Merge pull request #76 from mir-protocol/add_routed_wires

Increase number of routed wires to 28 and add a new `ArithmeticExtensionGate`
This commit is contained in:
wborgeaud 2021-06-30 08:32:25 +02:00 committed by GitHub
commit 69fff573fe
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 813 additions and 641 deletions

View File

@ -63,6 +63,10 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
pub fn num_gates(&self) -> usize {
self.gate_instances.len()
}
pub fn add_public_input(&mut self) -> Target {
let index = self.public_input_index;
self.public_input_index += 1;
@ -97,6 +101,11 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Adds a gate to the circuit, and returns its index.
pub fn add_gate(&mut self, gate_type: GateRef<F, D>, constants: Vec<F>) -> usize {
assert_eq!(
gate_type.0.num_constants(),
constants.len(),
"Number of constants doesn't match."
);
// If we haven't seen a gate of this type before, check that it's compatible with our
// circuit configuration, then register it.
if !self.gates.contains(&gate_type) {

View File

@ -54,7 +54,7 @@ impl CircuitConfig {
pub(crate) fn large_config() -> Self {
Self {
num_wires: 134,
num_routed_wires: 12,
num_routed_wires: 28,
security_bits: 128,
rate_bits: 3,
num_challenges: 3,

View File

@ -5,7 +5,6 @@ use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::algebra::ExtensionAlgebra;
use crate::field::extension_field::{Extendable, FieldExtension, OEF};
use crate::field::field::Field;
use crate::gates::mul_extension::MulExtensionGate;
use crate::target::Target;
/// `Target`s representing an element of an extension field.
@ -110,160 +109,6 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.constant_ext_algebra(ExtensionAlgebra::ZERO)
}
pub fn add_extension(
&mut self,
mut a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
for i in 0..D {
a.0[i] = self.add(a.0[i], b.0[i]);
}
a
}
pub fn add_ext_algebra(
&mut self,
mut a: ExtensionAlgebraTarget<D>,
b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
for i in 0..D {
a.0[i] = self.add_extension(a.0[i], b.0[i]);
}
a
}
pub fn add_many_extension(&mut self, terms: &[ExtensionTarget<D>]) -> ExtensionTarget<D> {
let mut sum = self.zero_extension();
for term in terms {
sum = self.add_extension(sum, *term);
}
sum
}
/// TODO: Change this to using an `arithmetic_extension` function once `MulExtensionGate` supports addend.
pub fn sub_extension(
&mut self,
mut a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
for i in 0..D {
a.0[i] = self.sub(a.0[i], b.0[i]);
}
a
}
pub fn sub_ext_algebra(
&mut self,
mut a: ExtensionAlgebraTarget<D>,
b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
for i in 0..D {
a.0[i] = self.sub_extension(a.0[i], b.0[i]);
}
a
}
pub fn mul_extension_with_const(
&mut self,
const_0: F,
multiplicand_0: ExtensionTarget<D>,
multiplicand_1: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let gate = self.add_gate(MulExtensionGate::new(), vec![const_0]);
let wire_multiplicand_0 =
ExtensionTarget::from_range(gate, MulExtensionGate::<D>::wires_multiplicand_0());
let wire_multiplicand_1 =
ExtensionTarget::from_range(gate, MulExtensionGate::<D>::wires_multiplicand_1());
let wire_output = ExtensionTarget::from_range(gate, MulExtensionGate::<D>::wires_output());
self.route_extension(multiplicand_0, wire_multiplicand_0);
self.route_extension(multiplicand_1, wire_multiplicand_1);
wire_output
}
pub fn mul_extension(
&mut self,
multiplicand_0: ExtensionTarget<D>,
multiplicand_1: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
self.mul_extension_with_const(F::ONE, multiplicand_0, multiplicand_1)
}
pub fn mul_ext_algebra(
&mut self,
a: ExtensionAlgebraTarget<D>,
b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
let mut res = [self.zero_extension(); D];
let w = self.constant(F::Extension::W);
for i in 0..D {
for j in 0..D {
let ai_bi = self.mul_extension(a.0[i], b.0[j]);
res[(i + j) % D] = if i + j < D {
self.add_extension(ai_bi, res[(i + j) % D])
} else {
let w_ai_bi = self.scalar_mul_ext(w, ai_bi);
self.add_extension(w_ai_bi, res[(i + j) % D])
}
}
}
ExtensionAlgebraTarget(res)
}
pub fn mul_many_extension(&mut self, terms: &[ExtensionTarget<D>]) -> ExtensionTarget<D> {
let mut product = self.one_extension();
for term in terms {
product = self.mul_extension(product, *term);
}
product
}
/// Like `mul_add`, but for `ExtensionTarget`s. Note that, unlike `mul_add`, this has no
/// performance benefit over separate muls and adds.
/// TODO: Change this to using an `arithmetic_extension` function once `MulExtensionGate` supports addend.
pub fn mul_add_extension(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let product = self.mul_extension(a, b);
self.add_extension(product, c)
}
/// Like `mul_sub`, but for `ExtensionTarget`s. Note that, unlike `mul_sub`, this has no
/// performance benefit over separate muls and subs.
/// TODO: Change this to using an `arithmetic_extension` function once `MulExtensionGate` supports addend.
pub fn scalar_mul_sub_extension(
&mut self,
a: Target,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let product = self.scalar_mul_ext(a, b);
self.sub_extension(product, c)
}
/// Returns `a * b`, where `b` is in the extension field and `a` is in the base field.
pub fn scalar_mul_ext(&mut self, a: Target, b: ExtensionTarget<D>) -> ExtensionTarget<D> {
let a_ext = self.convert_to_ext(a);
self.mul_extension(a_ext, b)
}
/// Returns `a * b`, where `b` is in the extension of the extension field, and `a` is in the
/// extension field.
pub fn scalar_mul_ext_algebra(
&mut self,
a: ExtensionTarget<D>,
mut b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
for i in 0..D {
b.0[i] = self.mul_extension(a, b.0[i]);
}
b
}
pub fn convert_to_ext(&mut self, t: Target) -> ExtensionTarget<D> {
let zero = self.zero();
let mut arr = [zero; D];

