fix pairing code after big BN PR merge

This commit is contained in:
Dmitry Vagner 2023-02-13 11:41:13 -08:00
parent 2158c1d267
commit 71243fd728
10 changed files with 223 additions and 591 deletions

View File

@ -27,18 +27,16 @@ pub(crate) fn combined_kernel() -> Kernel {
include_str!("asm/curve/bn254/curve_arithmetic/constants.asm"),
include_str!("asm/curve/bn254/curve_arithmetic/curve_add.asm"),
include_str!("asm/curve/bn254/curve_arithmetic/curve_mul.asm"),
include_str!("asm/curve/bn254/curve_arithmetic/glv.asm"),
include_str!("asm/curve/bn254/curve_arithmetic/invariant_exponent.asm"),
include_str!("asm/curve/bn254/curve_arithmetic/msm.asm"),
include_str!("asm/curve/bn254/curve_arithmetic/precomputation.asm"),
include_str!("asm/curve/bn254/curve_arithmetic/tate_pairing.asm"),
include_str!("asm/curve/bn254/field_arithmetic/inverse.asm"),
include_str!("asm/curve/bn254/field_arithmetic/degree_6_mul.asm"),
include_str!("asm/curve/bn254/field_arithmetic/degree_12_mul.asm"),
include_str!("asm/curve/bn254/field_arithmetic/frobenius.asm"),
include_str!("asm/curve/bn254/field_arithmetic/util.asm"),
include_str!("asm/curve/bn254/curve_add.asm"),
include_str!("asm/curve/bn254/curve_mul.asm"),
include_str!("asm/curve/bn254/glv.asm"),
include_str!("asm/curve/bn254/msm.asm"),
include_str!("asm/curve/bn254/precomputation.asm"),
include_str!("asm/curve/common.asm"),
include_str!("asm/curve/secp256k1/curve_add.asm"),
include_str!("asm/curve/secp256k1/ecrecover.asm"),

