mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-20 14:43:08 +00:00
u32 range check gate
This commit is contained in:
parent
ddf5ee5d1f
commit
6e9318c068
@ -404,7 +404,7 @@ mod tests {
|
||||
v.extend(equality_dummy_vals);
|
||||
v.extend(insert_here_vals);
|
||||
|
||||
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
|
||||
v.iter().map(|&x| x.into()).collect()
|
||||
}
|
||||
|
||||
let orig_vec = vec![FF::rand(); 3];
|
||||
|
||||
@ -171,9 +171,25 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
a: &NonNativeTarget<FF>,
|
||||
b: &NonNativeTarget<FF>,
|
||||
) -> NonNativeTarget<FF> {
|
||||
let result = self.mul_biguint(&a.value, &b.value);
|
||||
let prod = self.add_virtual_nonnative_target::<FF>();
|
||||
let modulus = self.constant_biguint(&FF::order());
|
||||
let overflow = self.add_virtual_biguint_target(a.value.num_limbs() + b.value.num_limbs() - modulus.num_limbs());
|
||||
|
||||
self.reduce(&result)
|
||||
self.add_simple_generator(NonNativeMultiplicationGenerator::<F, D, FF> {
|
||||
a: a.clone(),
|
||||
b: b.clone(),
|
||||
prod: prod.clone(),
|
||||
overflow: overflow.clone(),
|
||||
_phantom: PhantomData,
|
||||
});
|
||||
|
||||
let prod_expected = self.mul_biguint(&a.value, &b.value);
|
||||
|
||||
let mod_times_overflow = self.mul_biguint(&modulus, &overflow);
|
||||
let prod_actual = self.add_biguint(&prod.value, &mod_times_overflow);
|
||||
self.connect_biguint(&prod_expected, &prod_actual);
|
||||
|
||||
prod
|
||||
}
|
||||
|
||||
pub fn mul_many_nonnative<FF: Field>(
|
||||
@ -226,20 +242,6 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
inv
|
||||
}
|
||||
|
||||
pub fn div_rem_nonnative<FF: Field>(
|
||||
&mut self,
|
||||
x: &NonNativeTarget<FF>,
|
||||
y: &NonNativeTarget<FF>,
|
||||
) -> (NonNativeTarget<FF>, NonNativeTarget<FF>) {
|
||||
let x_biguint = self.nonnative_to_biguint(x);
|
||||
let y_biguint = self.nonnative_to_biguint(y);
|
||||
|
||||
let (div_biguint, rem_biguint) = self.div_rem_biguint(&x_biguint, &y_biguint);
|
||||
let div = self.biguint_to_nonnative(&div_biguint);
|
||||
let rem = self.biguint_to_nonnative(&rem_biguint);
|
||||
(div, rem)
|
||||
}
|
||||
|
||||
/// Returns `x % |FF|` as a `NonNativeTarget`.
|
||||
fn reduce<FF: Field>(&mut self, x: &BigUintTarget) -> NonNativeTarget<FF> {
|
||||
let modulus = FF::order();
|
||||
@ -252,8 +254,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
fn reduce_nonnative<FF: Field>(&mut self, x: &NonNativeTarget<FF>) -> NonNativeTarget<FF> {
|
||||
pub fn reduce_nonnative<FF: Field>(&mut self, x: &NonNativeTarget<FF>) -> NonNativeTarget<FF> {
|
||||
let x_biguint = self.nonnative_to_biguint(x);
|
||||
self.reduce(&x_biguint)
|
||||
}
|
||||
@ -416,6 +417,45 @@ impl<F: RichField + Extendable<D>, const D: usize, FF: Field> SimpleGenerator<F>
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct NonNativeMultiplicationGenerator<F: RichField + Extendable<D>, const D: usize, FF: Field> {
|
||||