View File

@ -1,15 +1,7 @@
use std::convert::TryInto;
use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::field::Field;
use crate::gates::arithmetic::ArithmeticGate;
use crate::gates::mul_extension::MulExtensionGate;
use crate::generator::SimpleGenerator;
use crate::field::extension_field::Extendable;
use crate::target::Target;
use crate::wire::Wire;
use crate::witness::PartialWitness;
use crate::util::bits_u64;
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Computes `-x`.
@ -43,30 +35,18 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
{
return result;
}
let multiplicand_0_ext = self.convert_to_ext(multiplicand_0);
let multiplicand_1_ext = self.convert_to_ext(multiplicand_1);
let addend_ext = self.convert_to_ext(addend);
let gate = self.add_gate(ArithmeticGate::new(), vec![const_0, const_1]);
let wire_multiplicand_0 = Wire {
gate,
input: ArithmeticGate::WIRE_MULTIPLICAND_0,
};
let wire_multiplicand_1 = Wire {
gate,
input: ArithmeticGate::WIRE_MULTIPLICAND_1,
};
let wire_addend = Wire {
gate,
input: ArithmeticGate::WIRE_ADDEND,
};
let wire_output = Wire {
gate,
input: ArithmeticGate::WIRE_OUTPUT,
};
self.route(multiplicand_0, Target::Wire(wire_multiplicand_0));
self.route(multiplicand_1, Target::Wire(wire_multiplicand_1));
self.route(addend, Target::Wire(wire_addend));
Target::Wire(wire_output)
self.arithmetic_extension(
const_0,
const_1,
multiplicand_0_ext,
multiplicand_1_ext,
addend_ext,
)
.0[0]
}
/// Checks for special cases where the value of
@ -144,6 +124,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.arithmetic(F::ONE, x, one, F::ONE, y)
}
// TODO: Can be made `2*D` times more efficient by using all wires of an `ArithmeticExtensionGate`.
pub fn add_many(&mut self, terms: &[Target]) -> Target {
let mut sum = self.zero();
for term in terms {
@ -174,21 +155,31 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
// TODO: Optimize this, maybe with a new gate.
// TODO: Test
/// Exponentiate `base` to the power of `exponent`, where `exponent < 2^num_bits`.
pub fn exp(&mut self, base: Target, exponent: Target, num_bits: usize) -> Target {
let mut current = base;
let one = self.one();
let mut product = one;
let one_ext = self.one_extension();
let mut product = self.one();
let exponent_bits = self.split_le(exponent, num_bits);
for bit in exponent_bits.into_iter() {
product = self.mul_many(&[bit, current, product]);
let current_ext = self.convert_to_ext(current);
let multiplicand = self.select(bit, current_ext, one_ext);
product = self.mul(product, multiplicand.0[0]);
current = self.mul(current, current);
}
product
}
/// Exponentiate `base` to the power of a known `exponent`.
// TODO: Test
pub fn exp_u64(&mut self, base: Target, exponent: u64) -> Target {
let base_ext = self.convert_to_ext(base);
self.exp_u64_extension(base_ext, exponent).0[0]
}
/// Computes `q = x / y` by witnessing `q` and requiring that `q * y = x`. This can be unsafe in
/// some cases, as it allows `0 / 0 = <anything>`.
pub fn div_unsafe(&mut self, x: Target, y: Target) -> Target {
@ -207,224 +198,8 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
return self.constant(x_const / y_const);
}
// Add an `ArithmeticGate` to compute `q * y`.
let gate = self.add_gate(ArithmeticGate::new(), vec![F::ONE, F::ZERO]);
let wire_multiplicand_0 = Wire {
gate,
input: ArithmeticGate::WIRE_MULTIPLICAND_0,
};
let wire_multiplicand_1 = Wire {
gate,
input: ArithmeticGate::WIRE_MULTIPLICAND_1,
};
let wire_addend = Wire {
gate,
input: ArithmeticGate::WIRE_ADDEND,
};
let wire_output = Wire {
gate,
input: ArithmeticGate::WIRE_OUTPUT,
};
let q = Target::Wire(wire_multiplicand_0);
self.add_generator(QuotientGenerator {
numerator: x,
denominator: y,
quotient: q,
});
self.route(y, Target::Wire(wire_multiplicand_1));
// This can be anything, since the whole second term has a weight of zero.
self.route(zero, Target::Wire(wire_addend));
let q_y = Target::Wire(wire_output);
self.assert_equal(q_y, x);
q
}
/// Computes `q = x / y` by witnessing `q` and requiring that `q * y = x`. This can be unsafe in
/// some cases, as it allows `0 / 0 = <anything>`.
pub fn div_unsafe_extension(
&mut self,
x: ExtensionTarget<D>,
y: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
// Add an `ArithmeticGate` to compute `q * y`.
let gate = self.add_gate(MulExtensionGate::new(), vec![F::ONE]);
let multiplicand_0 =
Target::wires_from_range(gate, MulExtensionGate::<D>::wires_multiplicand_0());
let multiplicand_0 = ExtensionTarget(multiplicand_0.try_into().unwrap());
let multiplicand_1 =
Target::wires_from_range(gate, MulExtensionGate::<D>::wires_multiplicand_1());
let multiplicand_1 = ExtensionTarget(multiplicand_1.try_into().unwrap());
let output = Target::wires_from_range(gate, MulExtensionGate::<D>::wires_output());
let output = ExtensionTarget(output.try_into().unwrap());
self.add_generator(QuotientGeneratorExtension {
numerator: x,
denominator: y,
quotient: multiplicand_0,
});
self.route_extension(y, multiplicand_1);
self.assert_equal_extension(output, x);
multiplicand_0
}
}
struct QuotientGenerator {
numerator: Target,
denominator: Target,
quotient: Target,
}
impl<F: Field> SimpleGenerator<F> for QuotientGenerator {
fn dependencies(&self) -> Vec<Target> {
vec![self.numerator, self.denominator]
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
let num = witness.get_target(self.numerator);
let den = witness.get_target(self.denominator);
PartialWitness::singleton_target(self.quotient, num / den)
}
}
struct QuotientGeneratorExtension<const D: usize> {
numerator: ExtensionTarget<D>,
denominator: ExtensionTarget<D>,
quotient: ExtensionTarget<D>,
}
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for QuotientGeneratorExtension<D> {
fn dependencies(&self) -> Vec<Target> {
let mut deps = self.numerator.to_target_array().to_vec();
deps.extend(&self.denominator.to_target_array());
deps
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
let num = witness.get_extension_target(self.numerator);
let dem = witness.get_extension_target(self.denominator);
let quotient = num / dem;
let mut pw = PartialWitness::new();
for i in 0..D {
pw.set_target(
self.quotient.to_target_array()[i],
quotient.to_basefield_array()[i],
);
}
pw
}
}
/// An iterator over the powers of a certain base element `b`: `b^0, b^1, b^2, ...`.
#[derive(Clone)]
pub struct PowersTarget<const D: usize> {
base: ExtensionTarget<D>,
current: ExtensionTarget<D>,
}
impl<const D: usize> PowersTarget<D> {
pub fn next<F: Extendable<D>>(
&mut self,
builder: &mut CircuitBuilder<F, D>,
) -> ExtensionTarget<D> {
let result = self.current;
self.current = builder.mul_extension(self.base, self.current);
result
}
pub fn repeated_frobenius<F: Extendable<D>>(
self,
k: usize,
builder: &mut CircuitBuilder<F, D>,
) -> Self {
let Self { base, current } = self;
Self {
base: base.repeated_frobenius(k, builder),
current: current.repeated_frobenius(k, builder),
}
}
}
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub fn powers(&mut self, base: ExtensionTarget<D>) -> PowersTarget<D> {
PowersTarget {
base,
current: self.one_extension(),
}
}
}
#[cfg(test)]
mod tests {
use crate::circuit_builder::CircuitBuilder;
use crate::circuit_data::CircuitConfig;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::field::Field;
use crate::fri::FriConfig;
use crate::gates::arithmetic::ArithmeticGate;
use crate::target::Target;
use crate::witness::PartialWitness;
#[test]
fn test_div() {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let x = F::rand();
let y = F::rand();
let mut pw = PartialWitness::new();
/// Computes x*x + 0*y = x^2.
let square_gate = builder.add_gate(ArithmeticGate::new(), vec![F::ONE, F::ZERO]);
pw.set_target(Target::wire(square_gate, 0), x);
pw.set_target(Target::wire(square_gate, 1), x);
let x2t = Target::wire(square_gate, ArithmeticGate::WIRE_OUTPUT);
let yt = Target::wire(square_gate, ArithmeticGate::WIRE_ADDEND);
pw.set_target(yt, y);
// Constant for x*x/y.
let zt = builder.constant(x * x / y);
// Computed division for x*x/y using the division gadget.
let comp_zt = builder.div_unsafe(x2t, yt);
builder.assert_equal(zt, comp_zt);
let data = builder.build();
let proof = data.prove(pw);
}
#[test]
fn test_div_extension() {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let x = FF::rand();
let y = FF::rand();
let z = x / y;
let xt = builder.constant_extension(x);
let yt = builder.constant_extension(y);
let zt = builder.constant_extension(z);
let comp_zt = builder.div_unsafe_extension(xt, yt);
builder.assert_equal_extension(zt, comp_zt);
let data = builder.build();
let proof = data.prove(PartialWitness::new());
let x_ext = self.convert_to_ext(x);
let y_ext = self.convert_to_ext(y);
self.div_unsafe_extension(x_ext, y_ext).0[0]
}
}