View File

@ -1,305 +0,0 @@
// #define N 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47 // BN254 base field order
// BN254 elliptic curve addition.
// Uses the standard affine addition formula.
global bn_add:
// Uncomment for test inputs.
// PUSH 0xdeadbeef
// PUSH 2
// PUSH 1
// PUSH 0x1bf9384aa3f0b3ad763aee81940cacdde1af71617c06f46e11510f14f3d5d121
// PUSH 0xe7313274bb29566ff0c8220eb9841de1d96c2923c6a4028f7dd3c6a14cee770
// stack: x0, y0, x1, y1, retdest
// Check if points are valid BN254 points.
DUP2
// stack: y0, x0, y0, x1, y1, retdest
DUP2
// stack: x0, y0, x0, y0, x1, y1, retdest
%bn_check
// stack: isValid(x0, y0), x0, y0, x1, y1, retdest
DUP5
// stack: x1, isValid(x0, y0), x0, y0, x1, y1, retdest
DUP5
// stack: x1, y1, isValid(x0, y0), x0, y0, x1, y1, retdest
%bn_check
// stack: isValid(x1, y1), isValid(x0, y0), x0, y0, x1, y1, retdest
AND
// stack: isValid(x1, y1) & isValid(x0, y0), x0, y0, x1, y1, retdest
%jumpi(bn_add_valid_points)
// stack: x0, y0, x1, y1, retdest
// Otherwise return
%pop4
// stack: retdest
%bn_invalid_input
// BN254 elliptic curve addition.
// Assumption: (x0,y0) and (x1,y1) are valid points.
global bn_add_valid_points:
// stack: x0, y0, x1, y1, retdest
// Check if the first point is the identity.
DUP2
// stack: y0, x0, y0, x1, y1, retdest
DUP2
// stack: x0, y0, x0, y0, x1, y1, retdest
%ec_isidentity
// stack: (x0,y0)==(0,0), x0, y0, x1, y1, retdest
%jumpi(bn_add_first_zero)
// stack: x0, y0, x1, y1, retdest
// Check if the second point is the identity.
DUP4
// stack: y1, x0, y0, x1, y1, retdest
DUP4
// stack: x1, y1, x0, y0, x1, y1, retdest
%ec_isidentity
// stack: (x1,y1)==(0,0), x0, y0, x1, y1, retdest
%jumpi(bn_add_snd_zero)
// stack: x0, y0, x1, y1, retdest
// Check if both points have the same x-coordinate.
DUP3
// stack: x1, x0, y0, x1, y1, retdest
DUP2
// stack: x0, x1, x0, y0, x1, y1, retdest
EQ
// stack: x0 == x1, x0, y0, x1, y1, retdest
%jumpi(bn_add_equal_first_coord)
// stack: x0, y0, x1, y1, retdest
// Otherwise, we can use the standard formula.
// Compute lambda = (y0 - y1)/(x0 - x1)
DUP4
// stack: y1, x0, y0, x1, y1, retdest
DUP3
// stack: y0, y1, x0, y0, x1, y1, retdest
%submod
// stack: y0 - y1, x0, y0, x1, y1, retdest
DUP4
// stack: x1, y0 - y1, x0, y0, x1, y1, retdest
DUP3
// stack: x0, x1, y0 - y1, x0, y0, x1, y1, retdest
%submod
// stack: x0 - x1, y0 - y1, x0, y0, x1, y1, retdest
%moddiv
// stack: lambda, x0, y0, x1, y1, retdest
%jump(bn_add_valid_points_with_lambda)
// BN254 elliptic curve addition.
// Assumption: (x0,y0) == (0,0)
bn_add_first_zero:
// stack: x0, y0, x1, y1, retdest
// Just return (x1,y1)
%stack (x0, y0, x1, y1, retdest) -> (retdest, x1, y1)
JUMP
// BN254 elliptic curve addition.
// Assumption: (x1,y1) == (0,0)
bn_add_snd_zero:
// stack: x0, y0, x1, y1, retdest
// Just return (x0,y0)
%stack (x0, y0, x1, y1, retdest) -> (retdest, x0, y0)
JUMP
// BN254 elliptic curve addition.
// Assumption: lambda = (y0 - y1)/(x0 - x1)
bn_add_valid_points_with_lambda:
// stack: lambda, x0, y0, x1, y1, retdest
// Compute x2 = lambda^2 - x1 - x0
DUP2
// stack: x0, lambda, x0, y0, x1, y1, retdest
DUP5
// stack: x1, x0, lambda, x0, y0, x1, y1, retdest
%bn_base
// stack: N, x1, x0, lambda, x0, y0, x1, y1, retdest
DUP4
// stack: lambda, N, x1, x0, lambda, x0, y0, x1, y1, retdest
DUP1
// stack: lambda, lambda, N, x1, x0, lambda, x0, y0, x1, y1, retdest
MULMOD
// stack: lambda^2, x1, x0, lambda, x0, y0, x1, y1, retdest
%submod
// stack: lambda^2 - x1, x0, lambda, x0, y0, x1, y1, retdest
%submod
// stack: x2, lambda, x0, y0, x1, y1, retdest
// Compute y2 = lambda*(x1 - x2) - y1
%bn_base
// stack: N, x2, lambda, x0, y0, x1, y1, retdest
DUP2
// stack: x2, N, x2, lambda, x0, y0, x1, y1, retdest
DUP7
// stack: x1, x2, N, x2, lambda, x0, y0, x1, y1, retdest
%submod
// stack: x1 - x2, N, x2, lambda, x0, y0, x1, y1, retdest
DUP4
// stack: lambda, x1 - x2, N, x2, lambda, x0, y0, x1, y1, retdest
MULMOD
// stack: lambda * (x1 - x2), x2, lambda, x0, y0, x1, y1, retdest
DUP7
// stack: y1, lambda * (x1 - x2), x2, lambda, x0, y0, x1, y1, retdest