a: NonNativeTarget<FF>,
|
||||
b: NonNativeTarget<FF>,
|
||||
prod: NonNativeTarget<FF>,
|
||||
overflow: BigUintTarget,
|
||||
_phantom: PhantomData<F>,
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize, FF: Field> SimpleGenerator<F>
|
||||
for NonNativeMultiplicationGenerator<F, D, FF>
|
||||
{
|
||||
fn dependencies(&self) -> Vec<Target> {
|
||||
self.a
|
||||
.value
|
||||
.limbs
|
||||
.iter()
|
||||
.cloned()
|
||||
.chain(self.b.value.limbs.clone())
|
||||
.map(|l| l.0)
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
||||
let a = witness.get_nonnative_target(self.a.clone());
|
||||
let b = witness.get_nonnative_target(self.b.clone());
|
||||
let a_biguint = a.to_biguint();
|
||||
let b_biguint = b.to_biguint();
|
||||
|
||||
let prod_biguint = a_biguint * b_biguint;
|
||||
|
||||
let modulus = FF::order();
|
||||
let (overflow_biguint, prod_reduced) = prod_biguint.div_rem(&modulus);
|
||||
|
||||
out_buffer.set_biguint_target(self.prod.value.clone(), prod_reduced);
|
||||
out_buffer.set_biguint_target(self.overflow.clone(), overflow_biguint);
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct NonNativeInverseGenerator<F: RichField + Extendable<D>, const D: usize, FF: Field> {
|
||||
x: NonNativeTarget<FF>,
|
||||
@ -566,7 +606,6 @@ mod tests {
|
||||
|
||||
let x = builder.constant_nonnative(x_ff);
|
||||
let y = builder.constant_nonnative(y_ff);
|
||||
println!("LIMBS LIMBS LIMBS {}", y.value.limbs.len());
|
||||
let product = builder.mul_nonnative(&x, &y);
|
||||
|
||||
let product_expected = builder.constant_nonnative(product_ff);
|
||||
|
||||
@ -248,7 +248,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for U32AddManyGate
|
||||
);
|
||||
g
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn num_wires(&self) -> usize {
|
||||
@ -426,7 +426,7 @@ mod tests {
|
||||
v0.iter()
|
||||
.chain(v1.iter())
|
||||
.map(|&x| x.into())
|
||||
.collect::<Vec<_>>()
|
||||
.collect()
|
||||
}
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
@ -131,7 +131,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for ArithmeticGate
|
||||
);
|
||||
g
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn num_wires(&self) -> usize {
|
||||
|
||||
@ -212,7 +212,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for U32ArithmeticG
|
||||
);
|
||||
g
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn num_wires(&self) -> usize {
|
||||
|
||||
@ -578,7 +578,7 @@ mod tests {
|
||||
v.append(&mut chunks_equal);
|
||||
v.append(&mut intermediate_values);
|
||||
|
||||
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
|
||||
v.iter().map(|&x| x.into()).collect()
|
||||
};
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
@ -443,7 +443,7 @@ mod tests {
|
||||
.take(gate.num_points() - 2)
|
||||
.flat_map(|ff| ff.0),
|
||||
);
|
||||
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
|
||||
v.iter().map(|&x| x.into()).collect()
|
||||
}
|
||||
|
||||
// Get a working row for LowDegreeInterpolationGate.
