PR feedback

This commit is contained in:
wborgeaud 2021-06-17 11:31:14 +02:00
parent eaba5238a6
commit 5bebc746f6
4 changed files with 61 additions and 52 deletions

View File

@ -32,16 +32,16 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
reverse_index_bits_in_place(&mut evals);
let mut old_x_index_bits = self.split_le(old_x_index, arity_bits);
old_x_index_bits.reverse();
self.rotate_left_from_bits(&old_x_index_bits, &evals);
let evals = self.rotate_left_from_bits(&old_x_index_bits, &evals);
// The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta.
let points = g
.powers()
.zip(evals)
.map(|(y, e)| {
.map(|y| {
let yt = self.constant(y);
(self.mul(x, yt), e)
self.mul(x, yt)
})
.zip(evals)
.collect::<Vec<_>>();
self.interpolate(&points, beta)
@ -154,7 +154,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
// We will add three terms to `sum`:
// - one for polynomials opened at `x` only
// - one for polynomials opened at `x` and `g x`
// - one for polynomials opened at `x` and its conjugate
// - one for polynomials opened at `x` and `x.frobenius()`
let evals = [0, 1, 4]
.iter()
@ -166,62 +166,69 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
.iter()
.chain(&os.plonk_sigmas)
.chain(&os.quotient_polys);
let mut numerator = self.zero_extension();
for (e, &o) in izip!(evals, openings) {
let mut single_numerator = self.zero_extension();
for (e, &o) in izip!(single_evals, single_openings) {
let a = alpha_powers.next(self);
let diff = self.sub_extension(e, o);
numerator = self.mul_add_extension(a, diff, numerator);
single_numerator = self.mul_add_extension(a, diff, single_numerator);
}
let denominator = self.sub_extension(subgroup_x, zeta);
let quotient = self.div_unsafe_extension(numerator, denominator);
let single_denominator = self.sub_extension(subgroup_x, zeta);
let quotient = self.div_unsafe_extension(single_numerator, single_denominator);
sum = self.add_extension(sum, quotient);
let evs = proof
// Polynomials opened at `x` and `g x`, i.e., the Zs polynomials.
let zs_evals = proof
.unsalted_evals(3, config)
.iter()
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
// TODO: Would probably be more efficient using `CircuitBuilder::reduce_with_powers_recursive`
let mut ev = self.zero_extension();
for &e in &evs {
let a = alpha_powers.next(self);
ev = self.mul_add_extension(a, e, ev);
let mut zs_composition_eval = self.zero_extension();
let mut alpha_powers_cloned = alpha_powers.clone();
for &e in &zs_evals {
let a = alpha_powers_cloned.next(self);
zs_composition_eval = self.mul_add_extension(a, e, zs_composition_eval);
}
let g = self.constant_extension(F::Extension::primitive_root_of_unity(degree_log));
let zeta_right = self.mul_extension(g, zeta);
let mut ev_zeta = self.zero_extension();
let mut zs_ev_zeta = self.zero_extension();
let mut alpha_powers_cloned = alpha_powers.clone();
for &t in &os.plonk_zs {
let a = alpha_powers.next(self);
ev_zeta = self.mul_add_extension(a, t, ev_zeta);
let a = alpha_powers_cloned.next(self);
zs_ev_zeta = self.mul_add_extension(a, t, zs_ev_zeta);
}
let mut ev_zeta_right = self.zero_extension();
let mut zs_ev_zeta_right = self.zero_extension();
for &t in &os.plonk_zs_right {
let a = alpha_powers.next(self);
ev_zeta_right = self.mul_add_extension(a, t, ev_zeta);
zs_ev_zeta_right = self.mul_add_extension(a, t, zs_ev_zeta);
}
let interpol_val =
self.interpolate2([(zeta, ev_zeta), (zeta_right, ev_zeta_right)], subgroup_x);
let numerator = self.sub_extension(ev, interpol_val);
let vanish = self.sub_extension(subgroup_x, zeta);
let vanish_right = self.sub_extension(subgroup_x, zeta_right);
let denominator = self.mul_extension(vanish, vanish_right);
let quotient = self.div_unsafe_extension(numerator, denominator);
sum = self.add_extension(sum, quotient);
let interpol_val = self.interpolate2(
[(zeta, zs_ev_zeta), (zeta_right, zs_ev_zeta_right)],
subgroup_x,
);
let zs_numerator = self.sub_extension(zs_composition_eval, interpol_val);
let vanish_zeta = self.sub_extension(subgroup_x, zeta);
let vanish_zeta_right = self.sub_extension(subgroup_x, zeta_right);
let zs_denominator = self.mul_extension(vanish_zeta, vanish_zeta_right);
let zs_quotient = self.div_unsafe_extension(zs_numerator, zs_denominator);
sum = self.add_extension(sum, zs_quotient);
let evs = proof
// Polynomials opened at `x` and `x.frobenius()`, i.e., the wires polynomials.
let wire_evals = proof
.unsalted_evals(2, config)
.iter()
.map(|&e| self.convert_to_ext(e))
.collect::<Vec<_>>();
let mut ev = self.zero_extension();
for &e in &evs {
let a = alpha_powers.next(self);
ev = self.mul_add_extension(a, e, ev);
let mut wire_composition_eval = self.zero_extension();
let mut alpha_powers_cloned = alpha_powers.clone();
for &e in &wire_evals {
let a = alpha_powers_cloned.next(self);
wire_composition_eval = self.mul_add_extension(a, e, wire_composition_eval);
}
let zeta_frob = zeta.frobenius(self);
let mut alpha_powers_cloned = alpha_powers.clone();
let wire_eval = os.wires.iter().fold(self.zero_extension(), |acc, &w| {
let a = alpha_powers.next(self);
let a = alpha_powers_cloned.next(self);
self.mul_add_extension(a, w, acc)
});
let mut alpha_powers_frob = alpha_powers.repeated_frobenius(D - 1, self);
@ -233,13 +240,14 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.mul_add_extension(a, w, acc)
})
.frobenius(self);
let interpol_val =
let zeta_frob = zeta.frobenius(self);
let wire_interpol_val =
self.interpolate2([(zeta, wire_eval), (zeta_frob, wire_eval_frob)], subgroup_x);
let numerator = self.sub_extension(ev, interpol_val);
let vanish_frob = self.sub_extension(subgroup_x, zeta_frob);
let denominator = self.mul_extension(vanish, vanish_frob);
let quotient = self.div_unsafe_extension(numerator, denominator);
sum = self.add_extension(sum, quotient);
let wire_numerator = self.sub_extension(wire_composition_eval, wire_interpol_val);
let vanish_zeta_frob = self.sub_extension(subgroup_x, zeta_frob);
let wire_denominator = self.mul_extension(vanish_zeta, vanish_zeta_frob);
let wire_quotient = self.div_unsafe_extension(wire_numerator, wire_denominator);
sum = self.add_extension(sum, wire_quotient);
sum
}
@ -271,11 +279,10 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
);
let mut old_x_index = self.zero();
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
// TODO: The verifier will need to check these constants at some point (out of circuit).
let g = self.constant(F::MULTIPLICATIVE_GROUP_GENERATOR);
let phi = self.constant(F::primitive_root_of_unity(n_log));
let reversed_x = self.reverse_bits::<2>(x_index, n_log);
let reversed_x = self.reverse_limbs::<2>(x_index, n_log);
let phi = self.exp(phi, reversed_x, n_log);
let mut subgroup_x = self.mul(g, phi);
@ -316,7 +323,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
if i > 0 {
// Update the point x to x^arity.
for _ in 0..config.reduction_arity_bits[i - 1] {
subgroup_x = self.mul(subgroup_x, subgroup_x);
subgroup_x = self.square(subgroup_x);
}
}
domain_size = next_domain_size;
@ -335,7 +342,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
*betas.last().unwrap(),
);
for _ in 0..final_arity_bits {
subgroup_x = self.mul(subgroup_x, subgroup_x);
subgroup_x = self.square(subgroup_x);
}
// Final check of FRI. After all the reductions, we check that the final polynomial is equal