SWAP1
// stack: lambda * (x1 - x2), y1, x2, lambda, x0, y0, x1, y1, retdest
%submod
// stack: y2, x2, lambda, x0, y0, x1, y1, retdest
// Return x2,y2
%stack (y2, x2, lambda, x0, y0, x1, y1, retdest) -> (retdest, x2, y2)
JUMP
// BN254 elliptic curve addition.
// Assumption: (x0,y0) and (x1,y1) are valid points and x0 == x1
bn_add_equal_first_coord:
// stack: x0, y0, x1, y1, retdest with x0 == x1
// Check if the points are equal
DUP2
// stack: y0, x0, y0, x1, y1, retdest
DUP5
// stack: y1, y0, x0, y0, x1, y1, retdest
EQ
// stack: y1 == y0, x0, y0, x1, y1, retdest
%jumpi(bn_add_equal_points)
// stack: x0, y0, x1, y1, retdest
// Otherwise, one is the negation of the other so we can return (0,0).
%pop4
// stack: retdest
PUSH 0
// stack: 0, retdest
PUSH 0
// stack: 0, 0, retdest
SWAP2
// stack: retdest, 0, 0
JUMP
// BN254 elliptic curve addition.
// Assumption: x0 == x1 and y0 == y1
// Standard doubling formula.
bn_add_equal_points:
// stack: x0, y0, x1, y1, retdest
// Compute lambda = 3/2 * x0^2 / y0
%bn_base
// stack: N, x0, y0, x1, y1, retdest
%bn_base
// stack: N, N, x0, y0, x1, y1, retdest
DUP3
// stack: x0, N, N, x0, y0, x1, y1, retdest
DUP1
// stack: x0, x0, N, N, x0, y0, x1, y1, retdest
MULMOD
// stack: x0^2, N, x0, y0, x1, y1, retdest with
PUSH 0x183227397098d014dc2822db40c0ac2ecbc0b548b438e5469e10460b6c3e7ea5 // 3/2 in the base field
// stack: 3/2, x0^2, N, x0, y0, x1, y1, retdest
MULMOD
// stack: 3/2 * x0^2, x0, y0, x1, y1, retdest
DUP3
// stack: y0, 3/2 * x0^2, x0, y0, x1, y1, retdest
%moddiv
// stack: lambda, x0, y0, x1, y1, retdest
%jump(bn_add_valid_points_with_lambda)
// BN254 elliptic curve doubling.
// Assumption: (x0,y0) is a valid point.
// Standard doubling formula.
global bn_double:
// stack: x, y, retdest
DUP2 DUP2 %ec_isidentity
// stack: (x,y)==(0,0), x, y, retdest
%jumpi(ec_double_retself)
DUP2 DUP2
// stack: x, y, x, y, retdest
%jump(bn_add_equal_points)
// Push the order of the BN254 base field.
%macro bn_base
PUSH 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47
%endmacro
// Assumption: x, y < N and 2N < 2^256.
// Note: Doesn't hold for Secp256k1 base field.
%macro submod
// stack: x, y
%bn_base
// stack: N, x, y
ADD
// stack: N + x, y // Doesn't overflow since 2N < 2^256
SUB
// stack: N + x - y // Doesn't underflow since y < N
%bn_base
// stack: N, N + x - y
SWAP1
// stack: N + x - y, N
MOD
// stack: (N + x - y) % N = (x-y) % N
%endmacro
// Check if (x,y) is a valid curve point.
// Puts y^2 % N == (x^3 + 3) % N & (x < N) & (y < N) || (x,y)==(0,0) on top of the stack.
%macro bn_check
// stack: x, y
%bn_base
// stack: N, x, y
DUP2
// stack: x, N, x, y
LT
// stack: x < N, x, y
%bn_base
// stack: N, x < N, x, y
DUP4
// stack: y, N, x < N, x, y
LT
// stack: y < N, x < N, x, y
AND
// stack: (y < N) & (x < N), x, y
%stack (b, x, y) -> (x, x, @BN_BASE, x, @BN_BASE, @BN_BASE, x, y, b)
// stack: x, x, N, x, N, N, x, y, b
MULMOD
// stack: x^2 % N, x, N, N, x, y, b
MULMOD
// stack: x^3 % N, N, x, y, b
PUSH 3
// stack: 3, x^3 % N, N, x, y, b
ADDMOD
// stack: (x^3 + 3) % N, x, y, b
DUP3
// stack: y, (x^3 + 3) % N, x, y, b
%bn_base
// stack: N, y, (x^3 + 3) % N, x, y, b
SWAP1
// stack: y, N, (x^3 + 3) % N, x, y, b
DUP1
// stack: y, y, N, (x^3 + 3) % N, x, y, b
MULMOD
// stack: y^2 % N, (x^3 + 3) % N, x, y, b
EQ
// stack: y^2 % N == (x^3 + 3) % N, x, y, b
SWAP2
// stack: y, x, y^2 % N == (x^3 + 3) % N, b
%ec_isidentity
// stack: (x,y)==(0,0), y^2 % N == (x^3 + 3) % N, b
SWAP2
// stack: b, y^2 % N == (x^3 + 3) % N, (x,y)==(0,0)
AND
// stack: y^2 % N == (x^3 + 3) % N & (x < N) & (y < N), (x,y)==(0,0)
OR
// stack: y^2 % N == (x^3 + 3) % N & (x < N) & (y < N) || (x,y)==(0,0)
%endmacro
// Return (u256::MAX, u256::MAX) which is used to indicate the input was invalid.
%macro bn_invalid_input
// stack: retdest
PUSH 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
// stack: u256::MAX, retdest
PUSH 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
// stack: u256::MAX, u256::MAX, retdest
SWAP2
// stack: retdest, u256::MAX, u256::MAX
JUMP
%endmacro

