Optimize some polynomial operations

This commit is contained in:
wborgeaud 2021-06-18 11:10:33 +02:00
parent b2e8a44994
commit 4f8ef2e178
4 changed files with 168 additions and 39 deletions

View File

@ -65,11 +65,35 @@ pub fn barycentric_weights<F: Field>(points: &[(F, F)]) -> Vec<F> {
) )
} }
/// Interpolate the linear polynomial passing through `points` on `x`.
pub fn interpolate2<F: Field>(points: [(F, F); 2], x: F) -> F {
// a0 -> a1
// b0 -> b1
// x -> a1 + (x-a0)*(b1-a1)/(b0-a0)
let (a0, a1) = points[0];
let (b0, b1) = points[1];
assert_ne!(a0, b0);
a1 + (x - a0) * (b1 - a1) / (b0 - a0)
}
/// Returns the linear polynomial passing through `points`.
pub fn interpolant2<F: Field>(points: [(F, F); 2]) -> PolynomialCoeffs<F> {
// a0 -> a1
// b0 -> b1
// x -> a1 + (x-a0)*(b1-a1)/(b0-a0)
let (a0, a1) = points[0];
let (b0, b1) = points[1];
assert_ne!(a0, b0);
let mult = (b1 - a1) / (b0 - a0);
vec![a1 - a0 * mult, mult].into()
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use super::*;
use crate::field::crandall_field::CrandallField; use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::field::Field; use crate::field::field::Field;
use crate::field::lagrange::interpolant;
use crate::polynomial::polynomial::PolynomialCoeffs; use crate::polynomial::polynomial::PolynomialCoeffs;
#[test] #[test]
@ -120,4 +144,19 @@ mod tests {
fn eval_naive<F: Field>(coeffs: &PolynomialCoeffs<F>, domain: &[F]) -> Vec<(F, F)> { fn eval_naive<F: Field>(coeffs: &PolynomialCoeffs<F>, domain: &[F]) -> Vec<(F, F)> {
domain.iter().map(|&x| (x, coeffs.eval(x))).collect() domain.iter().map(|&x| (x, coeffs.eval(x))).collect()
} }
#[test]
fn test_interpolant2() {
type F = QuarticCrandallField;
let points = [(F::rand(), F::rand()), (F::rand(), F::rand())];
let x = F::rand();
let intepol0 = interpolant(&points);
let intepol1 = interpolant2(points);
assert_eq!(intepol0.trimmed(), intepol1.trimmed());
let ev0 = interpolate(&points, x, &barycentric_weights(&points));
let ev1 = interpolate2(points, x);
assert_eq!(ev0, ev1);
}
} }

