Circuit compiles

This commit is contained in:
wborgeaud 2021-07-13 15:20:14 +02:00
parent c99d7f48fd
commit 5c2c01b1ab
6 changed files with 132 additions and 59 deletions

View File

@ -32,7 +32,7 @@ impl<const D: usize> ExtensionTarget<D> {
}
let arr = self.to_target_array();
let k = (F::ORDER - 1) / (D as u64);
let z0 = F::W.exp(k * count as u64);
let z0 = F::Extension::W.exp(k * count as u64);
let zs = z0
.powers()
.take(D)

View File

@ -1,3 +1,4 @@
use env_logger::builder;
use itertools::izip;
use crate::circuit_builder::CircuitBuilder;
@ -12,6 +13,7 @@ use crate::proof::{
FriInitialTreeProofTarget, FriProofTarget, FriQueryRoundTarget, HashTarget, OpeningSetTarget,
};
use crate::target::Target;
use crate::util::scaling::ReducingFactorTarget;
use crate::util::{log2_strict, reverse_index_bits_in_place};
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
@ -123,7 +125,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
n,
&betas,
round_proof,
config,
common_data,
);
}
}
@ -146,12 +148,13 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
os: &OpeningSetTarget<D>,
zeta: ExtensionTarget<D>,
subgroup_x: Target,
common_data: &CommonCircuitData<F, D>,
) -> ExtensionTarget<D> {
assert!(D > 1, "Not implemented for D=1.");
let config = &self.config.fri_config.clone();
let degree_log = proof.evals_proofs[0].1.siblings.len() - config.rate_bits;
let subgroup_x = self.convert_to_ext(subgroup_x);
let mut alpha_powers = self.powers(alpha);
let mut alpha = ReducingFactorTarget::new(alpha);
let mut sum = self.zero_extension();
// We will add three terms to `sum`:
@ -166,50 +169,42 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
]
.iter()
.flat_map(|&p| proof.unsalted_evals(p))
.chain(
&proof.unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS)
[common_data.partial_products_range()],
)
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
let single_openings = os
.constants
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.quotient_polys);
let mut single_numerator = self.zero_extension();
for (e, &o) in izip!(single_evals, single_openings) {
let a = alpha_powers.next(self);
let diff = self.sub_extension(e, o);
single_numerator = self.mul_add_extension(a, diff, single_numerator);
}
.chain(&os.quotient_polys)
.chain(&os.partial_products)
.copied()
.collect::<Vec<_>>();
let mut single_numerator = alpha.reduce(&single_evals, self);
// TODO: Precompute the rhs as it is the same in all FRI round.
let rhs = alpha.reduce(&single_openings, self);
single_numerator = self.sub_extension(single_numerator, rhs);
let single_denominator = self.sub_extension(subgroup_x, zeta);
let quotient = self.div_unsafe_extension(single_numerator, single_denominator);
sum = self.add_extension(sum, quotient);
alpha.reset();
// Polynomials opened at `x` and `g x`, i.e., the Zs polynomials.
let zs_evals = proof
.unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS)
.iter()
.take(common_data.zs_range().end)
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
// TODO: Would probably be more efficient using `CircuitBuilder::reduce_with_powers_recursive`
let mut zs_composition_eval = self.zero_extension();
let mut alpha_powers_cloned = alpha_powers.clone();
for &e in &zs_evals {
let a = alpha_powers_cloned.next(self);
zs_composition_eval = self.mul_add_extension(a, e, zs_composition_eval);
}
let mut zs_composition_eval = alpha.clone().reduce(&zs_evals, self);