View File

@ -1,81 +1,95 @@
// BN254 elliptic curve addition via the standard affine addition formula.
// #define N 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47 // BN254 base field order
global ec_add:
// stack: x0, y0, x1, y1, retdest
// BN254 elliptic curve addition.
// Uses the standard affine addition formula.
global bn_add:
// Uncomment for test inputs.
// PUSH 0xdeadbeef
// PUSH 2
// PUSH 1
// PUSH 0x1bf9384aa3f0b3ad763aee81940cacdde1af71617c06f46e11510f14f3d5d121
// PUSH 0xe7313274bb29566ff0c8220eb9841de1d96c2923c6a4028f7dd3c6a14cee770
// stack: x0, y0, x1, y1, retdest
// Check if points are valid BN254 points.
DUP2
DUP2
// stack: x0, y0, x0, y0, x1, y1, retdest
%ec_check
// stack: isValid(x0, y0), x0, y0, x1, y1, retdest
// stack: y0, x0, y0, x1, y1, retdest
DUP2
// stack: x0, y0, x0, y0, x1, y1, retdest
%bn_check
// stack: isValid(x0, y0), x0, y0, x1, y1, retdest
DUP5
DUP5
// stack: x1, y1 , isValid(x0, y0), x0, y0, x1, y1, retdest
%ec_check
// stack: isValid(x1, y1) , isValid(x0, y0), x0, y0, x1, y1, retdest
// stack: x1, isValid(x0, y0), x0, y0, x1, y1, retdest
DUP5
// stack: x1, y1, isValid(x0, y0), x0, y0, x1, y1, retdest
%bn_check
// stack: isValid(x1, y1), isValid(x0, y0), x0, y0, x1, y1, retdest
AND
// stack: isValid(x1, y1) & isValid(x0, y0), x0, y0, x1, y1, retdest
%jumpi(ec_add_valid_points)
// stack: x0, y0, x1, y1, retdest
%jumpi(bn_add_valid_points)
// stack: x0, y0, x1, y1, retdest
// Otherwise return
%pop4
// stack: retdest
%ec_invalid_input
%bn_invalid_input
// BN254 elliptic curve addition.
// Assumption: (x0,y0) and (x1,y1) are valid points.
global ec_add_valid_points:
// stack: x0, y0, x1, y1, retdest
global bn_add_valid_points:
// stack: x0, y0, x1, y1, retdest
// Check if the first point is the identity.
DUP2
// stack: y0, x0, y0, x1, y1, retdest
DUP2
// stack: x0,y0 , x0, y0, x1, y1, retdest
// stack: x0, y0, x0, y0, x1, y1, retdest
%ec_isidentity
// stack: (0,0)==(x0,y0), x0, y0, x1, y1, retdest
%jumpi(ec_add_fst_zero)
// stack: x0, y0, x1, y1, retdest
// stack: (x0,y0)==(0,0), x0, y0, x1, y1, retdest
%jumpi(bn_add_first_zero)
// stack: x0, y0, x1, y1, retdest
// Check if the second point is the identity.
DUP4
DUP4
// stack: x1,y1 , x0, y0, x1, y1, retdest
// stack: y1, x0, y0, x1, y1, retdest
DUP4
// stack: x1, y1, x0, y0, x1, y1, retdest
%ec_isidentity
// stack: (0,0)==(x1,y1), x0, y0, x1, y1, retdest
%jumpi(ec_add_snd_zero)
// stack: x0, y0, x1, y1, retdest
// stack: (x1,y1)==(0,0), x0, y0, x1, y1, retdest
%jumpi(bn_add_snd_zero)
// stack: x0, y0, x1, y1, retdest
// Check if both points have the same x-coordinate.
DUP3
DUP2
// stack: x0 , x1, x0, y0, x1, y1, retdest
// stack: x1, x0, y0, x1, y1, retdest
DUP2
// stack: x0, x1, x0, y0, x1, y1, retdest
EQ
// stack: x0 == x1, x0, y0, x1, y1, retdest
%jumpi(ec_add_equal_first_coord)
// stack: x0 == x1, x0, y0, x1, y1, retdest
%jumpi(bn_add_equal_first_coord)
// stack: x0, y0, x1, y1, retdest
// stack: x0, y0, x1, y1, retdest
// Otherwise, we can use the standard formula.
// Compute lambda = (y0 - y1)/(x0 - x1)
DUP4
// stack: y1, x0, y0, x1, y1, retdest
DUP3
// stack: y0 , y1, x0, y0, x1, y1, retdest
SUBFP254
// stack: y0 - y1, x0, y0, x1, y1, retdest
// stack: y0, y1, x0, y0, x1, y1, retdest
%submod
// stack: y0 - y1, x0, y0, x1, y1, retdest
DUP4
// stack: x1, y0 - y1, x0, y0, x1, y1, retdest
DUP3
// stack: x0 , x1, y0 - y1, x0, y0, x1, y1, retdest
SUBFP254
// stack: x0, x1, y0 - y1, x0, y0, x1, y1, retdest
%submod
// stack: x0 - x1, y0 - y1, x0, y0, x1, y1, retdest
%divfp254
// stack: lambda, x0, y0, x1, y1, retdest
%jump(ec_add_valid_points_with_lambda)
%divr_fp254
// stack: lambda, x0, y0, x1, y1, retdest
%jump(bn_add_valid_points_with_lambda)
// BN254 elliptic curve addition.
// Assumption: (x0,y0) == (0,0)
ec_add_fst_zero:
bn_add_first_zero:
// stack: x0, y0, x1, y1, retdest
// Just return (x1,y1)
%stack (x0, y0, x1, y1, retdest) -> (retdest, x1, y1)
@ -83,48 +97,55 @@ ec_add_fst_zero:
// BN254 elliptic curve addition.
// Assumption: (x1,y1) == (0,0)
ec_add_snd_zero:
bn_add_snd_zero:
// stack: x0, y0, x1, y1, retdest
// Just return (x0,y0)
%stack (x0, y0, x1, y1, retdest) -> (retdest, x0, y0)
JUMP
// BN254 elliptic curve addition.
// Assumption: lambda = (y0 - y1)/(x0 - x1)
ec_add_valid_points_with_lambda:
// stack: lambda, x0, y0, x1, y1, retdest
bn_add_valid_points_with_lambda:
// stack: lambda, x0, y0, x1, y1, retdest
// Compute x2 = lambda^2 - x1 - x0
DUP2
// stack: x0, lambda, x0, y0, x1, y1, retdest
DUP5
// stack: x1, x0, lambda, x0, y0, x1, y1, retdest
DUP3
// stack: lambda , x1, x0, lambda, x0, y0, x1, y1, retdest
// stack: x1, x0, lambda, x0, y0, x1, y1, retdest
%bn_base
// stack: N, x1, x0, lambda, x0, y0, x1, y1, retdest
DUP4
// stack: lambda, N, x1, x0, lambda, x0, y0, x1, y1, retdest
DUP1
MULFP254
// stack: lambda^2 , x1, x0, lambda, x0, y0, x1, y1, retdest
SUBFP254
// stack: lambda^2 - x1, x0, lambda, x0, y0, x1, y1, retdest
SUBFP254
// stack: x2, lambda, x0, y0, x1, y1, retdest
// stack: lambda, lambda, N, x1, x0, lambda, x0, y0, x1, y1, retdest
MULMOD
// stack: lambda^2, x1, x0, lambda, x0, y0, x1, y1, retdest
%submod
// stack: lambda^2 - x1, x0, lambda, x0, y0, x1, y1, retdest
%submod
// stack: x2, lambda, x0, y0, x1, y1, retdest
// Compute y2 = lambda*(x1 - x2) - y1
DUP1
// stack: x2 , x2, lambda, x0, y0, x1, y1, retdest
DUP6
// stack: x1 , x2 , x2, lambda, x0, y0, x1, y1, retdest
SUBFP254
// stack: x1 - x2 , x2, lambda, x0, y0, x1, y1, retdest
DUP3
// stack: lambda , x1 - x2 , x2, lambda, x0, y0, x1, y1, retdest
MULFP254
// stack: lambda * (x1 - x2), x2, lambda, x0, y0, x1, y1, retdest
%bn_base
// stack: N, x2, lambda, x0, y0, x1, y1, retdest
DUP2
// stack: x2, N, x2, lambda, x0, y0, x1, y1, retdest
DUP7
// stack: x1, x2, N, x2, lambda, x0, y0, x1, y1, retdest
%submod
// stack: x1 - x2, N, x2, lambda, x0, y0, x1, y1, retdest
DUP4
// stack: lambda, x1 - x2, N, x2, lambda, x0, y0, x1, y1, retdest
MULMOD
// stack: lambda * (x1 - x2), x2, lambda, x0, y0, x1, y1, retdest
DUP7
// stack: y1, lambda * (x1 - x2), x2, lambda, x0, y0, x1, y1, retdest
SWAP1
// stack: lambda * (x1 - x2), y1, x2, lambda, x0, y0, x1, y1, retdest
SUBFP254
// stack: y2, x2, lambda, x0, y0, x1, y1, retdest
%submod
// stack: y2, x2, lambda, x0, y0, x1, y1, retdest
// Return x2,y2
%stack (y2, x2, lambda, x0, y0, x1, y1, retdest) -> (retdest, x2, y2)
@ -132,22 +153,25 @@ ec_add_valid_points_with_lambda:
// BN254 elliptic curve addition.
// Assumption: (x0,y0) and (x1,y1) are valid points and x0 == x1
ec_add_equal_first_coord:
// stack: x0, y0, x1, y1, retdest with x0 == x1
bn_add_equal_first_coord:
// stack: x0, y0, x1, y1, retdest with x0 == x1
// Check if the points are equal
DUP2
// stack: y0, x0, y0, x1, y1, retdest
DUP5
// stack: y1 , y0, x0, y0, x1, y1, retdest
// stack: y1, y0, x0, y0, x1, y1, retdest
EQ
// stack: y1 == y0, x0, y0, x1, y1, retdest
%jumpi(ec_add_equal_points)
// stack: x0, y0, x1, y1, retdest
%jumpi(bn_add_equal_points)
// stack: x0, y0, x1, y1, retdest
// Otherwise, one is the negation of the other so we can return (0,0).
%pop4
// stack: retdest
PUSH 0 PUSH 0
// stack: retdest
PUSH 0
// stack: 0, retdest
PUSH 0
// stack: 0, 0, retdest
SWAP2
// stack: retdest, 0, 0
@ -157,118 +181,125 @@ ec_add_equal_first_coord:
// BN254 elliptic curve addition.
// Assumption: x0 == x1 and y0 == y1
// Standard doubling formula.
ec_add_equal_points:
// stack: x0, y0, x1, y1, retdest
// Compute lambda = 3/2 * x0^2 / y0
bn_add_equal_points:
// stack: x0, y0, x1, y1, retdest
// Compute lambda = 3/2 * x0^2 / y0
%bn_base
// stack: N, x0, y0, x1, y1, retdest
%bn_base
// stack: N, N, x0, y0, x1, y1, retdest
DUP3
// stack: x0, N, N, x0, y0, x1, y1, retdest
DUP1
// stack: x0 , x0, y0, x1, y1, retdest
DUP1
MULFP254
// stack: x0^2, x0, y0, x1, y1, retdest
%bn_3_over_2
// stack: 3/2 , x0^2, x0, y0, x1, y1, retdest
MULFP254
// stack: 3/2 * x0^2, x0, y0, x1, y1, retdest
// stack: x0, x0, N, N, x0, y0, x1, y1, retdest
MULMOD
// stack: x0^2, N, x0, y0, x1, y1, retdest with
PUSH 0x183227397098d014dc2822db40c0ac2ecbc0b548b438e5469e10460b6c3e7ea5 // 3/2 in the base field
