mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-06 15:53:10 +00:00
PR feedback
This commit is contained in:
parent
eaba5238a6
commit
5bebc746f6
@ -32,16 +32,16 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
reverse_index_bits_in_place(&mut evals);
|
||||
let mut old_x_index_bits = self.split_le(old_x_index, arity_bits);
|
||||
old_x_index_bits.reverse();
|
||||
self.rotate_left_from_bits(&old_x_index_bits, &evals);
|
||||
let evals = self.rotate_left_from_bits(&old_x_index_bits, &evals);
|
||||
|
||||
// The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta.
|
||||
let points = g
|
||||
.powers()
|
||||
.zip(evals)
|
||||
.map(|(y, e)| {
|
||||
.map(|y| {
|
||||
let yt = self.constant(y);
|
||||
(self.mul(x, yt), e)
|
||||
self.mul(x, yt)
|
||||
})
|
||||
.zip(evals)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
self.interpolate(&points, beta)
|
||||
@ -154,7 +154,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
// We will add three terms to `sum`:
|
||||
// - one for polynomials opened at `x` only
|
||||
// - one for polynomials opened at `x` and `g x`
|
||||
// - one for polynomials opened at `x` and its conjugate
|
||||
// - one for polynomials opened at `x` and `x.frobenius()`
|
||||
|
||||
let evals = [0, 1, 4]
|
||||
.iter()
|
||||
@ -166,62 +166,69 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
.iter()
|
||||
.chain(&os.plonk_sigmas)
|
||||
.chain(&os.quotient_polys);
|
||||
let mut numerator = self.zero_extension();
|
||||
for (e, &o) in izip!(evals, openings) {
|
||||
let mut single_numerator = self.zero_extension();
|
||||
for (e, &o) in izip!(single_evals, single_openings) {
|
||||
let a = alpha_powers.next(self);
|
||||
let diff = self.sub_extension(e, o);
|
||||
numerator = self.mul_add_extension(a, diff, numerator);
|
||||
single_numerator = self.mul_add_extension(a, diff, single_numerator);
|
||||
}
|
||||
let denominator = self.sub_extension(subgroup_x, zeta);
|
||||
let quotient = self.div_unsafe_extension(numerator, denominator);
|
||||
let single_denominator = self.sub_extension(subgroup_x, zeta);
|
||||
let quotient = self.div_unsafe_extension(single_numerator, single_denominator);
|
||||
sum = self.add_extension(sum, quotient);
|
||||
|
||||
let evs = proof
|
||||
// Polynomials opened at `x` and `g x`, i.e., the Zs polynomials.
|
||||
let zs_evals = proof
|
||||
.unsalted_evals(3, config)
|
||||
.iter()
|
||||
.map(|&e| self.convert_to_ext(e))
|
||||
.collect::<Vec<_>>();
|
||||
// TODO: Would probably be more efficient using `CircuitBuilder::reduce_with_powers_recursive`
|
||||
let mut ev = self.zero_extension();
|
||||
for &e in &evs {
|
||||
let a = alpha_powers.next(self);
|
||||
ev = self.mul_add_extension(a, e, ev);
|
||||
let mut zs_composition_eval = self.zero_extension();
|
||||
let mut alpha_powers_cloned = alpha_powers.clone();
|
||||
for &e in &zs_evals {
|
||||
let a = alpha_powers_cloned.next(self);
|
||||
zs_composition_eval = self.mul_add_extension(a, e, zs_composition_eval);
|
||||
}
|
||||
|
||||
let g = self.constant_extension(F::Extension::primitive_root_of_unity(degree_log));
|
||||
let zeta_right = self.mul_extension(g, zeta);
|
||||
let mut ev_zeta = self.zero_extension();
|
||||
let mut zs_ev_zeta = self.zero_extension();
|
||||
let mut alpha_powers_cloned = alpha_powers.clone();
|
||||
for &t in &os.plonk_zs {
|
||||
let a = alpha_powers.next(self);
|
||||
ev_zeta = self.mul_add_extension(a, t, ev_zeta);
|
||||
let a = alpha_powers_cloned.next(self);
|
||||
zs_ev_zeta = self.mul_add_extension(a, t, zs_ev_zeta);
|
||||
}
|
||||
let mut ev_zeta_right = self.zero_extension();
|
||||
let mut zs_ev_zeta_right = self.zero_extension();
|
||||
for &t in &os.plonk_zs_right {
