Fixed base works

This commit is contained in:
wborgeaud 2022-03-02 11:04:05 +01:00
parent ba5b1f7278
commit 6f3ca6a0bc
4 changed files with 216 additions and 14 deletions

View File

@ -1,7 +1,8 @@
use itertools::Itertools;
use num::BigUint;
use plonky2_field::extension_field::Extendable;
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::curve::curve_types::{AffinePoint, Curve, CurveScalar};
use crate::field::field_types::Field;
use crate::gadgets::curve::AffinePointTarget;
use crate::gadgets::nonnative::NonNativeTarget;
@ -70,18 +71,126 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
result
}
// pub fn quad_curve_msm<C: Curve>(
// &mut self,
// points: [AffinePointTarget<C>; 4],
// scalars: [NonNativeTarget<C::ScalarField>; 4],
// ) -> AffinePointTarget<C> {
// let limbs = scalars
// .iter()
// .map(|s| self.split_nonnative_to_bits(n))
// .collect_vec();
//
// let hash_0 = KeccakHash::<32>::hash_no_pad(&[F::ZERO]);
// let hash_0_scalar = C::ScalarField::from_biguint(BigUint::from_bytes_le(
// &GenericHashOut::<F>::to_bytes(&hash_0),
// ));
// let rando = (CurveScalar(hash_0_scalar) * C::GENERATOR_PROJECTIVE).to_affine();
// let rando_t = self.constant_affine_point(rando);
// let neg_rando = self.constant_affine_point(-rando);
//
// let mut precomputation = vec![points[0].clone(); 16];
// for i in 0..4 {
// precomputation[1 << i] = points[i].clone();
// for j in 1..1 << (i - 1) {}
// }
// let mut cur_p = rando_t.clone();
// let mut cur_q = rando_t.clone();
// for i in 0..4 {
// precomputation[i] = cur_p.clone();
// precomputation[4 * i] = cur_q.clone();
// cur_p = self.curve_add(&cur_p, p);
// cur_q = self.curve_add(&cur_q, q);
// }
// for i in 1..4 {
// precomputation[i] = self.curve_add(&precomputation[i], &neg_rando);
// precomputation[4 * i] = self.curve_add(&precomputation[4 * i], &neg_rando);
// }
// for i in 1..4 {
// for j in 1..4 {
// precomputation[i + 4 * j] =
// self.curve_add(&precomputation[i], &precomputation[4 * j]);
// }
// }
//
// let four = self.constant(F::from_canonical_usize(4));
//
// let zero = self.zero();
// let mut result = rando_t;
// for (limb_n, limb_m) in limbs_n.into_iter().zip(limbs_m).rev() {
// result = self.curve_repeated_double(&result, 2);
// let index = self.mul_add(four, limb_m, limb_n);
// let r = self.random_access_curve_points(index, precomputation.clone());
// let is_zero = self.is_equal(index, zero);
// let should_add = self.not(is_zero);
// result = self.curve_conditional_add(&result, &r, should_add);
// }
// let starting_point_multiplied =
// (0..C::ScalarField::BITS).fold(rando, |acc, _| acc.double());
// let to_add = self.constant_affine_point(-starting_point_multiplied);
// result = self.curve_add(&result, &to_add);
//
// result
// }
pub fn fixed_base_curve_mul<C: Curve>(
&mut self,
base: &AffinePoint<C>,
scalar: &NonNativeTarget<C::ScalarField>,
) -> AffinePointTarget<C> {
let doubled_base = (0..scalar.value.limbs.len() * 8).scan(base.clone(), |acc, _| {
let tmp = acc.clone();
for _ in 0..4 {
*acc = acc.double();
}
Some(tmp)
});
let bits = self.split_nonnative_to_4_bit_limbs(scalar);
// let rando = (CurveScalar(C::ScalarField::rand()) * C::GENERATOR_PROJECTIVE).to_affine();
let hash_0 = KeccakHash::<32>::hash_no_pad(&[F::ZERO]);
let hash_0_scalar = C::ScalarField::from_biguint(BigUint::from_bytes_le(
&GenericHashOut::<F>::to_bytes(&hash_0),
));
let rando = (CurveScalar(hash_0_scalar) * C::GENERATOR_PROJECTIVE).to_affine();
let zero = self.zero();
let mut result = self.constant_affine_point(rando.clone());
for (limb, point) in bits.into_iter().zip(doubled_base) {
let mul_point = (0..16)
.scan(AffinePoint::ZERO, |acc, _| {
let tmp = acc.clone();
*acc = (point + *acc).to_affine();
Some(tmp)
})
.map(|p| self.constant_affine_point(p))
.collect::<Vec<_>>();
let is_zero = self.is_equal(limb, zero);
let should_add = self.not(is_zero);
let r = self.random_access_curve_points(limb, mul_point);
result = self.curve_conditional_add(&result, &r, should_add);
}
let to_add = self.constant_affine_point(-rando);
self.curve_add(&result, &to_add)
}
}
#[cfg(test)]
mod tests {
use std::str::FromStr;
use anyhow::Result;
use num::BigUint;
use plonky2_field::field_types::PrimeField;
use plonky2_field::secp256k1_base::Secp256K1Base;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::curve::curve_types::{AffinePoint, Curve, CurveScalar};
use crate::curve::secp256k1::Secp256K1;
use crate::field::field_types::Field;
use crate::iop::witness::PartialWitness;
use crate::iop::witness::{PartialWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
@ -168,4 +277,38 @@ mod tests {
verify(proof, &data.verifier_only, &data.common)
}
#[test]
fn test_fixed_base() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_ecc_config();
let mut pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let g = Secp256K1::GENERATOR_AFFINE;
let n = Secp256K1Scalar::from_canonical_usize(10);
let n = Secp256K1Scalar::rand();
let res = (CurveScalar(n) * g.to_projective()).to_affine();
let res_expected = builder.constant_affine_point(res);
builder.curve_assert_valid(&res_expected);
let n_target = builder.add_virtual_nonnative_target::<Secp256K1Scalar>();
pw.set_biguint_target(&n_target.value, &n.to_canonical_biguint());
let res_target = builder.fixed_base_curve_mul(&g, &n_target);
builder.curve_assert_valid(&res_target);
builder.connect_affine_point(&res_target, &res_expected);
dbg!(builder.num_gates());
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
}
}