// stack: 3/2, x0^2, N, x0, y0, x1, y1, retdest
MULMOD
// stack: 3/2 * x0^2, x0, y0, x1, y1, retdest
DUP3
// stack: y0, 3/2 * x0^2, x0, y0, x1, y1, retdest
%divfp254
// stack: lambda, x0, y0, x1, y1, retdest
%jump(ec_add_valid_points_with_lambda)
%divr_fp254
// stack: lambda, x0, y0, x1, y1, retdest
%jump(bn_add_valid_points_with_lambda)
// BN254 elliptic curve doubling.
// Assumption: (x0,y0) is a valid point.
// Standard doubling formula.
global ec_double:
// stack: x0, y0, retdest
DUP2
DUP2
// stack: x0, y0, x0, y0, retdest
%jump(ec_add_equal_points)
global bn_double:
// stack: x, y, retdest
DUP2 DUP2 %ec_isidentity
// stack: (x,y)==(0,0), x, y, retdest
%jumpi(ec_double_retself)
DUP2 DUP2
// stack: x, y, x, y, retdest
%jump(bn_add_equal_points)
// Push the order of the BN254 base field.
%macro bn_base
PUSH 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47
%endmacro
%macro bn_3_over_2
// 3/2 in the base field
PUSH 0x183227397098d014dc2822db40c0ac2ecbc0b548b438e5469e10460b6c3e7ea5
// Assumption: x, y < N and 2N < 2^256.
// Note: Doesn't hold for Secp256k1 base field.
%macro submod
// stack: x, y
%bn_base
// stack: N, x, y
ADD
// stack: N + x, y // Doesn't overflow since 2N < 2^256
SUB
// stack: N + x - y // Doesn't underflow since y < N
%bn_base
// stack: N, N + x - y
SWAP1
// stack: N + x - y, N
MOD
// stack: (N + x - y) % N = (x-y) % N
%endmacro
// Check if (x,y) is a valid curve point.
// Returns range & curve || is_identity
// where
// range = (x < N) & (y < N)
// curve = y^2 == (x^3 + 3)
// ident = (x,y) == (0,0)
%macro ec_check
// stack: x, y
DUP1
// stack: x, x, y
// Puts y^2 % N == (x^3 + 3) % N & (x < N) & (y < N) || (x,y)==(0,0) on top of the stack.
%macro bn_check
// stack: x, y
%bn_base
// stack: N , x, x, y
DUP1
// stack: N, N , x, x, y
DUP5
// stack: y , N, N , x, x, y
LT
// stack: y < N, N , x, x, y
SWAP2
// stack: x , N, y < N, x, y
LT
// stack: x < N, y < N, x, y
AND
// stack: range, x, y
SWAP2
// stack: y, x, range
DUP2
// stack: x , y, x, range
DUP1
DUP1
MULFP254
MULFP254
// stack: x^3, y, x, range
PUSH 3
ADDFP254
// stack: 3 + x^3, y, x, range
// stack: N, x, y
DUP2
// stack: y , 3 + x^3, y, x, range
DUP1
MULFP254
// stack: y^2, 3 + x^3, y, x, range
EQ
// stack: curve, y, x, range
SWAP2
// stack: x, y, curve, range
%ec_isidentity
// stack: ident , curve, range
SWAP2
// stack: range , curve, ident
// stack: x, N, x, y
LT
// stack: x < N, x, y
%bn_base
// stack: N, x < N, x, y
DUP4
// stack: y, N, x < N, x, y
LT
// stack: y < N, x < N, x, y
AND
// stack: range & curve, ident
// stack: (y < N) & (x < N), x, y
%stack (b, x, y) -> (x, x, @BN_BASE, x, @BN_BASE, @BN_BASE, x, y, b)
// stack: x, x, N, x, N, N, x, y, b
MULMOD
// stack: x^2 % N, x, N, N, x, y, b
MULMOD
// stack: x^3 % N, N, x, y, b
PUSH 3
// stack: 3, x^3 % N, N, x, y, b
ADDMOD
// stack: (x^3 + 3) % N, x, y, b
DUP3
// stack: y, (x^3 + 3) % N, x, y, b
%bn_base
// stack: N, y, (x^3 + 3) % N, x, y, b
SWAP1
// stack: y, N, (x^3 + 3) % N, x, y, b
DUP1
// stack: y, y, N, (x^3 + 3) % N, x, y, b
MULMOD
// stack: y^2 % N, (x^3 + 3) % N, x, y, b
EQ
// stack: y^2 % N == (x^3 + 3) % N, x, y, b
SWAP2
// stack: y, x, y^2 % N == (x^3 + 3) % N, b
%ec_isidentity
// stack: (x,y)==(0,0), y^2 % N == (x^3 + 3) % N, b
SWAP2
// stack: b, y^2 % N == (x^3 + 3) % N, (x,y)==(0,0)
AND
// stack: y^2 % N == (x^3 + 3) % N & (x < N) & (y < N), (x,y)==(0,0)
OR
// stack: is_valid
%endmacro
// Check if (x,y)==(0,0)
%macro ec_isidentity
// stack: x , y
OR
// stack: x | y
ISZERO
// stack: (x,y) == (0,0)
// stack: y^2 % N == (x^3 + 3) % N & (x < N) & (y < N) || (x,y)==(0,0)
%endmacro
// Return (u256::MAX, u256::MAX) which is used to indicate the input was invalid.
%macro ec_invalid_input
%macro bn_invalid_input
// stack: retdest
PUSH 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
// stack: u256::MAX, retdest
DUP1
PUSH 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
// stack: u256::MAX, u256::MAX, retdest
SWAP2
// stack: retdest, u256::MAX, u256::MAX
JUMP
%endmacro
%endmacro