View File

@ -4,7 +4,7 @@ use rayon::prelude::*;
use crate::field::extension_field::Extendable; use crate::field::extension_field::Extendable;
use crate::field::extension_field::{FieldExtension, Frobenius}; use crate::field::extension_field::{FieldExtension, Frobenius};
use crate::field::field::Field; use crate::field::field::Field;
use crate::field::lagrange::interpolant; use crate::field::lagrange::{interpolant, interpolant2};
use crate::fri::{prover::fri_proof, verifier::verify_fri_proof, FriConfig}; use crate::fri::{prover::fri_proof, verifier::verify_fri_proof, FriConfig};
use crate::merkle_tree::MerkleTree; use crate::merkle_tree::MerkleTree;
use crate::plonk_challenger::Challenger; use crate::plonk_challenger::Challenger;
@ -122,15 +122,10 @@ impl<F: Field> ListPolynomialCommitment<F> {
.map(|p| p.to_extension()); .map(|p| p.to_extension());
let single_os = [&os.constants, &os.plonk_s_sigmas, &os.quotient_polys]; let single_os = [&os.constants, &os.plonk_s_sigmas, &os.quotient_polys];
let single_evals = single_os.iter().flat_map(|v| v.iter()); let single_evals = single_os.iter().flat_map(|v| v.iter());
let single_composition_poly = reduce_polys_with_iter(single_polys, alpha_powers.clone()); let single_composition_poly = reduce_polys_with_iter(single_polys, &mut alpha_powers);
let single_composition_eval = reduce_with_iter(single_evals, &mut alpha_powers);
let single_quotient = Self::compute_quotient( let single_quotient = Self::compute_quotient1(zeta, single_composition_poly);
&[zeta], final_poly += single_quotient;
&[single_composition_eval],
&single_composition_poly,
);
final_poly = &final_poly + &single_quotient;
// Zs polynomials are opened at `zeta` and `g*zeta`. // Zs polynomials are opened at `zeta` and `g*zeta`.
let zs_polys = commitments[3].polynomials.iter().map(|p| p.to_extension()); let zs_polys = commitments[3].polynomials.iter().map(|p| p.to_extension());
@ -140,12 +135,9 @@ impl<F: Field> ListPolynomialCommitment<F> {
reduce_with_iter(&os.plonk_zs_right, &mut alpha_powers), reduce_with_iter(&os.plonk_zs_right, &mut alpha_powers),
]; ];
let zs_quotient = Self::compute_quotient( let zs_quotient =
&[zeta, g * zeta], Self::compute_quotient2([zeta, g * zeta], zs_composition_evals, zs_composition_poly);
&zs_composition_evals, final_poly += zs_quotient;
&zs_composition_poly,
);
final_poly = &final_poly + &zs_quotient;
// When working in an extension field, need to check that wires are in the base field. // When working in an extension field, need to check that wires are in the base field.
// Check this by opening the wires polynomials at `zeta` and `zeta.frobenius()` and using the fact that // Check this by opening the wires polynomials at `zeta` and `zeta.frobenius()` and using the fact that
@ -158,12 +150,12 @@ impl<F: Field> ListPolynomialCommitment<F> {
reduce_with_iter(&wire_evals_frob, alpha_powers), reduce_with_iter(&wire_evals_frob, alpha_powers),
]; ];
let wires_quotient = Self::compute_quotient( let wires_quotient = Self::compute_quotient2(
&[zeta, zeta.frobenius()], [zeta, zeta.frobenius()],
&wire_composition_evals, wire_composition_evals,
&wire_composition_poly, wire_composition_poly,
); );
final_poly = &final_poly + &wires_quotient; final_poly += wires_quotient;
let lde_final_poly = final_poly.lde(config.rate_bits); let lde_final_poly = final_poly.lde(config.rate_bits);
let lde_final_values = lde_final_poly let lde_final_values = lde_final_poly
@ -192,28 +184,41 @@ impl<F: Field> ListPolynomialCommitment<F> {
) )
} }
/// Given `points=(x_i)`, `evals=(y_i)` and `poly=P` with `P(x_i)=y_i`, computes the polynomial /// Given `x` and `poly=P(X)`, computes the polynomial `Q=(P-P(x))/(X-x)`.
/// `Q=(P-I)/Z` where `I` interpolates `(x_i, y_i)` and `Z` is the vanishing polynomial on `(x_i)`. fn compute_quotient1<const D: usize>(
fn compute_quotient<const D: usize>( point: F::Extension,
points: &[F::Extension], poly: PolynomialCoeffs<F::Extension>,
evals: &[F::Extension],
poly: &PolynomialCoeffs<F::Extension>,
) -> PolynomialCoeffs<F::Extension> ) -> PolynomialCoeffs<F::Extension>
where where
F: Extendable<D>, F: Extendable<D>,
{ {
let pairs = points let (quotient, _ev) = poly.divide_by_linear(point);
.iter() quotient.padded(quotient.degree_plus_one().next_power_of_two())
.zip(evals) }
.map(|(&x, &e)| (x, e))
.collect::<Vec<_>>(); /// Given `points=(x_i)`, `evals=(y_i)` and `poly=P` with `P(x_i)=y_i`, computes the polynomial
/// `Q=(P-I)/Z` where `I` interpolates `(x_i, y_i)` and `Z` is the vanishing polynomial on `(x_i)`.
fn compute_quotient2<const D: usize>(
points: [F::Extension; 2],
evals: [F::Extension; 2],
poly: PolynomialCoeffs<F::Extension>,
) -> PolynomialCoeffs<F::Extension>
where
F: Extendable<D>,
{
let pairs = [(points[0], evals[0]), (points[1], evals[1])];
debug_assert!(pairs.iter().all(|&(x, e)| poly.eval(x) == e)); debug_assert!(pairs.iter().all(|&(x, e)| poly.eval(x) == e));
let interpolant = interpolant(&pairs); let interpolant = interpolant2(pairs);
let denominator = points.iter().fold(PolynomialCoeffs::one(), |acc, &x| { let denominator = vec![
&acc * &PolynomialCoeffs::new(vec![-x, F::Extension::ONE]) points[0] * points[1],
}); -points[0] - points[1],
let numerator = poly - &interpolant; F::Extension::ONE,
]
.into();
let mut numerator = poly;
numerator -= interpolant;
let (quotient, rem) = numerator.div_rem(&denominator); let (quotient, rem) = numerator.div_rem(&denominator);
debug_assert!(rem.is_zero()); debug_assert!(rem.is_zero());

