mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-03 06:13:07 +00:00
Working reduction arity
This commit is contained in:
parent
406df34990
commit
67aa704f6a
@ -29,7 +29,7 @@ pub(crate) fn interpolant<F: Field>(points: &[(F, F)]) -> PolynomialCoeffs<F> {
|
||||
|
||||
/// Interpolate the polynomial defined by an arbitrary set of (point, value) pairs at the given
|
||||
/// point `x`.
|
||||
fn interpolate<F: Field>(points: &[(F, F)], x: F, barycentric_weights: &[F]) -> F {
|
||||
pub fn interpolate<F: Field>(points: &[(F, F)], x: F, barycentric_weights: &[F]) -> F {
|
||||
// If x is in the list of points, the Lagrange formula would divide by zero.
|
||||
for &(x_i, y_i) in points {
|
||||
if x_i == x {
|
||||
@ -37,7 +37,7 @@ fn interpolate<F: Field>(points: &[(F, F)], x: F, barycentric_weights: &[F]) ->
|
||||
}
|
||||
}
|
||||
|
||||
let l_x: F = points.iter().map(|&(x_i, y_i)| x - x_i).product();
|
||||
let l_x: F = points.iter().map(|&(x_i, _y_i)| x - x_i).product();
|
||||
|
||||
let sum = (0..points.len())
|
||||
.map(|i| {
|
||||
@ -51,7 +51,7 @@ fn interpolate<F: Field>(points: &[(F, F)], x: F, barycentric_weights: &[F]) ->
|
||||
l_x * sum
|
||||
}
|
||||
|
||||
fn barycentric_weights<F: Field>(points: &[(F, F)]) -> Vec<F> {
|
||||
pub fn barycentric_weights<F: Field>(points: &[(F, F)]) -> Vec<F> {
|
||||
let n = points.len();
|
||||
(0..n)
|
||||
.map(|i| {
|
||||
|
||||
167
src/fri.rs
167
src/fri.rs
@ -1,12 +1,13 @@
|
||||
use crate::field::fft::fft;
|
||||
use crate::field::field::Field;
|
||||
use crate::field::lagrange::{barycentric_weights, interpolate};
|
||||
use crate::hash::hash_n_to_1;
|
||||
use crate::merkle_proofs::verify_merkle_proof;
|
||||
use crate::merkle_proofs::verify_merkle_proof_subtree;
|
||||
use crate::merkle_tree::MerkleTree;
|
||||
use crate::plonk_challenger::Challenger;
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::proof::{FriEvaluations, FriMerkleProofs, FriProof, FriQueryRound, Hash};
|
||||
use crate::util::log2_strict;
|
||||
use crate::util::{log2_strict, reverse_bits};
|
||||
use anyhow::{ensure, Result};
|
||||
|
||||
/// Somewhat arbitrary. Smaller values will increase delta, but with diminishing returns,
|
||||
@ -16,16 +17,14 @@ const EPSILON: f64 = 0.01;
|
||||
struct FriConfig {
|
||||
proof_of_work_bits: u32,
|
||||
|
||||
rate_bits: usize,
|
||||
|
||||
/// The arity of each FRI reduction step, expressed (i.e. the log2 of the actual arity).
|
||||
/// For example, `[3, 2, 1]` would describe a FRI reduction tree with 8-to-1 reduction, then
|
||||
/// a 4-to-1 reduction, then a 2-to-1 reduction. After these reductions, the reduced polynomial
|
||||
/// is sent directly.
|
||||
reduction_arity_bits: Vec<usize>,
|
||||
|
||||
/// Number of reductions in the FRI protocol. So if the original domain has size `2^n`,
|
||||
/// then the final domain will have size `2^(n-reduction_count)`.
|
||||
reduction_count: usize,
|
||||
|
||||
/// Number of query rounds to perform.
|
||||
num_query_rounds: usize,
|
||||
}
|
||||
@ -101,8 +100,9 @@ fn fri_committed_trees<F: Field>(
|
||||
|
||||
challenger.observe_hash(&trees[0].root);
|
||||
|
||||
for &arity_bits in &config.reduction_arity_bits {
|
||||
let arity = 1 << arity_bits;
|
||||
let num_reductions = config.reduction_arity_bits.len();
|
||||
for i in 0..num_reductions {
|
||||
let arity = 1 << config.reduction_arity_bits[i];
|
||||
let beta = challenger.get_challenge();
|
||||
// P(x) = sum_{i<r} x^i * P_i(x^r) becomes sum_{i<r} beta^i * P_i(x).