View File

@ -0,0 +1,465 @@
use std::convert::TryInto;
use std::ops::Range;
use itertools::Itertools;
use num::Integer;
use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::target::{ExtensionAlgebraTarget, ExtensionTarget};
use crate::field::extension_field::{Extendable, FieldExtension, OEF};
use crate::field::field::Field;
use crate::gates::arithmetic::ArithmeticExtensionGate;
use crate::generator::SimpleGenerator;
use crate::target::Target;
use crate::util::bits_u64;
use crate::witness::PartialWitness;
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub fn double_arithmetic_extension(
&mut self,
const_0: F,
const_1: F,
fixed_multiplicand: ExtensionTarget<D>,
multiplicand_0: ExtensionTarget<D>,
addend_0: ExtensionTarget<D>,
multiplicand_1: ExtensionTarget<D>,
addend_1: ExtensionTarget<D>,
) -> (ExtensionTarget<D>, ExtensionTarget<D>) {
let gate = self.add_gate(ArithmeticExtensionGate::new(), vec![const_0, const_1]);
let wire_fixed_multiplicand = ExtensionTarget::from_range(
gate,
ArithmeticExtensionGate::<D>::wires_fixed_multiplicand(),
);
let wire_multiplicand_0 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_multiplicand_0());
let wire_addend_0 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_addend_0());
let wire_multiplicand_1 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_multiplicand_1());
let wire_addend_1 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_addend_1());
let wire_output_0 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_output_0());
let wire_output_1 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_output_1());
self.route_extension(fixed_multiplicand, wire_fixed_multiplicand);
self.route_extension(multiplicand_0, wire_multiplicand_0);
self.route_extension(addend_0, wire_addend_0);
self.route_extension(multiplicand_1, wire_multiplicand_1);
self.route_extension(addend_1, wire_addend_1);
(wire_output_0, wire_output_1)
}
pub fn arithmetic_extension(
&mut self,
const_0: F,
const_1: F,
multiplicand_0: ExtensionTarget<D>,
multiplicand_1: ExtensionTarget<D>,
addend: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let zero = self.zero_extension();
self.double_arithmetic_extension(
const_0,
const_1,
multiplicand_0,
multiplicand_1,
addend,
zero,
zero,
)
.0
}
pub fn add_extension(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let one = self.one_extension();
self.arithmetic_extension(F::ONE, F::ONE, one, a, b)
}
pub fn add_two_extension(
&mut self,
a0: ExtensionTarget<D>,
b0: ExtensionTarget<D>,
a1: ExtensionTarget<D>,
b1: ExtensionTarget<D>,
) -> (ExtensionTarget<D>, ExtensionTarget<D>) {
let one = self.one_extension();
self.double_arithmetic_extension(F::ONE, F::ONE, one, a0, b0, a1, b1)
}
pub fn add_ext_algebra(
&mut self,
a: ExtensionAlgebraTarget<D>,
b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
// We run two additions in parallel. So `[a0,a1,a2,a3] + [b0,b1,b2,b3]` is computed with two
// `add_two_extension`, first `[a0,a1]+[b0,b1]` then `[a2,a3]+[b2,b3]`.
let mut res = Vec::with_capacity(D);
// We need some extra logic if D is odd.
let d_even = D & (D ^ 1); // = 2 * (D/2)
for mut chunk in &(0..d_even).chunks(2) {
let i = chunk.next().unwrap();
let j = chunk.next().unwrap();
let (o0, o1) = self.add_two_extension(a.0[i], b.0[i], a.0[j], b.0[j]);
res.extend([o0, o1]);
}
if D.is_odd() {
res.push(self.add_extension(a.0[D - 1], b.0[D - 1]));
}
ExtensionAlgebraTarget(res.try_into().unwrap())
}
pub fn add_many_extension(&mut self, terms: &[ExtensionTarget<D>]) -> ExtensionTarget<D> {
let zero = self.zero_extension();
let mut terms = terms.to_vec();
if terms.len().is_odd() {
terms.push(zero);
}
// We maintain two accumulators, one for the sum of even elements, and one for odd elements.
let mut acc0 = zero;
let mut acc1 = zero;
for chunk in terms.chunks_exact(2) {
(acc0, acc1) = self.add_two_extension(acc0, chunk[0], acc1, chunk[1]);
}
// We sum both accumulators to get the final result.
self.add_extension(acc0, acc1)
}
pub fn sub_extension(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let one = self.one_extension();
self.arithmetic_extension(F::ONE, F::NEG_ONE, one, a, b)
}
pub fn sub_two_extension(
&mut self,
a0: ExtensionTarget<D>,
b0: ExtensionTarget<D>,
a1: ExtensionTarget<D>,
b1: ExtensionTarget<D>,
) -> (ExtensionTarget<D>, ExtensionTarget<D>) {
let one = self.one_extension();
self.double_arithmetic_extension(F::ONE, F::NEG_ONE, one, a0, b0, a1, b1)
}
pub fn sub_ext_algebra(
&mut self,
a: ExtensionAlgebraTarget<D>,
b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
// See `add_ext_algebra`.
let mut res = Vec::with_capacity(D);
let d_even = D & (D ^ 1); // = 2 * (D/2)
for mut chunk in &(0..d_even).chunks(2) {
let i = chunk.next().unwrap();
let j = chunk.next().unwrap();
let (o0, o1) = self.sub_two_extension(a.0[i], b.0[i], a.0[j], b.0[j]);
res.extend([o0, o1]);
}
if D.is_odd() {
res.push(self.sub_extension(a.0[D - 1], b.0[D - 1]));
}
ExtensionAlgebraTarget(res.try_into().unwrap())
}
pub fn mul_extension_with_const(
&mut self,
const_0: F,
multiplicand_0: ExtensionTarget<D>,
multiplicand_1: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let zero = self.zero_extension();
self.double_arithmetic_extension(
const_0,
F::ZERO,
multiplicand_0,
multiplicand_1,
zero,
zero,
zero,
)
.0
}
pub fn mul_extension(
&mut self,
multiplicand_0: ExtensionTarget<D>,
multiplicand_1: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
self.mul_extension_with_const(F::ONE, multiplicand_0, multiplicand_1)
}
/// Computes `x^2`.
pub fn square_extension(&mut self, x: ExtensionTarget<D>) -> ExtensionTarget<D> {
self.mul_extension(x, x)
}
pub fn mul_ext_algebra(
&mut self,
a: ExtensionAlgebraTarget<D>,
b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
let mut res = [self.zero_extension(); D];
let w = self.constant(F::Extension::W);
for i in 0..D {
for j in 0..D {
res[(i + j) % D] = if i + j < D {
self.mul_add_extension(a.0[i], b.0[j], res[(i + j) % D])
} else {
let ai_bi = self.mul_extension(a.0[i], b.0[j]);