View File

@ -1,90 +1,41 @@
// BN254 elliptic curve scalar multiplication.
// Recursive implementation, same algorithm as in `exp.asm`.
global ec_mul:
// stack: x, y, s, retdest
// Uses GLV, wNAF with w=5, and a MSM algorithm.
global bn_mul:
// stack: x, y, s, retdest
DUP2
// stack: y , x, y, s, retdest
// stack: y, x, y, s, retdest
DUP2
// stack: x,y , x, y, s, retdest
// stack: x, y, x, y, s, retdest
%ec_isidentity
// stack: (0,0)==(x,y), x, y, s, retdest
// stack: (x,y)==(0,0), x, y, s, retdest
%jumpi(ret_zero_ec_mul)
// stack: x, y, s, retdest
// stack: x, y, s, retdest
DUP2
// stack: y, x, y, s, retdest
// stack: y, x, y, s, retdest
DUP2
// stack: x, y, x, y, s, retdest
%ec_check
// stack: x, y, x, y, s, retdest
%bn_check
// stack: isValid(x, y), x, y, s, retdest
%jumpi(ec_mul_valid_point)
// stack: x, y, s, retdest
%jumpi(bn_mul_valid_point)
// stack: x, y, s, retdest
%pop3
%ec_invalid_input
%bn_invalid_input
// Same algorithm as in `exp.asm`
ec_mul_valid_point:
// stack: x, y, s, retdest
DUP3
// stack: s, x, y, s, retdest
%jumpi(step_case)
// stack: x, y, s, retdest
%jump(ret_zero_ec_mul)
step_case:
// stack: x, y, s, retdest
PUSH recursion_return
// stack: recursion_return, x, y, s, retdest
PUSH 2
// stack: 2, recursion_return, x, y, s, retdest
DUP5
// stack: s , 2, recursion_return, x, y, s, retdest
DIV
// stack: s / 2, recursion_return, x, y, s, retdest
PUSH step_case_contd
// stack: step_case_contd, s / 2, recursion_return, x, y, s, retdest
DUP5
// stack: y, step_case_contd, s / 2, recursion_return, x, y, s, retdest
DUP5
// stack: x, y, step_case_contd, s / 2, recursion_return, x, y, s, retdest
%jump(ec_double)
// Assumption: 2(x,y) = (x',y')
step_case_contd:
// stack: x', y', s / 2, recursion_return, x, y, s, retdest
%jump(ec_mul_valid_point)
recursion_return:
// stack: x', y', x, y, s, retdest
SWAP4
// stack: s, y', x, y, x', retdest
PUSH 1
// stack: 1, s, y', x, y, x', retdest
AND
// stack: s & 1, y', x, y, x', retdest
SWAP1
// stack: y', s & 1, x, y, x', retdest
SWAP2
// stack: x, s & 1, y', y, x', retdest
SWAP3
// stack: y, s & 1, y', x, x', retdest
SWAP4
// stack: x', s & 1, y', x, y, retdest
SWAP1
// stack: s & 1, x', y', x, y, retdest
%jumpi(odd_scalar)
// stack: x', y', x, y, retdest
SWAP3
// stack: y, y', x, x', retdest
POP
// stack: y', x, x', retdest
SWAP1
// stack: x, y', x', retdest
POP
// stack: y', x', retdest
SWAP2
// stack: retdest, x', y'
bn_mul_valid_point:
%stack (x, y, s, retdest) -> (s, bn_mul_after_glv, x, y, bn_msm, bn_mul_end, retdest)
%jump(bn_glv_decompose)
bn_mul_after_glv:
// stack: bneg, a, b, x, y, bn_msm, bn_mul_end, retdest
// Store bneg at this (otherwise unused) location. Will be used later in the MSM.
%mstore_kernel(@SEGMENT_KERNEL_BN_TABLE_Q, @BN_BNEG_LOC)
// stack: a, b, x, y, bn_msm, bn_mul_end, retdest
PUSH bn_mul_after_a SWAP1 PUSH @SEGMENT_KERNEL_BN_WNAF_A PUSH @BN_SCALAR %jump(wnaf)
bn_mul_after_a:
// stack: b, x, y, bn_msm, bn_mul_end, retdest
PUSH bn_mul_after_b SWAP1 PUSH @SEGMENT_KERNEL_BN_WNAF_B PUSH @BN_SCALAR %jump(wnaf)
bn_mul_after_b:
// stack: x, y, bn_msm, bn_mul_end, retdest
%jump(bn_precompute_table)
bn_mul_end:
%stack (Ax, Ay, retdest) -> (retdest, Ax, Ay)
JUMP
odd_scalar:
// stack: x', y', x, y, retdest
%jump(ec_add_valid_points)

