]);
let quotient_chunks_prods = quotient_chunk_products(&v, 3);
assert_eq!(quotient_chunks_prods, field_vec(&[6, 120]));
let p = partial_products_and_z_gx(F::ONE, &quotient_chunks_prods);
assert_eq!(p, field_vec(&[6, 720]));
let pps_and_z_gx = partial_products_and_z_gx(z_x, &quotient_chunks_prods);
let pps = &pps_and_z_gx[..pps_and_z_gx.len() - 1];
assert_eq!(pps_and_z_gx, field_vec(&[6, 720]));
let nums = num_partial_products(v.len(), 3);
assert_eq!(p.len(), nums.0);
assert!(check_partial_products(&v, &denominators, &p, F::ONE, 3)
assert_eq!(pps.len(), nums.0);
assert!(check_partial_products(&v, &denominators, pps, z_x, z_gx, 3)
.iter()
.all(|x| x.is_zero()));
assert_eq!(
*p.last().unwrap() * v[nums.1..].iter().copied().product::<F>(),
v.into_iter().product::<F>(),
);
}
fn field_vec<F: Field>(xs: &[usize]) -> Vec<F> {