self.scalar_mul_add_extension(w, ai_bi, res[(i + j) % D])
}
}
}
ExtensionAlgebraTarget(res)
}
pub fn mul_many_extension(&mut self, terms: &[ExtensionTarget<D>]) -> ExtensionTarget<D> {
let mut product = self.one_extension();
for term in terms {
product = self.mul_extension(product, *term);
}
product
}
/// Like `mul_add`, but for `ExtensionTarget`s.
pub fn mul_add_extension(
&mut self,
a: ExtensionTarget<D>,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
self.arithmetic_extension(F::ONE, F::ONE, a, b, c)
}
/// Like `mul_add`, but for `ExtensionTarget`s.
pub fn scalar_mul_add_extension(
&mut self,
a: Target,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let a_ext = self.convert_to_ext(a);
self.arithmetic_extension(F::ONE, F::ONE, a_ext, b, c)
}
/// Like `mul_sub`, but for `ExtensionTarget`s.
pub fn scalar_mul_sub_extension(
&mut self,
a: Target,
b: ExtensionTarget<D>,
c: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
let a_ext = self.convert_to_ext(a);
self.arithmetic_extension(F::ONE, F::NEG_ONE, a_ext, b, c)
}
/// Returns `a * b`, where `b` is in the extension field and `a` is in the base field.
pub fn scalar_mul_ext(&mut self, a: Target, b: ExtensionTarget<D>) -> ExtensionTarget<D> {
let a_ext = self.convert_to_ext(a);
self.mul_extension(a_ext, b)
}
/// Returns `a * b`, where `b` is in the extension of the extension field, and `a` is in the
/// extension field.
pub fn scalar_mul_ext_algebra(
&mut self,
a: ExtensionTarget<D>,
mut b: ExtensionAlgebraTarget<D>,
) -> ExtensionAlgebraTarget<D> {
for i in 0..D {
b.0[i] = self.mul_extension(a, b.0[i]);
}
b
}
/// Exponentiate `base` to the power of a known `exponent`.
// TODO: Test
pub fn exp_u64_extension(
&mut self,
base: ExtensionTarget<D>,
exponent: u64,
) -> ExtensionTarget<D> {
let mut current = base;
let mut product = self.one_extension();
for j in 0..bits_u64(exponent as u64) {
if (exponent >> j & 1) != 0 {
product = self.mul_extension(product, current);
}
current = self.square_extension(current);
}
product
}
/// Computes `q = x / y` by witnessing `q` and requiring that `q * y = x`. This can be unsafe in
/// some cases, as it allows `0 / 0 = <anything>`.
pub fn div_unsafe_extension(
&mut self,
x: ExtensionTarget<D>,
y: ExtensionTarget<D>,
) -> ExtensionTarget<D> {
// Add an `ArithmeticExtensionGate` to compute `q * y`.
let gate = self.add_gate(ArithmeticExtensionGate::new(), vec![F::ONE, F::ZERO]);
let multiplicand_0 = ExtensionTarget::from_range(
gate,
ArithmeticExtensionGate::<D>::wires_fixed_multiplicand(),
);
let multiplicand_1 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_multiplicand_0());
let output =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_output_0());
self.add_generator(QuotientGeneratorExtension {
numerator: x,
denominator: y,
quotient: multiplicand_0,
});
// We need to zero out the other wires for the `ArithmeticExtensionGenerator` to hit.
self.add_generator(ZeroOutGenerator {
gate_index: gate,
ranges: vec![
ArithmeticExtensionGate::<D>::wires_addend_0(),
ArithmeticExtensionGate::<D>::wires_multiplicand_1(),
ArithmeticExtensionGate::<D>::wires_addend_1(),
],
});
self.route_extension(y, multiplicand_1);
self.assert_equal_extension(output, x);
multiplicand_0
}
}
/// Generator used to zero out wires at a given gate index and ranges.
pub struct ZeroOutGenerator {
gate_index: usize,
ranges: Vec<Range<usize>>,
}
impl<F: Field> SimpleGenerator<F> for ZeroOutGenerator {
fn dependencies(&self) -> Vec<Target> {
Vec::new()
}
fn run_once(&self, _witness: &PartialWitness<F>) -> PartialWitness<F> {
let mut pw = PartialWitness::new();
for t in self
.ranges
.iter()
.flat_map(|r| Target::wires_from_range(self.gate_index, r.clone()))
{
pw.set_target(t, F::ZERO);
}
pw
}
}
struct QuotientGeneratorExtension<const D: usize> {
numerator: ExtensionTarget<D>,
denominator: ExtensionTarget<D>,
quotient: ExtensionTarget<D>,
}
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for QuotientGeneratorExtension<D> {
fn dependencies(&self) -> Vec<Target> {
let mut deps = self.numerator.to_target_array().to_vec();
deps.extend(&self.denominator.to_target_array());
deps
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
let num = witness.get_extension_target(self.numerator);
let dem = witness.get_extension_target(self.denominator);
let quotient = num / dem;
let mut pw = PartialWitness::new();
pw.set_extension_target(self.quotient, quotient);
pw
}
}
/// An iterator over the powers of a certain base element `b`: `b^0, b^1, b^2, ...`.
#[derive(Clone)]
pub struct PowersTarget<const D: usize> {
base: ExtensionTarget<D>,
current: ExtensionTarget<D>,
}
impl<const D: usize> PowersTarget<D> {
pub fn next<F: Extendable<D>>(
&mut self,
builder: &mut CircuitBuilder<F, D>,
) -> ExtensionTarget<D> {
let result = self.current;
self.current = builder.mul_extension(self.base, self.current);
result
}
pub fn repeated_frobenius<F: Extendable<D>>(
self,
k: usize,
builder: &mut CircuitBuilder<F, D>,
) -> Self {
let Self { base, current } = self;
Self {
base: base.repeated_frobenius(k, builder),
current: current.repeated_frobenius(k, builder),
}
}
}
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub fn powers(&mut self, base: ExtensionTarget<D>) -> PowersTarget<D> {
PowersTarget {
base,
current: self.one_extension(),
}
}
}
#[cfg(test)]
mod tests {
use crate::circuit_builder::CircuitBuilder;
use crate::circuit_data::CircuitConfig;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::field::Field;
use crate::fri::FriConfig;
use crate::witness::PartialWitness;
#[test]
fn test_div_extension() {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let x = FF::rand();
let y = FF::rand();
let z = x / y;
let xt = builder.constant_extension(x);
let yt = builder.constant_extension(y);
let zt = builder.constant_extension(z);
let comp_zt = builder.div_unsafe_extension(xt, yt);
builder.assert_equal_extension(zt, comp_zt);
let data = builder.build();
let proof = data.prove(PartialWitness::new());
}
}