|
||||
coeffs = PolynomialCoeffs::new(
|
||||
@ -112,12 +112,16 @@ fn fri_committed_trees<F: Field>(
|
||||
.map(|chunk| chunk.iter().rev().fold(F::ZERO, |acc, &c| acc * beta + c))
|
||||
.collect::<Vec<_>>(),
|
||||
);
|
||||
if i == num_reductions - 1 {
|
||||
break;
|
||||
}
|
||||
values = fft(coeffs.clone());
|
||||
|
||||
let tree = MerkleTree::new(values.values.iter().map(|&v| vec![v]).collect(), true);
|
||||
challenger.observe_hash(&tree.root);
|
||||
trees.push(tree);
|
||||
}
|
||||
challenger.observe_elements(&coeffs.coeffs);
|
||||
(trees, coeffs)
|
||||
}
|
||||
|
||||
@ -212,7 +216,7 @@ fn fri_query_round<F: Field>(
|
||||
if i == 0 {
|
||||
// For the first layer, we need to send the evaluation at `x` too.
|
||||
evals.evals.push(
|
||||
roots_coset_indices[1..]
|
||||
roots_coset_indices
|
||||
.iter()
|
||||
.map(|&index| tree.get(index)[0])
|
||||
.collect(),
|
||||
@ -221,16 +225,12 @@ fn fri_query_round<F: Field>(
|
||||
// For the other layers, we don't need to send the evaluation at `x`, since it can
|
||||
// be inferred by the verifier. See the `compute_evaluation` function.
|
||||
evals.evals.push(
|
||||
roots_coset_indices
|
||||
roots_coset_indices[1..]
|
||||
.iter()
|
||||
.map(|&index| tree.get(index)[0])
|
||||
.collect(),
|
||||
);
|
||||
}
|
||||
dbg!(roots_coset_indices
|
||||
.into_iter()
|
||||
.map(|i| i & ((1 << log2_strict(next_domain_size)) - 1))
|
||||
.collect::<Vec<_>>());
|
||||
merkle_proofs.proofs.push(tree.prove_subtree(
|
||||
x_index & ((1 << log2_strict(next_domain_size)) - 1),
|
||||
arity_bits,
|
||||
@ -244,34 +244,46 @@ fn fri_query_round<F: Field>(
|
||||
});
|
||||
}
|
||||
|
||||
/// Computes P'(x^2) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity and P' is the FRI reduced polynomial.
|
||||
fn compute_evaluation<F: Field>(x: F, arity_bits: usize, last_evals: Vec<F>, beta: F) -> F {
|
||||
/// Computes P'(x^arity) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity and P' is the FRI reduced polynomial.
|
||||
fn compute_evaluation<F: Field>(x: F, arity_bits: usize, last_evals: &[F], beta: F) -> F {
|
||||
let g = F::primitive_root_of_unity(arity_bits);
|
||||
let points = g
|
||||
.powers()
|
||||
.zip(last_evals)
|
||||
.take(1 << arity_bits)
|
||||
.map(|y| x * y)
|
||||
.map(|(y, &e)| (x * y, e))
|
||||
.collect::<Vec<_>>();
|
||||
(last_e_x + last_e_x_minus) / F::TWO + beta * (last_e_x - last_e_x_minus) / (F::TWO * x)
|
||||
let barycentric_weights = barycentric_weights(&points);
|
||||
interpolate(&points, beta, &barycentric_weights)
|
||||
}
|
||||
|
||||
fn verify_fri_proof<F: Field>(
|
||||
purported_degree_log: usize,
|
||||
proof: &FriProof<F>,
|
||||
challenger: &mut Challenger<F>,
|
||||
config: &FriConfig,
|
||||
) -> Result<()> {
|
||||
let total_arities = config.reduction_arity_bits.iter().sum::<usize>();
|
||||
ensure!(
|
||||
purported_degree_log
|
||||
== log2_strict(proof.final_poly.len()) + total_arities - config.rate_bits,
|
||||
"Final polynomial has wrong degree."
|
||||
);
|
||||
// Size of the LDE domain.
|
||||
let n = proof.final_poly.len() << config.reduction_count;
|
||||
let n = proof.final_poly.len() << total_arities;
|
||||
|
||||
// Recover the random betas used in the FRI reductions.
|
||||
let betas = proof.commit_phase_merkle_roots[..proof.commit_phase_merkle_roots.len() - 1]
|
||||
// let betas = proof.commit_phase_merkle_roots[..proof.commit_phase_merkle_roots.len() - 1]
|
||||
let betas = proof
|
||||
.commit_phase_merkle_roots
|
||||
.iter()
|
||||
.map(|root| {
|
||||
challenger.observe_hash(root);
|
||||
challenger.get_challenge()
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
challenger.observe_hash(proof.commit_phase_merkle_roots.last().unwrap());
|
||||
// challenger.observe_hash(proof.commit_phase_merkle_roots.last().unwrap());
|
||||
challenger.observe_elements(&proof.final_poly.coeffs);
|
||||
|
||||
// Check PoW.