|
||||
let a = alpha_powers.next(self);
|
||||
ev_zeta_right = self.mul_add_extension(a, t, ev_zeta);
|
||||
zs_ev_zeta_right = self.mul_add_extension(a, t, zs_ev_zeta);
|
||||
}
|
||||
let interpol_val =
|
||||
self.interpolate2([(zeta, ev_zeta), (zeta_right, ev_zeta_right)], subgroup_x);
|
||||
let numerator = self.sub_extension(ev, interpol_val);
|
||||
let vanish = self.sub_extension(subgroup_x, zeta);
|
||||
let vanish_right = self.sub_extension(subgroup_x, zeta_right);
|
||||
let denominator = self.mul_extension(vanish, vanish_right);
|
||||
let quotient = self.div_unsafe_extension(numerator, denominator);
|
||||
sum = self.add_extension(sum, quotient);
|
||||
let interpol_val = self.interpolate2(
|
||||
[(zeta, zs_ev_zeta), (zeta_right, zs_ev_zeta_right)],
|
||||
subgroup_x,
|
||||
);
|
||||
let zs_numerator = self.sub_extension(zs_composition_eval, interpol_val);
|
||||
let vanish_zeta = self.sub_extension(subgroup_x, zeta);
|
||||
let vanish_zeta_right = self.sub_extension(subgroup_x, zeta_right);
|
||||
let zs_denominator = self.mul_extension(vanish_zeta, vanish_zeta_right);
|
||||
let zs_quotient = self.div_unsafe_extension(zs_numerator, zs_denominator);
|
||||
sum = self.add_extension(sum, zs_quotient);
|
||||
|
||||
let evs = proof
|
||||
// Polynomials opened at `x` and `x.frobenius()`, i.e., the wires polynomials.
|
||||
let wire_evals = proof
|
||||
.unsalted_evals(2, config)
|
||||
.iter()
|
||||
.map(|&e| self.convert_to_ext(e))
|
||||
.collect::<Vec<_>>();
|
||||
let mut ev = self.zero_extension();
|
||||
for &e in &evs {
|
||||
let a = alpha_powers.next(self);
|
||||
ev = self.mul_add_extension(a, e, ev);
|
||||
let mut wire_composition_eval = self.zero_extension();
|
||||
let mut alpha_powers_cloned = alpha_powers.clone();
|
||||
for &e in &wire_evals {
|
||||
let a = alpha_powers_cloned.next(self);
|
||||
wire_composition_eval = self.mul_add_extension(a, e, wire_composition_eval);
|
||||
}
|
||||
let zeta_frob = zeta.frobenius(self);
|
||||
let mut alpha_powers_cloned = alpha_powers.clone();
|
||||
let wire_eval = os.wires.iter().fold(self.zero_extension(), |acc, &w| {
|
||||
let a = alpha_powers.next(self);
|
||||
let a = alpha_powers_cloned.next(self);
|
||||
self.mul_add_extension(a, w, acc)
|
||||
});
|
||||
let mut alpha_powers_frob = alpha_powers.repeated_frobenius(D - 1, self);
|
||||
@ -233,13 +240,14 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
self.mul_add_extension(a, w, acc)
|
||||
})
|
||||
.frobenius(self);
|
||||
let interpol_val =
|
||||
let zeta_frob = zeta.frobenius(self);
|
||||
let wire_interpol_val =
|
||||
self.interpolate2([(zeta, wire_eval), (zeta_frob, wire_eval_frob)], subgroup_x);
|
||||
let numerator = self.sub_extension(ev, interpol_val);
|
||||
let vanish_frob = self.sub_extension(subgroup_x, zeta_frob);
|
||||
let denominator = self.mul_extension(vanish, vanish_frob);
|
||||
let quotient = self.div_unsafe_extension(numerator, denominator);
|
||||
sum = self.add_extension(sum, quotient);
|
||||
let wire_numerator = self.sub_extension(wire_composition_eval, wire_interpol_val);
|
||||
let vanish_zeta_frob = self.sub_extension(subgroup_x, zeta_frob);
|
||||
let wire_denominator = self.mul_extension(vanish_zeta, vanish_zeta_frob);
|
||||
let wire_quotient = self.div_unsafe_extension(wire_numerator, wire_denominator);
|
||||
sum = self.add_extension(sum, wire_quotient);
|
||||
|
||||
sum
|
||||
}
|
||||
@ -271,11 +279,10 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
);
|
||||
let mut old_x_index = self.zero();
|
||||
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
|
||||
// TODO: The verifier will need to check these constants at some point (out of circuit).