View File

@ -72,13 +72,10 @@ mod tests {
fn test_interpolate() {
type F = CrandallField;
type FF = QuarticCrandallField;
let config = CircuitConfig {
num_routed_wires: 18,
..CircuitConfig::large_config()
};
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, 4>::new(config);
let len = 2;
let len = 4;
let points = (0..len)
.map(|_| (F::rand(), FF::rand()))
.collect::<Vec<_>>();

View File

@ -1,4 +1,5 @@
pub mod arithmetic;
pub mod arithmetic_extension;
pub mod hash;
pub mod insert;
pub mod interpolation;

View File

@ -1,34 +1,47 @@
use std::ops::Range;
use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
use crate::gates::gate::{Gate, GateRef};
use crate::generator::{SimpleGenerator, WitnessGenerator};
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars};
use crate::wire::Wire;
use crate::witness::PartialWitness;
/// A gate which can be configured to perform various arithmetic. In particular, it computes
///
/// ```text
/// output := const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend
/// ```
/// A gate which can a linear combination `c0*x*y+c1*z` twice with the same `x`.
#[derive(Debug)]
pub struct ArithmeticGate;
pub struct ArithmeticExtensionGate<const D: usize>;
impl ArithmeticGate {
pub fn new<F: Extendable<D>, const D: usize>() -> GateRef<F, D> {
GateRef::new(ArithmeticGate)
impl<const D: usize> ArithmeticExtensionGate<D> {
pub fn new<F: Extendable<D>>() -> GateRef<F, D> {
GateRef::new(ArithmeticExtensionGate)
}
pub const WIRE_MULTIPLICAND_0: usize = 0;
pub const WIRE_MULTIPLICAND_1: usize = 1;
pub const WIRE_ADDEND: usize = 2;
pub const WIRE_OUTPUT: usize = 3;
pub fn wires_fixed_multiplicand() -> Range<usize> {
0..D
}
pub fn wires_multiplicand_0() -> Range<usize> {
D..2 * D
}
pub fn wires_addend_0() -> Range<usize> {
2 * D..3 * D
}
pub fn wires_multiplicand_1() -> Range<usize> {
3 * D..4 * D
}
pub fn wires_addend_1() -> Range<usize> {
4 * D..5 * D
}
pub fn wires_output_0() -> Range<usize> {
5 * D..6 * D
}
pub fn wires_output_1() -> Range<usize> {
6 * D..7 * D
}
}
impl<F: Extendable<D>, const D: usize> Gate<F, D> for ArithmeticGate {
impl<F: Extendable<D>, const D: usize> Gate<F, D> for ArithmeticExtensionGate<D> {
fn id(&self) -> String {
format!("{:?}", self)
}
@ -36,12 +49,23 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for ArithmeticGate {
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let const_0 = vars.local_constants[0];
let const_1 = vars.local_constants[1];
let multiplicand_0 = vars.local_wires[Self::WIRE_MULTIPLICAND_0];
let multiplicand_1 = vars.local_wires[Self::WIRE_MULTIPLICAND_1];
let addend = vars.local_wires[Self::WIRE_ADDEND];
let output = vars.local_wires[Self::WIRE_OUTPUT];
let computed_output = const_0 * multiplicand_0 * multiplicand_1 + const_1 * addend;
vec![computed_output - output]
let fixed_multiplicand = vars.get_local_ext_algebra(Self::wires_fixed_multiplicand());
let multiplicand_0 = vars.get_local_ext_algebra(Self::wires_multiplicand_0());
let addend_0 = vars.get_local_ext_algebra(Self::wires_addend_0());
let multiplicand_1 = vars.get_local_ext_algebra(Self::wires_multiplicand_1());
let addend_1 = vars.get_local_ext_algebra(Self::wires_addend_1());
let output_0 = vars.get_local_ext_algebra(Self::wires_output_0());
let output_1 = vars.get_local_ext_algebra(Self::wires_output_1());
let computed_output_0 =
fixed_multiplicand * multiplicand_0 * const_0.into() + addend_0 * const_1.into();
let computed_output_1 =
fixed_multiplicand * multiplicand_1 * const_0.into() + addend_1 * const_1.into();
let mut constraints = (output_0 - computed_output_0).to_basefield_array().to_vec();
constraints.extend((output_1 - computed_output_1).to_basefield_array());
constraints
}
fn eval_unfiltered_recursively(
@ -51,15 +75,30 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for ArithmeticGate {
) -> Vec<ExtensionTarget<D>> {
let const_0 = vars.local_constants[0];
let const_1 = vars.local_constants[1];
let multiplicand_0 = vars.local_wires[Self::WIRE_MULTIPLICAND_0];
let multiplicand_1 = vars.local_wires[Self::WIRE_MULTIPLICAND_1];
let addend = vars.local_wires[Self::WIRE_ADDEND];
let output = vars.local_wires[Self::WIRE_OUTPUT];
let product_term = builder.mul_many_extension(&[const_0, multiplicand_0, multiplicand_1]);
let addend_term = builder.mul_extension(const_1, addend);
let computed_output = builder.add_many_extension(&[product_term, addend_term]);
vec![builder.sub_extension(computed_output, output)]
let fixed_multiplicand = vars.get_local_ext_algebra(Self::wires_fixed_multiplicand());
let multiplicand_0 = vars.get_local_ext_algebra(Self::wires_multiplicand_0());
let addend_0 = vars.get_local_ext_algebra(Self::wires_addend_0());
let multiplicand_1 = vars.get_local_ext_algebra(Self::wires_multiplicand_1());
let addend_1 = vars.get_local_ext_algebra(Self::wires_addend_1());
let output_0 = vars.get_local_ext_algebra(Self::wires_output_0());
let output_1 = vars.get_local_ext_algebra(Self::wires_output_1());
let computed_output_0 = builder.mul_ext_algebra(fixed_multiplicand, multiplicand_0);
let computed_output_0 = builder.scalar_mul_ext_algebra(const_0, computed_output_0);
let scaled_addend_0 = builder.scalar_mul_ext_algebra(const_1, addend_0);
let computed_output_0 = builder.add_ext_algebra(computed_output_0, scaled_addend_0);