|
||||
|
||||
@ -11,7 +11,6 @@ pub mod binary_arithmetic;
|
||||
pub mod binary_subtraction;
|
||||
pub mod comparison;
|
||||
pub mod constant;
|
||||
// pub mod curve_double;
|
||||
pub mod exponentiation;
|
||||
pub mod gate;
|
||||
pub mod gate_tree;
|
||||
@ -24,6 +23,7 @@ pub mod poseidon;
|
||||
pub(crate) mod poseidon_mds;
|
||||
pub(crate) mod public_input;
|
||||
pub mod random_access;
|
||||
pub mod range_check_u32;
|
||||
pub mod reducing;
|
||||
pub mod reducing_extension;
|
||||
pub mod subtraction_u32;
|
||||
|
||||
@ -125,7 +125,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for MulExtensionGa
|
||||
);
|
||||
g
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn num_wires(&self) -> usize {
|
||||
|
||||
@ -209,7 +209,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGa
|
||||
);
|
||||
g
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
.collect()
|
||||
}
|
||||
|
||||
fn num_wires(&self) -> usize {
|
||||
|
||||
305
plonky2/src/gates/range_check_u32.rs
Normal file
305
plonky2/src/gates/range_check_u32.rs
Normal file
@ -0,0 +1,305 @@
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use crate::field::extension_field::target::ExtensionTarget;
|
||||
use crate::field::extension_field::Extendable;
|
||||
use crate::field::field_types::{Field, RichField};
|
||||
use crate::gates::gate::Gate;
|
||||
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
|
||||
use crate::iop::target::Target;
|
||||
use crate::iop::witness::{PartitionWitness, Witness};
|
||||
use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
use crate::plonk::plonk_common::{reduce_with_powers, reduce_with_powers_ext_recursive};
|
||||
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
|
||||
use crate::util::ceil_div_usize;
|
||||
|
||||
/// A gate which can decompose a number into base B little-endian limbs.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct U32RangeCheckGate<F: RichField + Extendable<D>, const D: usize> {
|
||||
pub num_input_limbs: usize,
|
||||
_phantom: PhantomData<F>,
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> U32RangeCheckGate<F, D> {
|
||||
pub fn new(num_input_limbs: usize) -> Self {
|
||||
Self {
|
||||
num_input_limbs,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
pub const AUX_LIMB_BITS: usize = 3;
|
||||
pub const BASE: usize = 1 << Self::AUX_LIMB_BITS;
|
||||
|
||||
fn aux_limbs_per_input_limb(&self) -> usize {
|
||||
ceil_div_usize(32, Self::AUX_LIMB_BITS)
|
||||
}
|
||||
pub fn wire_ith_input_limb(&self, i: usize) -> usize{
|
||||
debug_assert!(i < self.num_input_limbs);
|
||||
i
|
||||
}
|
||||
pub fn wire_ith_input_limb_jth_aux_limb(&self, i: usize, j: usize) -> usize {
|
||||
debug_assert!(i < self.num_input_limbs);
|
||||
debug_assert!(j < self.aux_limbs_per_input_limb());
|
||||
self.num_input_limbs + self.aux_limbs_per_input_limb() * i + j
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for U32RangeCheckGate<F, D>{
|
||||
fn id(&self) -> String {
|
||||
format!("{:?}", self)
|
||||
}
|
||||
|
||||
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
|
||||
let mut constraints = Vec::with_capacity(self.num_constraints());
|
||||
|
||||
let base = F::Extension::from_canonical_usize(Self::BASE);
|
||||
for i in 0..self.num_input_limbs {
|
||||
let input_limb = vars.local_wires[self.wire_ith_input_limb(i)];
|
||||
let aux_limbs: Vec<_> = (0..self.aux_limbs_per_input_limb()).map(|j| vars.local_wires[self.wire_ith_input_limb_jth_aux_limb(i, j)]).collect();
|
||||
let computed_sum = reduce_with_powers(&aux_limbs, base);
|
||||
|
||||
constraints.push(computed_sum - input_limb);
|
||||
for aux_limb in aux_limbs {
|
||||
constraints.push(
|
||||
(0..Self::BASE)
|
||||
.map(|i| aux_limb - F::Extension::from_canonical_usize(i))
|
||||
.product(),
|
||||
);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
constraints
|
||||
}
|
||||
|
||||
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
|
||||
let mut constraints = Vec::with_capacity(self.num_constraints());
|
||||
|
||||
let base = F::from_canonical_usize(Self::BASE);
|
||||
for i in 0..self.num_input_limbs {
|
||||
let input_limb = vars.local_wires[self.wire_ith_input_limb(i)];
|
||||
let aux_limbs: Vec<_> = (0..self.aux_limbs_per_input_limb()).map(|j| vars.local_wires[self.wire_ith_input_limb_jth_aux_limb(i, j)]).collect();
|
||||
let computed_sum = reduce_with_powers(&aux_limbs, base);
|
||||
|
||||
constraints.push(computed_sum - input_limb);
|
||||
for aux_limb in aux_limbs {
|
||||
constraints.push(
|
||||
(0..Self::BASE)
|
||||
.map(|i| aux_limb - F::from_canonical_usize(i))
|
||||
.product(),
|
||||
);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
constraints
|
||||
}
|
||||
|
||||
fn eval_unfiltered_recursively(
|
||||
&self,
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
vars: EvaluationTargets<D>,
|
||||
) -> Vec<ExtensionTarget<D>> {
|
||||
let mut constraints = Vec::with_capacity(self.num_constraints());
|
||||
|
||||
let base = builder.constant(F::from_canonical_usize(Self::BASE));
|
||||
for i in 0..self.num_input_limbs {
|
||||
let input_limb = vars.local_wires[self.wire_ith_input_limb(i)];
|
||||
let aux_limbs: Vec<_> = (0..self.aux_limbs_per_input_limb()).map(|j| vars.local_wires[self.wire_ith_input_limb_jth_aux_limb(i, j)]).collect();
|
||||
let computed_sum = reduce_with_powers_ext_recursive(builder, &aux_limbs, base);
|
||||
|
||||
constraints.push(builder.sub_extension(computed_sum, input_limb));
|
||||
for aux_limb in aux_limbs {
|
||||
constraints.push({
|
||||
let mut acc = builder.one_extension();
|
||||
(0..Self::BASE).for_each(|i| {
|
||||
// We update our accumulator as:
|
||||
// acc' = acc (x - i)
|
||||
// = acc x + (-i) acc
|
||||
// Since -i is constant, we can do this in one arithmetic_extension call.