|
||||
fri_verify_proof_of_work(proof, challenger, config)?;
|
||||
@ -281,7 +293,7 @@ fn verify_fri_proof<F: Field>(
|
||||
"Number of query rounds does not match config."
|
||||
);
|
||||
ensure!(
|
||||
config.reduction_count > 0,
|
||||
!config.reduction_arity_bits.is_empty(),
|
||||
"Number of reductions should be non-zero."
|
||||
);
|
||||
|
||||
@ -293,53 +305,66 @@ fn verify_fri_proof<F: Field>(
|
||||
let mut x_index = x.to_canonical_u64() as usize;
|
||||
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
|
||||
let mut subgroup_x = F::primitive_root_of_unity(log2_strict(n)).exp_usize(x_index % n);
|
||||
for i in 0..config.reduction_count {
|
||||
for (i, &arity_bits) in config.reduction_arity_bits.iter().enumerate() {
|
||||
let arity = 1 << arity_bits;
|
||||
x_index %= domain_size;
|
||||
let next_domain_size = domain_size >> 1;
|
||||
let minus_x_index = (next_domain_size + x_index) % domain_size;
|
||||
let (e_x, e_x_minus, merkle_proof, merkle_proof_minus) = if i == 0 {
|
||||
let (e_x, e_x_minus) = round_proof.evals.first_layer;
|
||||
let (merkle_proof, merkle_proof_minus) = &round_proof.merkle_proofs.proofs[i];
|
||||
e_xs.push((e_x, e_x_minus));
|
||||
(e_x, e_x_minus, merkle_proof, merkle_proof_minus)
|
||||
let next_domain_size = domain_size >> arity_bits;
|
||||
let roots_coset_indices =
|
||||
index_roots_coset(x_index, next_domain_size, domain_size, arity);
|
||||
if i == 0 {
|
||||
let evals = round_proof.evals.evals[0].clone();
|
||||
e_xs.push(evals);
|
||||
} else {
|
||||
let (last_e_x, last_e_x_minus) = e_xs[i - 1];
|
||||
let e_x = compute_evaluation(subgroup_x, last_e_x, last_e_x_minus, betas[i - 1]);
|
||||
let e_x_minus = round_proof.evals.rest[i - 1];
|
||||
let (merkle_proof, merkle_proof_minus) = &round_proof.merkle_proofs.proofs[i];
|
||||
e_xs.push((e_x, e_x_minus));
|
||||
(e_x, e_x_minus, merkle_proof, merkle_proof_minus)
|
||||
let last_evals = &e_xs[i - 1];
|
||||
let e_x = compute_evaluation(
|
||||
subgroup_x,
|
||||
config.reduction_arity_bits[i - 1],
|
||||
last_evals,
|
||||
betas[i - 1],
|
||||
);
|
||||
let mut evals = round_proof.evals.evals[i].clone();
|
||||
evals.insert(0, e_x);
|
||||
e_xs.push(evals);
|
||||
};
|
||||
verify_merkle_proof(
|
||||
vec![e_x],
|
||||
x_index,
|
||||
let sorted_evals = {
|
||||
let mut sorted_evals_enumerate = e_xs[i].iter().enumerate().collect::<Vec<_>>();
|
||||
sorted_evals_enumerate.sort_by_key(|&(j, _)| {
|
||||
reverse_bits(roots_coset_indices[j], log2_strict(domain_size))
|
||||
});
|
||||
sorted_evals_enumerate
|
||||
.into_iter()
|
||||
.map(|(_, &e)| vec![e])
|
||||
.collect()
|
||||
};
|
||||
verify_merkle_proof_subtree(
|
||||
sorted_evals,
|
||||
x_index & ((1 << log2_strict(next_domain_size)) - 1),
|
||||
proof.commit_phase_merkle_roots[i],
|
||||
merkle_proof,
|
||||
true,
|
||||
)?;
|
||||
verify_merkle_proof(
|
||||
vec![e_x_minus],
|
||||
minus_x_index,
|
||||
proof.commit_phase_merkle_roots[i],
|
||||
merkle_proof_minus,
|
||||
&round_proof.merkle_proofs.proofs[i],
|
||||
true,
|
||||
)?;
|
||||
if i > 0 {
|
||||
subgroup_x = subgroup_x.square();
|
||||
for _ in 0..config.reduction_arity_bits[i - 1] {
|
||||
subgroup_x = subgroup_x.square();
|
||||
}
|
||||
}
|
||||
domain_size = next_domain_size;
|
||||
}
|
||||
let (last_e_x, last_e_x_minus) = e_xs[config.reduction_count - 1];
|
||||
let last_evals = e_xs.last().unwrap();
|
||||
let final_arity_bits = *config.reduction_arity_bits.last().unwrap();
|
||||
let purported_eval = compute_evaluation(
|
||||
subgroup_x,
|
||||
last_e_x,
|
||||
last_e_x_minus,
|
||||
betas[config.reduction_count - 1],
|
||||
final_arity_bits,
|
||||
last_evals,
|
||||
*betas.last().unwrap(),
|
||||
);
|
||||
for _ in 0..final_arity_bits {
|
||||
subgroup_x = subgroup_x.square();
|
||||
}
|
||||
// Final check of FRI. After all the reductions, we check that the final polynomial is equal
|
||||
// to the one sent by the prover.