View File

@ -44,12 +44,21 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
access_index: Target,
v: Vec<AffinePointTarget<C>>,
) -> AffinePointTarget<C> {
let num_limbs = v[0].x.value.num_limbs();
let num_limbs = C::BaseField::BITS / 32;
let zero = self.zero_u32();
let x_limbs: Vec<Vec<_>> = (0..num_limbs)
.map(|i| v.iter().map(|p| p.x.value.limbs[i].0).collect())
.map(|i| {
v.iter()
.map(|p| p.x.value.limbs.get(i).unwrap_or(&zero).0)
.collect()
})
.collect();
let y_limbs: Vec<Vec<_>> = (0..num_limbs)
.map(|i| v.iter().map(|p| p.y.value.limbs[i].0).collect())
.map(|i| {
v.iter()
.map(|p| p.y.value.limbs.get(i).unwrap_or(&zero).0)
.collect()
})
.collect();
let selected_x_limbs: Vec<_> = x_limbs

View File

@ -19,6 +19,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.constant_nonnative(BETA)
}
// TODO: Add decomposition check.
pub fn decompose_secp256k1_scalar(
&mut self,
k: &NonNativeTarget<Secp256K1Scalar>,
@ -59,12 +60,24 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
y: p.y.clone(),
};
let part1 = self.curve_scalar_mul_windowed(p, &k1);
let part1_neg = self.curve_conditional_neg(&part1, k1_neg);
let part2 = self.curve_scalar_mul_windowed(&sp, &k2);
let part2_neg = self.curve_conditional_neg(&part2, k2_neg);
self.curve_add(&part1_neg, &part2_neg)
// let part1 = self.curve_scalar_mul_windowed(p, &k1);
// let part1_neg = self.curve_conditional_neg(&part1, k1_neg);
// let part2 = self.curve_scalar_mul_windowed(&sp, &k2);
// let part2_neg = self.curve_conditional_neg(&part2, k2_neg);
//
// self.curve_add(&part1_neg, &part2_neg)
// dbg!(k1.value.limbs.len());
// dbg!(k2.value.limbs.len());
let p_neg = self.curve_conditional_neg(&p, k1_neg);
let sp_neg = self.curve_conditional_neg(&sp, k2_neg);
// let yo = self.curve_scalar_mul_windowed(&p_neg, &k1);
// let ya = self.curve_scalar_mul_windowed(&sp_neg, &k2);
// dbg!(&yo);
// dbg!(&ya);
// self.connect_affine_point(&part1_neg, &yo);
// self.connect_affine_point(&part2_neg, &ya);
self.curve_msm(&p_neg, &sp_neg, &k1, &k2)
// self.curve_add(&yo, &ya)
}
}
@ -105,7 +118,7 @@ mod tests {
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::curve::glv::glv_mul;
use crate::curve::secp256k1::Secp256K1;
use crate::iop::witness::PartialWitness;
use crate::iop::witness::{PartialWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
@ -134,6 +147,43 @@ mod tests {
let actual = builder.glv_mul(&randot, &scalar_target);
builder.connect_affine_point(&expected, &actual);
dbg!(builder.num_gates());
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
}
#[test]
fn test_wtf() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_ecc_config();
let mut pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let rando =
(CurveScalar(Secp256K1Scalar::rand()) * Secp256K1::GENERATOR_PROJECTIVE).to_affine();
let randot = builder.constant_affine_point(rando);
let scalar = Secp256K1Scalar::rand();
let scalar_target = builder.constant_nonnative(scalar);
let tr = builder.add_virtual_bool_target();
pw.set_bool_target(tr, false);
let randotneg = builder.curve_conditional_neg(&randot, tr);
let y = builder.curve_scalar_mul_windowed(&randotneg, &scalar_target);
let yy = builder.curve_scalar_mul_windowed(&randot, &scalar_target);
let yy = builder.curve_conditional_neg(&yy, tr);
builder.connect_affine_point(&y, &yy);
dbg!(builder.num_gates());
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();

View File

@ -70,7 +70,7 @@ pub struct CircuitBuilder<F: RichField + Extendable<D>, const D: usize> {
marked_targets: Vec<MarkedTargets<D>>,
/// Generators used to generate the witness.
generators: Vec<Box<dyn WitnessGenerator<F>>>,
pub generators: Vec<Box<dyn WitnessGenerator<F>>>,
constants_to_targets: HashMap<F, Target>,
targets_to_constants: HashMap<Target, F>,