|
||||
let neg_i = -F::from_canonical_usize(i);
|
||||
acc = builder.arithmetic_extension(F::ONE, neg_i, acc, aux_limb, acc)
|
||||
});
|
||||
acc
|
||||
});
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
constraints
|
||||
}
|
||||
|
||||
fn generators(
|
||||
&self,
|
||||
gate_index: usize,
|
||||
_local_constants: &[F],
|
||||
) -> Vec<Box<dyn WitnessGenerator<F>>> {
|
||||
let gen = U32RangeCheckGenerator {
|
||||
gate: self.clone(),
|
||||
gate_index,
|
||||
};
|
||||
vec![Box::new(gen.adapter())]
|
||||
}
|
||||
|
||||
fn num_wires(&self) -> usize {
|
||||
self.num_input_limbs * (1 + self.aux_limbs_per_input_limb())
|
||||
}
|
||||
|
||||
fn num_constants(&self) -> usize {
|
||||
0
|
||||
}
|
||||
|
||||
// Bounded by the range-check (x-0)*(x-1)*...*(x-BASE+1).
|
||||
fn degree(&self) -> usize {
|
||||
Self::BASE
|
||||
}
|
||||
|
||||
// 1 for checking the each sum of aux limbs, plus a range check for each aux limb.
|
||||
fn num_constraints(&self) -> usize {
|
||||
self.num_input_limbs * (1 + self.aux_limbs_per_input_limb())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct U32RangeCheckGenerator<F: RichField + Extendable<D>, const D: usize> {
|
||||
gate: U32RangeCheckGate<F, D>,
|
||||
gate_index: usize,
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F> for U32RangeCheckGenerator<F, D> {
|
||||
fn dependencies(&self) -> Vec<Target> {
|
||||
let num_input_limbs = self.gate.num_input_limbs;
|
||||
(0..num_input_limbs).map(|i| Target::wire(self.gate_index, self.gate.wire_ith_input_limb(i))).collect()
|
||||
}
|
||||
|
||||
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
||||
let num_input_limbs = self.gate.num_input_limbs;
|
||||
for i in 0..num_input_limbs {
|
||||
let sum_value = witness
|
||||
.get_target(Target::wire(self.gate_index, self.gate.wire_ith_input_limb(i)))
|
||||
.to_canonical_u64() as u32;
|
||||
|
||||
let base = U32RangeCheckGate::<F, D>::BASE as u32;
|
||||
let limbs = (0..self.gate.aux_limbs_per_input_limb())
|
||||
.map(|j| Target::wire(self.gate_index, self.gate.wire_ith_input_limb_jth_aux_limb(i, j)));
|
||||
let limbs_value = (0..self.gate.aux_limbs_per_input_limb())
|
||||
.scan(sum_value, |acc, _| {
|
||||
let tmp = *acc % base;
|
||||
*acc /= base;
|
||||
Some(F::from_canonical_u32(tmp))
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
for (b, b_value) in limbs.zip(limbs_value) {
|
||||
out_buffer.set_target(b, b_value);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use anyhow::Result;
|
||||
use itertools::unfold;
|
||||
use rand::Rng;
|
||||
|
||||
use crate::field::extension_field::quartic::QuarticExtension;
|
||||
use crate::field::field_types::Field;
|
||||
use crate::field::goldilocks_field::GoldilocksField;
|
||||
use crate::gates::gate::Gate;
|
||||
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