let g = self.constant_extension(F::Extension::primitive_root_of_unity(degree_log));
let zeta_right = self.mul_extension(g, zeta);
let mut zs_ev_zeta = self.zero_extension();
let mut alpha_powers_cloned = alpha_powers.clone();
for &t in &os.plonk_zs {
let a = alpha_powers_cloned.next(self);
zs_ev_zeta = self.mul_add_extension(a, t, zs_ev_zeta);
}
let mut zs_ev_zeta_right = self.zero_extension();
for &t in &os.plonk_zs_right {
let a = alpha_powers.next(self);
zs_ev_zeta_right = self.mul_add_extension(a, t, zs_ev_zeta);
}
let zs_ev_zeta = alpha.clone().reduce(&os.plonk_zs, self);
let zs_ev_zeta_right = alpha.reduce(&os.plonk_zs_right, self);
let interpol_val = self.interpolate2(
[(zeta, zs_ev_zeta), (zeta_right, zs_ev_zeta_right)],
subgroup_x,
@ -219,6 +214,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let vanish_zeta_right = self.sub_extension(subgroup_x, zeta_right);
let zs_denominator = self.mul_extension(vanish_zeta, vanish_zeta_right);
let zs_quotient = self.div_unsafe_extension(zs_numerator, zs_denominator);
sum = alpha.shift(sum, self);
sum = self.add_extension(sum, zs_quotient);
// Polynomials opened at `x` and `x.frobenius()`, i.e., the wires polynomials.
@ -227,26 +223,11 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
.iter()
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
let mut wire_composition_eval = self.zero_extension();
let mut alpha_powers_cloned = alpha_powers.clone();
for &e in &wire_evals {
let a = alpha_powers_cloned.next(self);
wire_composition_eval = self.mul_add_extension(a, e, wire_composition_eval);
}
let mut alpha_powers_cloned = alpha_powers.clone();
let wire_eval = os.wires.iter().fold(self.zero_extension(), |acc, &w| {
let a = alpha_powers_cloned.next(self);
self.mul_add_extension(a, w, acc)
});
let mut alpha_powers_frob = alpha_powers.repeated_frobenius(D - 1, self);
let wire_eval_frob = os
.wires
.iter()
.fold(self.zero_extension(), |acc, &w| {
let a = alpha_powers_frob.next(self);
self.mul_add_extension(a, w, acc)
})
.frobenius(self);
let mut wire_composition_eval = alpha.clone().reduce(&wire_evals, self);
let mut alpha_frob = alpha.repeated_frobenius(D - 1, self);
let wire_eval = alpha.reduce(&os.wires, self);
let wire_eval_frob = alpha_frob.reduce(&os.wires, self);
let wire_eval_frob = wire_eval_frob.frobenius(self);
let zeta_frob = zeta.frobenius(self);
let wire_interpol_val =
self.interpolate2([(zeta, wire_eval), (zeta_frob, wire_eval_frob)], subgroup_x);
@ -254,6 +235,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let vanish_zeta_frob = self.sub_extension(subgroup_x, zeta_frob);
let wire_denominator = self.mul_extension(vanish_zeta, vanish_zeta_frob);
let wire_quotient = self.div_unsafe_extension(wire_numerator, wire_denominator);
sum = alpha.shift(sum, self);
sum = self.add_extension(sum, wire_quotient);
sum
@ -270,8 +252,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
n: usize,
betas: &[ExtensionTarget<D>],
round_proof: &FriQueryRoundTarget<D>,
config: &FriConfig,
common_data: &CommonCircuitData<F, D>,
) {
let config = &common_data.config.fri_config;
let n_log = log2_strict(n);
let mut evaluations: Vec<Vec<ExtensionTarget<D>>> = Vec::new();
// TODO: Do we need to range check `x_index` to a target smaller than `p`?
@ -302,6 +285,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
os,
zeta,
subgroup_x,
common_data,
)
} else {
let last_evals = &evaluations[i - 1];

