mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-02-20 13:53:12 +00:00
Optimize some polynomial operations
This commit is contained in:
parent
b2e8a44994
commit
4f8ef2e178
@ -65,11 +65,35 @@ pub fn barycentric_weights<F: Field>(points: &[(F, F)]) -> Vec<F> {
|
||||
)
|
||||
}
|
||||
|
||||
/// Interpolate the linear polynomial passing through `points` on `x`.
|
||||
pub fn interpolate2<F: Field>(points: [(F, F); 2], x: F) -> F {
|
||||
// a0 -> a1
|
||||
// b0 -> b1
|
||||
// x -> a1 + (x-a0)*(b1-a1)/(b0-a0)
|
||||
let (a0, a1) = points[0];
|
||||
let (b0, b1) = points[1];
|
||||
assert_ne!(a0, b0);
|
||||
a1 + (x - a0) * (b1 - a1) / (b0 - a0)
|
||||
}
|
||||
|
||||
/// Returns the linear polynomial passing through `points`.
|
||||
pub fn interpolant2<F: Field>(points: [(F, F); 2]) -> PolynomialCoeffs<F> {
|
||||
// a0 -> a1
|
||||
// b0 -> b1
|
||||
// x -> a1 + (x-a0)*(b1-a1)/(b0-a0)
|
||||
let (a0, a1) = points[0];
|
||||
let (b0, b1) = points[1];
|
||||
assert_ne!(a0, b0);
|
||||
let mult = (b1 - a1) / (b0 - a0);
|
||||
vec![a1 - a0 * mult, mult].into()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::field::crandall_field::CrandallField;
|
||||
use crate::field::extension_field::quartic::QuarticCrandallField;
|
||||
use crate::field::field::Field;
|
||||
use crate::field::lagrange::interpolant;
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
|
||||
#[test]
|
||||
@ -120,4 +144,19 @@ mod tests {
|
||||
fn eval_naive<F: Field>(coeffs: &PolynomialCoeffs<F>, domain: &[F]) -> Vec<(F, F)> {
|
||||
domain.iter().map(|&x| (x, coeffs.eval(x))).collect()
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_interpolant2() {
|
||||
type F = QuarticCrandallField;
|
||||
let points = [(F::rand(), F::rand()), (F::rand(), F::rand())];
|
||||
let x = F::rand();
|
||||
|
||||
let intepol0 = interpolant(&points);
|
||||
let intepol1 = interpolant2(points);
|
||||
assert_eq!(intepol0.trimmed(), intepol1.trimmed());
|
||||
|
||||
let ev0 = interpolate(&points, x, &barycentric_weights(&points));
|
||||
let ev1 = interpolate2(points, x);
|
||||
assert_eq!(ev0, ev1);
|
||||
}
|
||||
}
|
||||
|
||||
@ -4,7 +4,7 @@ use rayon::prelude::*;
|
||||
use crate::field::extension_field::Extendable;
|
||||
use crate::field::extension_field::{FieldExtension, Frobenius};
|
||||
use crate::field::field::Field;
|
||||
use crate::field::lagrange::interpolant;
|
||||
use crate::field::lagrange::{interpolant, interpolant2};
|
||||
use crate::fri::{prover::fri_proof, verifier::verify_fri_proof, FriConfig};
|
||||
use crate::merkle_tree::MerkleTree;
|
||||
use crate::plonk_challenger::Challenger;
|
||||
@ -122,15 +122,10 @@ impl<F: Field> ListPolynomialCommitment<F> {
|
||||
.map(|p| p.to_extension());
|
||||
let single_os = [&os.constants, &os.plonk_s_sigmas, &os.quotient_polys];
|
||||
let single_evals = single_os.iter().flat_map(|v| v.iter());
|
||||
let single_composition_poly = reduce_polys_with_iter(single_polys, alpha_powers.clone());
|
||||
let single_composition_eval = reduce_with_iter(single_evals, &mut alpha_powers);
|
||||
let single_composition_poly = reduce_polys_with_iter(single_polys, &mut alpha_powers);
|
||||
|
||||
let single_quotient = Self::compute_quotient(
|
||||
&[zeta],
|
||||
&[single_composition_eval],
|
||||
&single_composition_poly,
|
||||
);
|
||||
final_poly = &final_poly + &single_quotient;
|
||||
let single_quotient = Self::compute_quotient1(zeta, single_composition_poly);
|
||||
final_poly += single_quotient;
|
||||
|
||||
// Zs polynomials are opened at `zeta` and `g*zeta`.
|
||||
let zs_polys = commitments[3].polynomials.iter().map(|p| p.to_extension());
|
||||
@ -140,12 +135,9 @@ impl<F: Field> ListPolynomialCommitment<F> {
|
||||
reduce_with_iter(&os.plonk_zs_right, &mut alpha_powers),
|
||||
];
|
||||
|
||||
let zs_quotient = Self::compute_quotient(
|
||||
&[zeta, g * zeta],
|
||||
&zs_composition_evals,
|
||||
&zs_composition_poly,
|
||||
);
|
||||
final_poly = &final_poly + &zs_quotient;
|
||||
let zs_quotient =
|
||||
Self::compute_quotient2([zeta, g * zeta], zs_composition_evals, zs_composition_poly);
|
||||
final_poly += zs_quotient;
|
||||
|
||||
// When working in an extension field, need to check that wires are in the base field.