let computed_output_1 = builder.mul_ext_algebra(fixed_multiplicand, multiplicand_1);
let computed_output_1 = builder.scalar_mul_ext_algebra(const_0, computed_output_1);
let scaled_addend_1 = builder.scalar_mul_ext_algebra(const_1, addend_1);
let computed_output_1 = builder.add_ext_algebra(computed_output_1, scaled_addend_1);
let diff_0 = builder.sub_ext_algebra(output_0, computed_output_0);
let diff_1 = builder.sub_ext_algebra(output_1, computed_output_1);
let mut constraints = diff_0.to_ext_target_array().to_vec();
constraints.extend(diff_1.to_ext_target_array());
constraints
}
fn generators(
@ -67,16 +106,21 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for ArithmeticGate {
gate_index: usize,
local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = ArithmeticGenerator {
let gen0 = ArithmeticExtensionGenerator0 {
gate_index,
const_0: local_constants[0],
const_1: local_constants[1],
};
vec![Box::new(gen)]
let gen1 = ArithmeticExtensionGenerator1 {
gate_index,
const_0: local_constants[0],
const_1: local_constants[1],
};
vec![Box::new(gen0), Box::new(gen1)]
}
fn num_wires(&self) -> usize {
4
7 * D
}
fn num_constants(&self) -> usize {
@ -88,70 +132,96 @@ impl<F: Extendable<D>, const D: usize> Gate<F, D> for ArithmeticGate {
}
fn num_constraints(&self) -> usize {
1
2 * D
}
}
struct ArithmeticGenerator<F: Field> {
struct ArithmeticExtensionGenerator0<F: Extendable<D>, const D: usize> {
gate_index: usize,
const_0: F,
const_1: F,
}
impl<F: Field> SimpleGenerator<F> for ArithmeticGenerator<F> {
struct ArithmeticExtensionGenerator1<F: Extendable<D>, const D: usize> {
gate_index: usize,
const_0: F,
const_1: F,
}
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for ArithmeticExtensionGenerator0<F, D> {
fn dependencies(&self) -> Vec<Target> {
vec![
Target::Wire(Wire {
gate: self.gate_index,
input: ArithmeticGate::WIRE_MULTIPLICAND_0,
}),
Target::Wire(Wire {
gate: self.gate_index,
input: ArithmeticGate::WIRE_MULTIPLICAND_1,
}),
Target::Wire(Wire {
gate: self.gate_index,
input: ArithmeticGate::WIRE_ADDEND,
}),
]
ArithmeticExtensionGate::<D>::wires_fixed_multiplicand()
.chain(ArithmeticExtensionGate::<D>::wires_multiplicand_0())
.chain(ArithmeticExtensionGate::<D>::wires_addend_0())
.map(|i| Target::wire(self.gate_index, i))
.collect()
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
let multiplicand_0_target = Wire {
gate: self.gate_index,
input: ArithmeticGate::WIRE_MULTIPLICAND_0,
};
let multiplicand_1_target = Wire {
gate: self.gate_index,
input: ArithmeticGate::WIRE_MULTIPLICAND_1,
};
let addend_target = Wire {
gate: self.gate_index,
input: ArithmeticGate::WIRE_ADDEND,
};
let output_target = Wire {
gate: self.gate_index,
input: ArithmeticGate::WIRE_OUTPUT,
let extract_extension = |range: Range<usize>| -> F::Extension {
let t = ExtensionTarget::from_range(self.gate_index, range);
witness.get_extension_target(t)
};
let multiplicand_0 = witness.get_wire(multiplicand_0_target);
let multiplicand_1 = witness.get_wire(multiplicand_1_target);
let addend = witness.get_wire(addend_target);
let fixed_multiplicand =
extract_extension(ArithmeticExtensionGate::<D>::wires_fixed_multiplicand());
let multiplicand_0 =
extract_extension(ArithmeticExtensionGate::<D>::wires_multiplicand_0());
let addend_0 = extract_extension(ArithmeticExtensionGate::<D>::wires_addend_0());
let output = self.const_0 * multiplicand_0 * multiplicand_1 + self.const_1 * addend;
let output_target_0 = ExtensionTarget::from_range(
self.gate_index,
ArithmeticExtensionGate::<D>::wires_output_0(),
);
PartialWitness::singleton_wire(output_target, output)
let computed_output_0 = fixed_multiplicand * multiplicand_0 * self.const_0.into()
+ addend_0 * self.const_1.into();
PartialWitness::singleton_extension_target(output_target_0, computed_output_0)
}
}
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for ArithmeticExtensionGenerator1<F, D> {
fn dependencies(&self) -> Vec<Target> {
ArithmeticExtensionGate::<D>::wires_fixed_multiplicand()
.chain(ArithmeticExtensionGate::<D>::wires_multiplicand_1())
.chain(ArithmeticExtensionGate::<D>::wires_addend_1())
.map(|i| Target::wire(self.gate_index, i))
.collect()
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
let extract_extension = |range: Range<usize>| -> F::Extension {
let t = ExtensionTarget::from_range(self.gate_index, range);
witness.get_extension_target(t)
};
let fixed_multiplicand =
extract_extension(ArithmeticExtensionGate::<D>::wires_fixed_multiplicand());
let multiplicand_1 =
extract_extension(ArithmeticExtensionGate::<D>::wires_multiplicand_1());
let addend_1 = extract_extension(ArithmeticExtensionGate::<D>::wires_addend_1());
let output_target_1 = ExtensionTarget::from_range(
self.gate_index,
ArithmeticExtensionGate::<D>::wires_output_1(),
);
let computed_output_1 = fixed_multiplicand * multiplicand_1 * self.const_0.into()
+ addend_1 * self.const_1.into();
PartialWitness::singleton_extension_target(output_target_1, computed_output_1)
}
}
#[cfg(test)]
mod tests {
use crate::field::crandall_field::CrandallField;
use crate::gates::arithmetic::ArithmeticGate;
use crate::gates::arithmetic::ArithmeticExtensionGate;
use crate::gates::gate_testing::test_low_degree;
#[test]
fn low_degree() {
test_low_degree(ArithmeticGate::new::<CrandallField, 4>())
test_low_degree(ArithmeticExtensionGate::<4>::new::<CrandallField>())
}
}