View File

@ -125,8 +125,25 @@ impl<F: Field> PolynomialCoeffs<F> {
p p
} }
/// Let `self=p(X)`, this returns `(p(X)-p(z))/(X-z)` and `p(z)`.
/// See https://en.wikipedia.org/wiki/Horner%27s_method
pub(crate) fn divide_by_linear(&self, z: F) -> (PolynomialCoeffs<F>, F) {
let mut bs = self
.coeffs
.iter()
.rev()
.scan(F::ZERO, |acc, &c| {
*acc = *acc * z + c;
Some(*acc)
})
.collect::<Vec<_>>();
let ev = bs.pop().unwrap_or(F::ZERO);
bs.reverse();
(Self { coeffs: bs }, ev)
}
/// Computes the inverse of `self` modulo `x^n`. /// Computes the inverse of `self` modulo `x^n`.
pub(crate) fn inv_mod_xn(&self, n: usize) -> Self { pub fn inv_mod_xn(&self, n: usize) -> Self {
assert!(self.coeffs[0].is_nonzero(), "Inverse doesn't exist."); assert!(self.coeffs[0].is_nonzero(), "Inverse doesn't exist.");
let h = if self.len() < n { let h = if self.len() < n {
@ -166,7 +183,10 @@ impl<F: Field> PolynomialCoeffs<F> {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use std::time::Instant;
use crate::field::crandall_field::CrandallField; use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticCrandallField;
use crate::field::field::Field; use crate::field::field::Field;
use crate::polynomial::polynomial::PolynomialCoeffs; use crate::polynomial::polynomial::PolynomialCoeffs;
@ -199,4 +219,49 @@ mod tests {
let computed_q = a.divide_by_z_h(4); let computed_q = a.divide_by_z_h(4);
assert_eq!(computed_q, q); assert_eq!(computed_q, q);
} }
#[test]
#[ignore]
fn test_division_by_linear() {
type F = QuarticCrandallField;
let n = 1_000_000;
let poly = PolynomialCoeffs::new(F::rand_vec(n));
let z = F::rand();
let ev = poly.eval(z);
let timer = Instant::now();
let (quotient, ev2) = poly.div_rem(&PolynomialCoeffs::new(vec![-z, F::ONE]));
println!("{:.3}s for usual", timer.elapsed().as_secs_f32());
assert_eq!(ev2.trimmed().coeffs, vec![ev]);
let timer = Instant::now();
let (quotient, ev3) = poly.div_rem_long_division(&PolynomialCoeffs::new(vec![-z, F::ONE]));
println!("{:.3}s for long division", timer.elapsed().as_secs_f32());
assert_eq!(ev3.trimmed().coeffs, vec![ev]);
let timer = Instant::now();
let horn = poly.divide_by_linear(z);
println!("{:.3}s for Horner", timer.elapsed().as_secs_f32());
assert_eq!((quotient, ev), horn);
}
#[test]
#[ignore]
fn test_division_by_quadratic() {
type F = QuarticCrandallField;
let n = 1_000_000;
let poly = PolynomialCoeffs::new(F::rand_vec(n));
let quad = PolynomialCoeffs::new(F::rand_vec(2));
let timer = Instant::now();
let (quotient0, rem0) = poly.div_rem(&quad);
println!("{:.3}s for usual", timer.elapsed().as_secs_f32());
let timer = Instant::now();
let (quotient1, rem1) = poly.div_rem_long_division(&quad);
println!("{:.3}s for long division", timer.elapsed().as_secs_f32());
assert_eq!(quotient0.trimmed(), quotient1.trimmed());
assert_eq!(rem0.trimmed(), rem1.trimmed());
}
} }

View File

@ -1,6 +1,6 @@
use std::cmp::max; use std::cmp::max;
use std::iter::Sum; use std::iter::Sum;
use std::ops::{Add, Mul, Sub}; use std::ops::{Add, AddAssign, Mul, Sub, SubAssign};
use crate::field::extension_field::Extendable; use crate::field::extension_field::Extendable;
use crate::field::fft::{fft, ifft}; use crate::field::fft::{fft, ifft};
@ -243,6 +243,26 @@ impl<F: Field> Sub for &PolynomialCoeffs<F> {
} }
} }
impl<F: Field> AddAssign for PolynomialCoeffs<F> {
fn add_assign(&mut self, rhs: Self) {
let len = max(self.len(), rhs.len());
self.coeffs.resize(len, F::ZERO);
for (l, r) in self.coeffs.iter_mut().zip(rhs.coeffs) {
*l += r;
}
}
}
impl<F: Field> SubAssign for PolynomialCoeffs<F> {
fn sub_assign(&mut self, rhs: Self) {
let len = max(self.len(), rhs.len());
self.coeffs.resize(len, F::ZERO);
for (l, r) in self.coeffs.iter_mut().zip(rhs.coeffs) {
*l -= r;
}
}
}
impl<F: Field> Mul<F> for &PolynomialCoeffs<F> { impl<F: Field> Mul<F> for &PolynomialCoeffs<F> {
type Output = PolynomialCoeffs<F>; type Output = PolynomialCoeffs<F>;