|
||||
let g = self.constant(F::MULTIPLICATIVE_GROUP_GENERATOR);
|
||||
let phi = self.constant(F::primitive_root_of_unity(n_log));
|
||||
|
||||
let reversed_x = self.reverse_bits::<2>(x_index, n_log);
|
||||
let reversed_x = self.reverse_limbs::<2>(x_index, n_log);
|
||||
let phi = self.exp(phi, reversed_x, n_log);
|
||||
let mut subgroup_x = self.mul(g, phi);
|
||||
|
||||
@ -316,7 +323,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
if i > 0 {
|
||||
// Update the point x to x^arity.
|
||||
for _ in 0..config.reduction_arity_bits[i - 1] {
|
||||
subgroup_x = self.mul(subgroup_x, subgroup_x);
|
||||
subgroup_x = self.square(subgroup_x);
|
||||
}
|
||||
}
|
||||
domain_size = next_domain_size;
|
||||
@ -335,7 +342,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
*betas.last().unwrap(),
|
||||
);
|
||||
for _ in 0..final_arity_bits {
|
||||
subgroup_x = self.mul(subgroup_x, subgroup_x);
|
||||
subgroup_x = self.square(subgroup_x);
|
||||
}
|
||||
|
||||
// Final check of FRI. After all the reductions, we check that the final polynomial is equal
|
||||
|
||||
@ -173,6 +173,7 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
|
||||
let single_denominator = subgroup_x - zeta;
|
||||
sum += single_numerator / single_denominator;
|
||||
|
||||
// Polynomials opened at `x` and `g x`, i.e., the Zs polynomials.
|
||||
let zs_evals = proof
|
||||
.unsalted_evals(3, config)
|
||||
.iter()
|
||||
@ -190,6 +191,7 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
|
||||
let zs_denominator = (subgroup_x - zeta) * (subgroup_x - zeta_right);
|
||||
sum += zs_numerator / zs_denominator;
|
||||
|
||||
// Polynomials opened at `x` and `x.frobenius()`, i.e., the wires polynomials.
|
||||
let wire_evals = proof
|
||||
.unsalted_evals(2, config)
|
||||
.iter()
|
||||
@ -204,10 +206,10 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
|
||||
// and one call at the end of the sum.
|
||||
let alpha_powers_frob = alpha_powers.repeated_frobenius(D - 1);
|
||||
let wire_eval_frob = reduce_with_iter(&os.wires, alpha_powers_frob).frobenius();
|
||||
let wires_interpol = interpolant(&[(zeta, wire_eval), (zeta_frob, wire_eval_frob)]);
|
||||
let numerator = wire_composition_eval - wires_interpol.eval(subgroup_x);
|
||||
let denominator = (subgroup_x - zeta) * (subgroup_x - zeta_frob);
|
||||
sum += numerator / denominator;
|
||||
let wire_interpol = interpolant(&[(zeta, wire_eval), (zeta_frob, wire_eval_frob)]);
|
||||
let wire_numerator = wire_composition_eval - wire_interpol.eval(subgroup_x);
|
||||
let wire_denominator = (subgroup_x - zeta) * (subgroup_x - zeta_frob);
|
||||
sum += wire_numerator / wire_denominator;
|
||||
|
||||
sum
|
||||
}
|
||||
|
||||
@ -27,7 +27,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
self.range_check(x, (64 - leading_zeros) as usize);
|
||||
}
|
||||
|
||||
pub(crate) fn reverse_bits<const B: usize>(&mut self, x: Target, num_limbs: usize) -> Target {
|
||||
pub(crate) fn reverse_limbs<const B: usize>(&mut self, x: Target, num_limbs: usize) -> Target {
|
||||
let gate = self.add_gate(BaseSumGate::<B>::new(num_limbs), vec![]);
|
||||
let sum = Target::wire(gate, BaseSumGate::<B>::WIRE_SUM);
|
||||
self.route(x, sum);
|
||||
@ -61,7 +61,7 @@ mod tests {
|
||||
builder.route(limbs[2], five);
|
||||
builder.route(limbs[3], one);
|
||||
let rev = builder.constant(F::from_canonical_u64(11));
|
||||
let revt = builder.reverse_bits::<2>(xt, 9);
|
||||
let revt = builder.reverse_limbs::<2>(xt, 9);
|
||||
builder.route(revt, rev);
|
||||
|
||||
builder.assert_leading_zeros(xt, 64 - 9);
|
||||
|
||||
@ -115,7 +115,7 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
|
||||
|
||||
let zeta = challenger.get_extension_challenge();
|
||||
|
||||
let (opening_proof, mut openings) = timed!(
|
||||
let (opening_proof, openings) = timed!(
|
||||
ListPolynomialCommitment::open_plonk(
|
||||
&[
|
||||
&prover_data.constants_commitment,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user