View File

@ -222,12 +222,11 @@ impl<F: Extendable<D>, const D: usize> Tree<GateRef<F, D>> {
mod tests {
use super::*;
use crate::field::crandall_field::CrandallField;
use crate::gates::arithmetic::ArithmeticGate;
use crate::gates::arithmetic::ArithmeticExtensionGate;
use crate::gates::base_sum::BaseSumGate;
use crate::gates::constant::ConstantGate;
use crate::gates::gmimc::GMiMCGate;
use crate::gates::interpolation::InterpolationGate;
use crate::gates::mul_extension::MulExtensionGate;
use crate::gates::noop::NoopGate;
use crate::hash::GMIMC_ROUNDS;
@ -240,11 +239,10 @@ mod tests {
let gates = vec![
NoopGate::get::<F, D>(),
ConstantGate::get(),
ArithmeticGate::new(),
ArithmeticExtensionGate::new(),
BaseSumGate::<4>::new(4),
GMiMCGate::<F, D, GMIMC_ROUNDS>::with_automatic_constants(),
InterpolationGate::new(4),
MulExtensionGate::new(),
];
let len = gates.len();

View File

@ -1,11 +1,10 @@
pub(crate) mod arithmetic;
pub mod arithmetic;
pub mod base_sum;
pub mod constant;
pub(crate) mod gate;
pub mod gate_tree;
pub mod gmimc;
pub mod interpolation;
pub mod mul_extension;
pub(crate) mod noop;
#[cfg(test)]

View File

@ -1,145 +0,0 @@
use std::ops::Range;
use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::gates::gate::{Gate, GateRef};
use crate::generator::{SimpleGenerator, WitnessGenerator};
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars};
use crate::wire::Wire;
use crate::witness::PartialWitness;
/// A gate which can multiply two field extension elements.
/// TODO: Add an addend if `NUM_ROUTED_WIRES` is large enough.
#[derive(Debug)]
pub struct MulExtensionGate<const D: usize>;
impl<const D: usize> MulExtensionGate<D> {
pub fn new<F: Extendable<D>>() -> GateRef<F, D> {
GateRef::new(MulExtensionGate)
}
pub fn wires_multiplicand_0() -> Range<usize> {
0..D
}
pub fn wires_multiplicand_1() -> Range<usize> {
D..2 * D
}
pub fn wires_output() -> Range<usize> {
2 * D..3 * D
}
}
impl<F: Extendable<D>, const D: usize> Gate<F, D> for MulExtensionGate<D> {
fn id(&self) -> String {
format!("{:?}", self)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let const_0 = vars.local_constants[0];
let multiplicand_0 = vars.get_local_ext_algebra(Self::wires_multiplicand_0());
let multiplicand_1 = vars.get_local_ext_algebra(Self::wires_multiplicand_1());
let output = vars.get_local_ext_algebra(Self::wires_output());
let computed_output = multiplicand_0 * multiplicand_1 * const_0.into();
(output - computed_output).to_basefield_array().to_vec()
}
fn eval_unfiltered_recursively(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let const_0 = vars.local_constants[0];
let multiplicand_0 = vars.get_local_ext_algebra(Self::wires_multiplicand_0());
let multiplicand_1 = vars.get_local_ext_algebra(Self::wires_multiplicand_1());
let output = vars.get_local_ext_algebra(Self::wires_output());
let computed_output = builder.mul_ext_algebra(multiplicand_0, multiplicand_1);
let computed_output = builder.scalar_mul_ext_algebra(const_0, computed_output);
let diff = builder.sub_ext_algebra(output, computed_output);
diff.to_ext_target_array().to_vec()
}
fn generators(
&self,
gate_index: usize,
local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = MulExtensionGenerator {
gate_index,
const_0: local_constants[0],
};
vec![Box::new(gen)]
}
fn num_wires(&self) -> usize {
12
}
fn num_constants(&self) -> usize {
1
}
fn degree(&self) -> usize {
3
}
fn num_constraints(&self) -> usize {
D
}
}
struct MulExtensionGenerator<F: Extendable<D>, const D: usize> {
gate_index: usize,
const_0: F,
}
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for MulExtensionGenerator<F, D> {
fn dependencies(&self) -> Vec<Target> {
MulExtensionGate::<D>::wires_multiplicand_0()
.chain(MulExtensionGate::<D>::wires_multiplicand_1())
.map(|i| {
Target::Wire(Wire {
gate: self.gate_index,
input: i,
})
})
.collect()
}
fn run_once(&self, witness: &PartialWitness<F>) -> PartialWitness<F> {
let multiplicand_0_target = ExtensionTarget::from_range(
self.gate_index,
MulExtensionGate::<D>::wires_multiplicand_0(),
);
let multiplicand_0 = witness.get_extension_target(multiplicand_0_target);
let multiplicand_1_target = ExtensionTarget::from_range(
self.gate_index,
MulExtensionGate::<D>::wires_multiplicand_1(),
);
let multiplicand_1 = witness.get_extension_target(multiplicand_1_target);
let output_target =
ExtensionTarget::from_range(self.gate_index, MulExtensionGate::<D>::wires_output());
let computed_output =
F::Extension::from_basefield(self.const_0) * multiplicand_0 * multiplicand_1;
let mut pw = PartialWitness::new();
pw.set_extension_target(output_target, computed_output);
pw
}
}
#[cfg(test)]
mod tests {
use crate::field::crandall_field::CrandallField;
use crate::gates::gate_testing::test_low_degree;
use crate::gates::mul_extension::MulExtensionGate;
#[test]
fn low_degree() {
test_low_degree(MulExtensionGate::<4>::new::<CrandallField>())
}
}