|
||||
use crate::gates::range_check_u32::U32RangeCheckGate;
|
||||
use crate::hash::hash_types::HashOut;
|
||||
use crate::plonk::vars::EvaluationVars;
|
||||
use crate::util::ceil_div_usize;
|
||||
|
||||
#[test]
|
||||
fn low_degree() {
|
||||
test_low_degree::<GoldilocksField, _, 4>(U32RangeCheckGate::new(8))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn eval_fns() -> Result<()> {
|
||||
test_eval_fns::<GoldilocksField, _, 4>(U32RangeCheckGate::new(8))
|
||||
}
|
||||
|
||||
fn test_gate_constraint(input_limbs: Vec<u64>) {
|
||||
type F = GoldilocksField;
|
||||
type FF = QuarticExtension<GoldilocksField>;
|
||||
const D: usize = 4;
|
||||
const AUX_LIMB_BITS: usize = 3;
|
||||
const BASE: usize = 1 << AUX_LIMB_BITS;
|
||||
const AUX_LIMBS_PER_INPUT_LIMB: usize = ceil_div_usize(32, AUX_LIMB_BITS);
|
||||
|
||||
fn get_wires(input_limbs: Vec<u64>) -> Vec<FF> {
|
||||
let num_input_limbs = input_limbs.len();
|
||||
let mut v = Vec::new();
|
||||
|
||||
for i in 0..num_input_limbs {
|
||||
let input_limb = input_limbs[i];
|
||||
|
||||
let split_to_limbs = |mut val, num| {
|
||||
unfold((), move |_| {
|
||||
let ret = val % (BASE as u64);
|
||||
val /= BASE as u64;
|
||||
Some(ret)
|
||||
})
|
||||
.take(num)
|
||||
.map(F::from_canonical_u64)
|
||||
};
|
||||
|
||||
let mut aux_limbs: Vec<_> =
|
||||
split_to_limbs(input_limb, AUX_LIMBS_PER_INPUT_LIMB).collect();
|
||||
|
||||
v.append(&mut aux_limbs);
|
||||
}
|
||||
|
||||
input_limbs.iter()
|
||||
.cloned()
|
||||
.map(F::from_canonical_u64)
|
||||
.chain(v.iter().cloned())
|
||||
.map(|x| x.into())
|
||||
.collect()
|
||||
}
|
||||
|
||||
let gate = U32RangeCheckGate::<F, D> {
|
||||
num_input_limbs: 8,
|
||||
_phantom: PhantomData,
|
||||
};
|
||||
|
||||
let vars = EvaluationVars {
|
||||
local_constants: &[],
|
||||
local_wires: &get_wires(input_limbs),
|
||||
public_inputs_hash: &HashOut::rand(),
|
||||
};
|
||||
|
||||
assert!(
|
||||
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
|
||||
"Gate constraints are not satisfied."
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_gate_constraint_good() {
|
||||
let mut rng = rand::thread_rng();
|
||||
let input_limbs: Vec<_> = (0..8)
|
||||
.map(|_| rng.gen::<u32>() as u64)
|
||||
.collect();
|
||||
|
||||
test_gate_constraint(input_limbs);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn test_gate_constraint_bad() {
|
||||
let mut rng = rand::thread_rng();
|
||||
let input_limbs: Vec<_> = (0..8)
|
||||
.map(|_| rng.gen())
|
||||
.collect();
|
||||
|
||||
test_gate_constraint(input_limbs);
|
||||
}
|
||||
}
|
||||
@ -419,7 +419,7 @@ mod tests {
|
||||
v0.iter()
|
||||
.chain(v1.iter())
|
||||
.map(|&x| x.into())
|
||||
.collect::<Vec<_>>()
|
||||
.collect()
|
||||
}
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user