|
||||
// Check this by opening the wires polynomials at `zeta` and `zeta.frobenius()` and using the fact that
|
||||
@ -158,12 +150,12 @@ impl<F: Field> ListPolynomialCommitment<F> {
|
||||
reduce_with_iter(&wire_evals_frob, alpha_powers),
|
||||
];
|
||||
|
||||
let wires_quotient = Self::compute_quotient(
|
||||
&[zeta, zeta.frobenius()],
|
||||
&wire_composition_evals,
|
||||
&wire_composition_poly,
|
||||
let wires_quotient = Self::compute_quotient2(
|
||||
[zeta, zeta.frobenius()],
|
||||
wire_composition_evals,
|
||||
wire_composition_poly,
|
||||
);
|
||||
final_poly = &final_poly + &wires_quotient;
|
||||
final_poly += wires_quotient;
|
||||
|
||||
let lde_final_poly = final_poly.lde(config.rate_bits);
|
||||
let lde_final_values = lde_final_poly
|
||||
@ -192,28 +184,41 @@ impl<F: Field> ListPolynomialCommitment<F> {
|
||||
)
|
||||
}
|
||||
|
||||
/// Given `points=(x_i)`, `evals=(y_i)` and `poly=P` with `P(x_i)=y_i`, computes the polynomial
|
||||
/// `Q=(P-I)/Z` where `I` interpolates `(x_i, y_i)` and `Z` is the vanishing polynomial on `(x_i)`.
|
||||
fn compute_quotient<const D: usize>(
|
||||
points: &[F::Extension],
|
||||
evals: &[F::Extension],
|
||||
poly: &PolynomialCoeffs<F::Extension>,
|
||||
/// Given `x` and `poly=P(X)`, computes the polynomial `Q=(P-P(x))/(X-x)`.
|
||||
fn compute_quotient1<const D: usize>(
|
||||
point: F::Extension,
|
||||
poly: PolynomialCoeffs<F::Extension>,
|
||||
) -> PolynomialCoeffs<F::Extension>
|
||||
where
|
||||
F: Extendable<D>,
|
||||
{
|
||||
let pairs = points
|
||||
.iter()
|
||||
.zip(evals)
|
||||
.map(|(&x, &e)| (x, e))
|
||||
.collect::<Vec<_>>();
|
||||
let (quotient, _ev) = poly.divide_by_linear(point);
|
||||
quotient.padded(quotient.degree_plus_one().next_power_of_two())
|
||||
}
|
||||
|
||||
/// Given `points=(x_i)`, `evals=(y_i)` and `poly=P` with `P(x_i)=y_i`, computes the polynomial
|
||||
/// `Q=(P-I)/Z` where `I` interpolates `(x_i, y_i)` and `Z` is the vanishing polynomial on `(x_i)`.
|
||||
fn compute_quotient2<const D: usize>(
|
||||
points: [F::Extension; 2],
|
||||
evals: [F::Extension; 2],
|
||||
poly: PolynomialCoeffs<F::Extension>,
|
||||
) -> PolynomialCoeffs<F::Extension>
|
||||
where
|
||||
F: Extendable<D>,
|
||||
{
|
||||
let pairs = [(points[0], evals[0]), (points[1], evals[1])];
|
||||
debug_assert!(pairs.iter().all(|&(x, e)| poly.eval(x) == e));
|
||||
|
||||
let interpolant = interpolant(&pairs);
|
||||
let denominator = points.iter().fold(PolynomialCoeffs::one(), |acc, &x| {
|
||||
&acc * &PolynomialCoeffs::new(vec![-x, F::Extension::ONE])
|
||||
});
|
||||
let numerator = poly - &interpolant;
|
||||
let interpolant = interpolant2(pairs);
|
||||
let denominator = vec![
|
||||
points[0] * points[1],
|
||||
-points[0] - points[1],
|
||||
F::Extension::ONE,
|
||||
]
|
||||
.into();
|
||||
|
||||
let mut numerator = poly;
|
||||
numerator -= interpolant;
|
||||
let (quotient, rem) = numerator.div_rem(&denominator);
|
||||
debug_assert!(rem.is_zero());
|
||||
|
||||
|
||||
@ -125,8 +125,25 @@ impl<F: Field> PolynomialCoeffs<F> {
|
||||
p
|
||||
}
|
||||
|
||||
/// Let `self=p(X)`, this returns `(p(X)-p(z))/(X-z)` and `p(z)`.