View File

@ -8,6 +8,7 @@ use crate::hash::GMIMC_ROUNDS;
use crate::hash::{compress, hash_or_noop};
use crate::proof::{Hash, HashTarget};
use crate::target::Target;
use crate::util::marking::MarkedTargets;
use crate::wire::Wire;
#[derive(Clone, Debug)]
@ -56,6 +57,81 @@ pub(crate) fn verify_merkle_proof<F: Field>(
}
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub(crate) fn verify_merkle_proof_marked(
&mut self,
leaf_data: Vec<Target>,
leaf_index: Target,
merkle_root: HashTarget,
proof: &MerkleProofTarget,
marked: &mut Vec<MarkedTargets>,
) {
let zero = self.zero();
let height = proof.siblings.len();
let purported_index_bits = self.split_le_virtual(leaf_index, height);
let mut state: HashTarget = self.hash_or_noop(leaf_data);
let mut acc_leaf_index = zero;
for (bit, &sibling) in purported_index_bits.into_iter().zip(&proof.siblings) {
let gate = self
.add_gate_no_constants(GMiMCGate::<F, D, GMIMC_ROUNDS>::with_automatic_constants());
let swap_wire = GMiMCGate::<F, D, GMIMC_ROUNDS>::WIRE_SWAP;
let swap_wire = Target::Wire(Wire {
gate,
input: swap_wire,
});
self.generate_copy(bit, swap_wire);
let old_acc_wire = GMiMCGate::<F, D, GMIMC_ROUNDS>::WIRE_INDEX_ACCUMULATOR_OLD;
let old_acc_wire = Target::Wire(Wire {
gate,
input: old_acc_wire,
});
self.route(acc_leaf_index, old_acc_wire);
let new_acc_wire = GMiMCGate::<F, D, GMIMC_ROUNDS>::WIRE_INDEX_ACCUMULATOR_NEW;
let new_acc_wire = Target::Wire(Wire {
gate,
input: new_acc_wire,
});
acc_leaf_index = new_acc_wire;
let input_wires = (0..12)
.map(|i| {
Target::Wire(Wire {
gate,
input: GMiMCGate::<F, D, GMIMC_ROUNDS>::wire_input(i),
})
})
.collect::<Vec<_>>();
for i in 0..4 {
self.route(state.elements[i], input_wires[i]);
self.route(sibling.elements[i], input_wires[4 + i]);
self.route(zero, input_wires[8 + i]);
}
state = HashTarget::from_vec(
(0..4)
.map(|i| {
Target::Wire(Wire {
gate,
input: GMiMCGate::<F, D, GMIMC_ROUNDS>::wire_output(i),
})
})
.collect(),
)
}
// self.assert_equal(acc_leaf_index, leaf_index);
marked.push(MarkedTargets {
targets: Box::new(acc_leaf_index),
name: "acc leaf".to_string(),
});
self.assert_hashes_equal(state, merkle_root)
}
/// Verifies that the given leaf data is present at the given index in the Merkle tree with the
/// given root.
pub(crate) fn verify_merkle_proof(
@ -124,7 +200,8 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
)
}
self.assert_equal(acc_leaf_index, leaf_index);
let leaf_index_rev = self.reverse_limbs::<2>(leaf_index, height);
self.assert_equal(acc_leaf_index, leaf_index_rev);
self.assert_hashes_equal(state, merkle_root)
}
@ -147,6 +224,7 @@ mod tests {
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::merkle_proofs::verify_merkle_proof;
use crate::merkle_tree::MerkleTree;
use crate::util::marking::MarkedTargets;
use crate::verifier::verify;
use crate::witness::PartialWitness;
@ -155,12 +233,13 @@ mod tests {
}
#[test]
fn test_merkle_trees() -> Result<()> {
fn test_recursive_merkle_proof() -> Result<()> {
type F = CrandallField;
type FF = QuarticCrandallField;
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, 4>::new(config);
let mut pw = PartialWitness::new();
let mut marked = Vec::new();
let log_n = 8;
let n = 1 << log_n;
@ -186,10 +265,19 @@ mod tests {
pw.set_target(data[j], tree.leaves[i][j]);
}
marked.push(MarkedTargets {
targets: Box::new(i_c),
name: "i_c".to_string(),
});
marked.push(MarkedTargets {
targets: Box::new(builder.reverse_limbs::<2>(i_c, log_n)),
name: "rev i_c".to_string(),
});
builder.verify_merkle_proof_marked(data.clone(), i_c, root_t, &proof_t, &mut marked);
builder.verify_merkle_proof(data, i_c, root_t, &proof_t);
let data = builder.build();
let proof = data.prove(pw);
let proof = data.prove_marked(pw, marked);
verify(proof, &data.verifier_only, &data.common)
}

View File

@ -46,15 +46,15 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
"to compute full witness"
);
for m in marked {
m.display(&witness);
}
timed!(
witness
.check_copy_constraints(&prover_data.copy_constraints, &prover_data.gate_instances)
.unwrap(), // TODO: Change return value to `Result` and use `?` here.
"to check copy constraints"
);
for m in marked {
m.display(&witness);
}
let wires_values: Vec<PolynomialValues<F>> = timed!(
witness

View File

@ -91,7 +91,6 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let mut scale = ReducingFactorTarget::new(zeta_pow_deg);
let mut rhs = scale.reduce(chunk, self);
rhs = self.mul_extension(z_h_zeta, rhs);
dbg!(self.num_gates());
self.route_extension(vanishing_polys_zeta[i], rhs);
}
@ -122,6 +121,7 @@ mod tests {
use super::*;
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::extension_field::target::ExtensionTarget;
use crate::gadgets::polynomial::PolynomialCoeffsExtTarget;
use crate::merkle_proofs::MerkleProofTarget;
use crate::polynomial::commitment::OpeningProofTarget;
@ -129,6 +129,7 @@ mod tests {
FriInitialTreeProofTarget, FriProofTarget, FriQueryRoundTarget, FriQueryStepTarget,
HashTarget, OpeningSetTarget, Proof,
};
use crate::target::Target;
use crate::verifier::verify;
use crate::witness::PartialWitness;
@ -322,9 +323,10 @@ mod tests {
fn test_recursive_verifier() {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
let (proof, vd, cd) = {
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, 4>::new(config);
let mut builder = CircuitBuilder::<F, D>::new(config);
let zero = builder.zero();
let hash = builder.hash_n_to_m(vec![zero], 2, true);
let z = builder.mul(hash[0], hash[1]);
@ -338,7 +340,7 @@ mod tests {
verify(proof.clone(), &vd, &cd).unwrap();
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, 4>::new(config.clone());
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
let mut pw = PartialWitness::new();
let mut marked = Vec::new();
let pt = proof_to_proof_target(&proof, &mut builder);

View File

@ -56,7 +56,6 @@ pub(crate) fn verify<F: Extendable<D>, const D: usize>(
&gammas,
&alphas,
);
dbg!(vanishing_polys_zeta[0]);
// Check each polynomial identity, of the form `vanishing(x) = Z_H(x) quotient(x)`, at zeta.
let quotient_polys_zeta = &proof.openings.quotient_polys;