View File

@ -173,6 +173,7 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
let single_denominator = subgroup_x - zeta;
sum += single_numerator / single_denominator;
// Polynomials opened at `x` and `g x`, i.e., the Zs polynomials.
let zs_evals = proof
.unsalted_evals(3, config)
.iter()
@ -190,6 +191,7 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
let zs_denominator = (subgroup_x - zeta) * (subgroup_x - zeta_right);
sum += zs_numerator / zs_denominator;
// Polynomials opened at `x` and `x.frobenius()`, i.e., the wires polynomials.
let wire_evals = proof
.unsalted_evals(2, config)
.iter()
@ -204,10 +206,10 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
// and one call at the end of the sum.
let alpha_powers_frob = alpha_powers.repeated_frobenius(D - 1);
let wire_eval_frob = reduce_with_iter(&os.wires, alpha_powers_frob).frobenius();
let wires_interpol = interpolant(&[(zeta, wire_eval), (zeta_frob, wire_eval_frob)]);
let numerator = wire_composition_eval - wires_interpol.eval(subgroup_x);
let denominator = (subgroup_x - zeta) * (subgroup_x - zeta_frob);
sum += numerator / denominator;
let wire_interpol = interpolant(&[(zeta, wire_eval), (zeta_frob, wire_eval_frob)]);
let wire_numerator = wire_composition_eval - wire_interpol.eval(subgroup_x);
let wire_denominator = (subgroup_x - zeta) * (subgroup_x - zeta_frob);
sum += wire_numerator / wire_denominator;
sum
}

View File

@ -27,7 +27,7 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.range_check(x, (64 - leading_zeros) as usize);
}
pub(crate) fn reverse_bits<const B: usize>(&mut self, x: Target, num_limbs: usize) -> Target {
pub(crate) fn reverse_limbs<const B: usize>(&mut self, x: Target, num_limbs: usize) -> Target {
let gate = self.add_gate(BaseSumGate::<B>::new(num_limbs), vec![]);
let sum = Target::wire(gate, BaseSumGate::<B>::WIRE_SUM);
self.route(x, sum);
@ -61,7 +61,7 @@ mod tests {
builder.route(limbs[2], five);
builder.route(limbs[3], one);
let rev = builder.constant(F::from_canonical_u64(11));
let revt = builder.reverse_bits::<2>(xt, 9);
let revt = builder.reverse_limbs::<2>(xt, 9);
builder.route(revt, rev);
builder.assert_leading_zeros(xt, 64 - 9);

View File

@ -115,7 +115,7 @@ pub(crate) fn prove<F: Extendable<D>, const D: usize>(
let zeta = challenger.get_extension_challenge();
let (opening_proof, mut openings) = timed!(
let (opening_proof, openings) = timed!(
ListPolynomialCommitment::open_plonk(
&[
&prover_data.constants_commitment,