View File

@ -1,3 +1,5 @@
#![feature(destructuring_assignment)]
pub mod circuit_builder;
pub mod circuit_data;
pub mod field;

View File

@ -5,7 +5,7 @@ use crate::gates::gate::GateRef;
use crate::proof::ProofTarget;
const MIN_WIRES: usize = 120; // TODO: Double check.
const MIN_ROUTED_WIRES: usize = 8; // TODO: Double check.
const MIN_ROUTED_WIRES: usize = 28; // TODO: Double check.
/// Recursively verifies an inner proof.
pub fn add_recursive_verifier<F: Extendable<D>, const D: usize>(

View File

@ -1,7 +1,12 @@
use std::borrow::Borrow;
use crate::field::extension_field::Frobenius;
use num::Integer;
use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, Frobenius};
use crate::field::field::Field;
use crate::gates::arithmetic::ArithmeticExtensionGate;
use crate::polynomial::polynomial::PolynomialCoeffs;
/// When verifying the composition polynomial in FRI we have to compute sums of the form
@ -73,3 +78,142 @@ impl<F: Field> ReducingFactor<F> {
}
}
}
#[derive(Debug, Copy, Clone)]
pub struct ReducingFactorTarget<const D: usize> {
base: ExtensionTarget<D>,
count: u64,
}
impl<const D: usize> ReducingFactorTarget<D> {
pub fn new(base: ExtensionTarget<D>) -> Self {
Self { base, count: 0 }
}
/// Reduces a length `n` vector of `ExtensionTarget`s using `n/2` `ArithmeticExtensionGate`s.
/// It does this by batching two steps of Horner's method in each gate.
/// Here's an example with `n=4, alpha=2, D=1`:
/// 1st gate: 2 0 4 4 3 4 11 <- 2*0+4=4, 2*4+3=11
/// 2nd gate: 2 11 2 24 1 24 49 <- 2*11+2=24, 2*24+1=49
/// which verifies that `2.reduce([1,2,3,4]) = 49`.
pub fn reduce<F>(
&mut self,
terms: &[ExtensionTarget<D>], // Could probably work with a `DoubleEndedIterator` too.
builder: &mut CircuitBuilder<F, D>,
) -> ExtensionTarget<D>
where
F: Extendable<D>,
{
let zero = builder.zero_extension();
let l = terms.len();
self.count += l as u64;
let mut terms_vec = terms.to_vec();
// If needed, we pad the original vector so that it has even length.
if terms_vec.len().is_odd() {
terms_vec.push(zero);
}
terms_vec.reverse();
let mut acc = zero;
for pair in terms_vec.chunks(2) {
// We will route the output of the first arithmetic operation to the multiplicand of the
// second, i.e. we compute the following:
// out_0 = alpha acc + pair[0]
// acc' = out_1 = alpha out_0 + pair[1]
let gate = builder.num_gates();
let out_0 =
ExtensionTarget::from_range(gate, ArithmeticExtensionGate::<D>::wires_output_0());
acc = builder
.double_arithmetic_extension(
F::ONE,
F::ONE,
self.base,
acc,
pair[0],
out_0,
pair[1],
)
.1;
}
acc
}
pub fn shift<F>(
&mut self,
x: ExtensionTarget<D>,
builder: &mut CircuitBuilder<F, D>,
) -> ExtensionTarget<D>
where
F: Extendable<D>,
{
let exp = builder.exp_u64_extension(self.base, self.count);
let tmp = builder.mul_extension(exp, x);
self.count = 0;
tmp
}
pub fn reset(&mut self) {
self.count = 0;
}
pub fn repeated_frobenius<F>(&self, count: usize, builder: &mut CircuitBuilder<F, D>) -> Self
where
F: Extendable<D>,
{
Self {
base: self.base.repeated_frobenius(count, builder),
count: self.count,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::circuit_data::CircuitConfig;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::witness::PartialWitness;
fn test_reduce_gadget(n: usize) {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let alpha = FF::rand();
let alpha = FF::ONE;
let vs = (0..n)
.map(|i| FF::from_canonical_usize(i))
.collect::<Vec<_>>();
let manual_reduce = ReducingFactor::new(alpha).reduce(vs.iter());
let manual_reduce = builder.constant_extension(manual_reduce);
let mut alpha_t = ReducingFactorTarget::new(builder.constant_extension(alpha));
let vs_t = vs
.iter()
.map(|&v| builder.constant_extension(v))
.collect::<Vec<_>>();
let circuit_reduce = alpha_t.reduce(&vs_t, &mut builder);
builder.assert_equal_extension(manual_reduce, circuit_reduce);
let data = builder.build();
let proof = data.prove(PartialWitness::new());
}
#[test]
fn test_reduce_gadget_even() {
test_reduce_gadget(10);
}
#[test]
fn test_reduce_gadget_odd() {
test_reduce_gadget(11);
}
}

View File

@ -78,6 +78,18 @@ impl<F: Field> PartialWitness<F> {
witness
}
pub fn singleton_extension_target<const D: usize>(
et: ExtensionTarget<D>,
value: F::Extension,
) -> Self
where
F: Extendable<D>,
{
let mut witness = PartialWitness::new();
witness.set_extension_target(et, value);
witness
}
pub fn is_empty(&self) -> bool {
self.target_values.is_empty()
}