View File

@ -129,7 +129,7 @@ mul_tangent_2:
DUP6
DUP6
// stack: O, after_double, retdest, 0xnm, times, O, P, Q, out {100: line}
%jump(ec_double)
%jump(bn_double)
after_double:
// stack: 2*O, retdest, 0xnm, times, O, P, Q, out {100: line}
SWAP5
@ -175,7 +175,7 @@ mul_cord_1:
DUP7
DUP7
// stack: O , P, after_add, 0xnm, times, O , P, Q, out
%jump(ec_add_valid_points)
%jump(bn_add_valid_points)
after_add:
// stack: O + P, 0xnm, times, O , P, Q, out
SWAP4

View File

@ -1,41 +0,0 @@
// BN254 elliptic curve scalar multiplication.
// Uses GLV, wNAF with w=5, and a MSM algorithm.
global bn_mul:
// stack: x, y, s, retdest
DUP2
// stack: y, x, y, s, retdest
DUP2
// stack: x, y, x, y, s, retdest
%ec_isidentity
// stack: (x,y)==(0,0), x, y, s, retdest
%jumpi(ret_zero_ec_mul)
// stack: x, y, s, retdest
DUP2
// stack: y, x, y, s, retdest
DUP2
// stack: x, y, x, y, s, retdest
%bn_check
// stack: isValid(x, y), x, y, s, retdest
%jumpi(bn_mul_valid_point)
// stack: x, y, s, retdest
%pop3
%bn_invalid_input
bn_mul_valid_point:
%stack (x, y, s, retdest) -> (s, bn_mul_after_glv, x, y, bn_msm, bn_mul_end, retdest)
%jump(bn_glv_decompose)
bn_mul_after_glv:
// stack: bneg, a, b, x, y, bn_msm, bn_mul_end, retdest
// Store bneg at this (otherwise unused) location. Will be used later in the MSM.
%mstore_kernel(@SEGMENT_KERNEL_BN_TABLE_Q, @BN_BNEG_LOC)
// stack: a, b, x, y, bn_msm, bn_mul_end, retdest
PUSH bn_mul_after_a SWAP1 PUSH @SEGMENT_KERNEL_BN_WNAF_A PUSH @BN_SCALAR %jump(wnaf)
bn_mul_after_a:
// stack: b, x, y, bn_msm, bn_mul_end, retdest
PUSH bn_mul_after_b SWAP1 PUSH @SEGMENT_KERNEL_BN_WNAF_B PUSH @BN_SCALAR %jump(wnaf)
bn_mul_after_b:
// stack: x, y, bn_msm, bn_mul_end, retdest
%jump(bn_precompute_table)
bn_mul_end:
%stack (Ax, Ay, retdest) -> (retdest, Ax, Ay)
JUMP

View File

@ -1,7 +1,5 @@
/// Division modulo the BN254 prime
// Returns y * (x^-1) where the inverse is taken modulo N
%macro divfp254
// Returns reverse order divison y/x, modulo N
%macro divr_fp254
// stack: x , y
%inv_fp254
// stack: x^-1, y