|
||||
/// See https://en.wikipedia.org/wiki/Horner%27s_method
|
||||
pub(crate) fn divide_by_linear(&self, z: F) -> (PolynomialCoeffs<F>, F) {
|
||||
let mut bs = self
|
||||
.coeffs
|
||||
.iter()
|
||||
.rev()
|
||||
.scan(F::ZERO, |acc, &c| {
|
||||
*acc = *acc * z + c;
|
||||
Some(*acc)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
let ev = bs.pop().unwrap_or(F::ZERO);
|
||||
bs.reverse();
|
||||
(Self { coeffs: bs }, ev)
|
||||
}
|
||||
|
||||
/// Computes the inverse of `self` modulo `x^n`.
|
||||
pub(crate) fn inv_mod_xn(&self, n: usize) -> Self {
|
||||
pub fn inv_mod_xn(&self, n: usize) -> Self {
|
||||
assert!(self.coeffs[0].is_nonzero(), "Inverse doesn't exist.");
|
||||
|
||||
let h = if self.len() < n {
|
||||
@ -166,7 +183,10 @@ impl<F: Field> PolynomialCoeffs<F> {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::time::Instant;
|
||||
|
||||
use crate::field::crandall_field::CrandallField;
|
||||
use crate::field::extension_field::quartic::QuarticCrandallField;
|
||||
use crate::field::field::Field;
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
|
||||
@ -199,4 +219,49 @@ mod tests {
|
||||
let computed_q = a.divide_by_z_h(4);
|
||||
assert_eq!(computed_q, q);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[ignore]
|
||||
fn test_division_by_linear() {
|
||||
type F = QuarticCrandallField;
|
||||
let n = 1_000_000;
|
||||
let poly = PolynomialCoeffs::new(F::rand_vec(n));
|
||||
let z = F::rand();
|
||||
let ev = poly.eval(z);
|
||||
|
||||
let timer = Instant::now();
|
||||
let (quotient, ev2) = poly.div_rem(&PolynomialCoeffs::new(vec![-z, F::ONE]));
|
||||
println!("{:.3}s for usual", timer.elapsed().as_secs_f32());
|
||||
assert_eq!(ev2.trimmed().coeffs, vec![ev]);
|
||||
|
||||
let timer = Instant::now();
|
||||
let (quotient, ev3) = poly.div_rem_long_division(&PolynomialCoeffs::new(vec![-z, F::ONE]));
|
||||
println!("{:.3}s for long division", timer.elapsed().as_secs_f32());
|
||||
assert_eq!(ev3.trimmed().coeffs, vec![ev]);
|
||||
|
||||
let timer = Instant::now();
|
||||
let horn = poly.divide_by_linear(z);
|
||||
println!("{:.3}s for Horner", timer.elapsed().as_secs_f32());
|
||||
assert_eq!((quotient, ev), horn);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[ignore]
|
||||
fn test_division_by_quadratic() {
|
||||
type F = QuarticCrandallField;
|
||||
let n = 1_000_000;
|
||||
let poly = PolynomialCoeffs::new(F::rand_vec(n));
|
||||
let quad = PolynomialCoeffs::new(F::rand_vec(2));
|
||||
|
||||
let timer = Instant::now();
|
||||
let (quotient0, rem0) = poly.div_rem(&quad);
|
||||
println!("{:.3}s for usual", timer.elapsed().as_secs_f32());
|
||||
|
||||
let timer = Instant::now();
|
||||
let (quotient1, rem1) = poly.div_rem_long_division(&quad);
|
||||
println!("{:.3}s for long division", timer.elapsed().as_secs_f32());
|
||||
|
||||
assert_eq!(quotient0.trimmed(), quotient1.trimmed());
|
||||
assert_eq!(rem0.trimmed(), rem1.trimmed());
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
use std::cmp::max;
|
||||
use std::iter::Sum;
|
||||
use std::ops::{Add, Mul, Sub};
|
||||
use std::ops::{Add, AddAssign, Mul, Sub, SubAssign};
|
||||
|
||||
use crate::field::extension_field::Extendable;
|
||||
use crate::field::fft::{fft, ifft};
|
||||
@ -243,6 +243,26 @@ impl<F: Field> Sub for &PolynomialCoeffs<F> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> AddAssign for PolynomialCoeffs<F> {
|
||||
fn add_assign(&mut self, rhs: Self) {
|
||||
let len = max(self.len(), rhs.len());
|
||||
self.coeffs.resize(len, F::ZERO);
|
||||
for (l, r) in self.coeffs.iter_mut().zip(rhs.coeffs) {
|
||||
*l += r;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> SubAssign for PolynomialCoeffs<F> {
|
||||
fn sub_assign(&mut self, rhs: Self) {
|
||||
let len = max(self.len(), rhs.len());
|
||||
self.coeffs.resize(len, F::ZERO);
|
||||
for (l, r) in self.coeffs.iter_mut().zip(rhs.coeffs) {
|
||||
*l -= r;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> Mul<F> for &PolynomialCoeffs<F> {
|
||||
type Output = PolynomialCoeffs<F>;
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user