|
||||
ensure!(
|
||||
proof.final_poly.eval(subgroup_x.square()) == purported_eval,
|
||||
proof.final_poly.eval(subgroup_x) == purported_eval,
|
||||
"Final polynomial evaluation is invalid."
|
||||
);
|
||||
}
|
||||
@ -353,41 +378,57 @@ mod tests {
|
||||
use crate::field::crandall_field::CrandallField;
|
||||
use crate::field::fft::ifft;
|
||||
use anyhow::Result;
|
||||
use rand::Rng;
|
||||
|
||||
fn test_fri(
|
||||
degree: usize,
|
||||
degree_log: usize,
|
||||
rate_bits: usize,
|
||||
reduction_count: usize,
|
||||
reduction_arity_bits: Vec<usize>,
|
||||
num_query_rounds: usize,
|
||||
) -> Result<()> {
|
||||
type F = CrandallField;
|
||||
|
||||
let n = degree;
|
||||
let n = 1 << degree_log;
|
||||
let evals = PolynomialValues::new((0..n).map(|_| F::rand()).collect());
|
||||
let lde = evals.clone().lde(rate_bits);
|
||||
let config = FriConfig {
|
||||
reduction_count,
|
||||
num_query_rounds,
|
||||
rate_bits,
|
||||
proof_of_work_bits: 2,
|
||||
reduction_arity_bits: Vec::new(),
|
||||
reduction_arity_bits,
|
||||
};
|
||||
let mut challenger = Challenger::new();
|
||||
let proof = fri_proof(&ifft(lde.clone()), &lde, &mut challenger, &config);
|
||||
|
||||
let mut challenger = Challenger::new();
|
||||
verify_fri_proof(&proof, &mut challenger, &config)?;
|
||||
verify_fri_proof(degree_log, &proof, &mut challenger, &config)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn gen_arities(degree_log: usize) -> Vec<usize> {
|
||||
let mut rng = rand::thread_rng();
|
||||
let mut arities = Vec::new();
|
||||
let mut remaining = degree_log;
|
||||
while remaining > 0 {
|
||||
let arity = rng.gen_range(0, remaining + 1);
|
||||
arities.push(arity);
|
||||
remaining -= arity;
|
||||
}
|
||||
arities
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fri_multi_params() -> Result<()> {
|
||||
for degree_log in 1..6 {
|
||||
for rate_bits in 0..4 {
|
||||
for reduction_count in 1..=(degree_log + rate_bits) {
|
||||
for num_query_round in 0..4 {
|
||||
test_fri(1 << degree_log, rate_bits, reduction_count, num_query_round)?;
|
||||
}
|
||||
for num_query_round in 0..4 {
|
||||
test_fri(
|
||||
degree_log,
|
||||
rate_bits,
|
||||
gen_arities(degree_log),
|
||||
num_query_round,
|
||||
)?;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,8 +1,9 @@
|
||||
use crate::circuit_builder::CircuitBuilder;
|
||||
use crate::field::field::Field;
|
||||
use crate::gates::gmimc::GMiMCGate;
|
||||
use crate::hash::GMIMC_ROUNDS;
|
||||
use crate::hash::{compress, hash_or_noop};
|
||||
use crate::hash::{merkle_root_inner, GMIMC_ROUNDS};
|
||||
use crate::merkle_tree::MerkleTree;
|
||||
use crate::proof::{Hash, HashTarget};
|
||||
use crate::target::Target;
|
||||
use crate::wire::Wire;
|
||||
@ -61,7 +62,7 @@ pub(crate) fn verify_merkle_proof_subtree<F: Field>(
|
||||
} else {
|
||||
subtree_index
|
||||
};
|
||||
let mut current_digest = merkle_root_inner(subtree_leaves_data);
|
||||
let mut current_digest = MerkleTree::new(subtree_leaves_data, false).root;
|
||||
for (i, &sibling_digest) in proof.siblings.iter().enumerate() {
|
||||
let bit = (index >> i & 1) == 1;
|
||||
current_digest = if bit {
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user