mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-09 09:13:09 +00:00
Use partial product chain
This commit is contained in:
parent
b2264752de
commit
4e361726d0
@ -268,8 +268,7 @@ fn wires_permutation_partial_products<F: RichField + Extendable<D>, const D: usi
|
||||
let quotient_partials = partial_products("ient_values, degree);
|
||||
|
||||
// This is the final product for the quotient.
|
||||
let quotient = quotient_partials
|
||||
[common_data.num_partial_products.0 - common_data.num_partial_products.1..]
|
||||
let quotient = quotient_partials[common_data.num_partial_products.1..]
|
||||
.iter()
|
||||
.copied()
|
||||
.product();
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
use std::iter::Product;
|
||||
use std::ops::Sub;
|
||||
use std::ops::{MulAssign, Sub};
|
||||
|
||||
use crate::field::extension_field::target::ExtensionTarget;
|
||||
use crate::field::extension_field::Extendable;
|
||||
@ -9,17 +9,18 @@ use crate::util::ceil_div_usize;
|
||||
|
||||
/// Compute partial products of the original vector `v` such that all products consist of `max_degree`
|
||||
/// or less elements. This is done until we've computed the product `P` of all elements in the vector.
|
||||
pub fn partial_products<T: Product + Copy>(v: &[T], max_degree: usize) -> Vec<T> {
|
||||
pub fn partial_products<T: MulAssign + Product + Copy>(v: &[T], max_degree: usize) -> Vec<T> {
|
||||
debug_assert!(max_degree > 1);
|
||||
let mut res = Vec::new();
|
||||
let mut remainder = v.to_vec();
|
||||
while remainder.len() > max_degree {
|
||||
let new_partials = remainder
|
||||
.chunks(max_degree)
|
||||
// TODO: can filter out chunks of length 1.
|
||||
.map(|chunk| chunk.iter().copied().product())
|
||||
.collect::<Vec<_>>();
|
||||
res.extend_from_slice(&new_partials);
|
||||
remainder = new_partials;
|
||||
let mut acc = v[0];
|
||||
let chunk_size = max_degree - 1;
|
||||
let num_chunks = ceil_div_usize(v.len() - 1, chunk_size) - 1;
|
||||
for i in 0..num_chunks {
|
||||
acc *= v[1 + i * chunk_size..1 + (i + 1) * chunk_size]
|
||||
.iter()
|
||||
.copied()
|
||||
.product();
|
||||
res.push(acc);
|
||||
}
|
||||
|
||||
res
|
||||
@ -29,34 +30,33 @@ pub fn partial_products<T: Product + Copy>(v: &[T], max_degree: usize) -> Vec<T>
|
||||
/// vector of length `n`, and `b` is the number of elements needed to compute the final product.
|
||||
pub fn num_partial_products(n: usize, max_degree: usize) -> (usize, usize) {
|
||||
debug_assert!(max_degree > 1);
|
||||
let mut res = 0;
|
||||
let mut remainder = n;
|
||||
while remainder > max_degree {
|
||||
let new_partials_len = ceil_div_usize(remainder, max_degree);
|
||||
res += new_partials_len;
|
||||
remainder = new_partials_len;
|
||||
}
|
||||
let chunk_size = max_degree - 1;
|
||||
let num_chunks = ceil_div_usize(n - 1, chunk_size) - 1;
|
||||
|
||||
(res, remainder)
|
||||
(num_chunks, 1 + num_chunks * chunk_size)
|
||||
}
|
||||
|
||||
/// Checks that the partial products of `v` are coherent with those in `partials` by only computing
|
||||
/// products of size `max_degree` or less.
|
||||
pub fn check_partial_products<T: Product + Copy + Sub<Output = T>>(
|
||||
pub fn check_partial_products<T: MulAssign + Product + Copy + Sub<Output = T>>(
|
||||
v: &[T],
|
||||
mut partials: &[T],
|
||||
max_degree: usize,
|
||||
) -> Vec<T> {
|
||||
debug_assert!(max_degree > 1);
|
||||
let mut partials = partials.iter();
|
||||
let mut res = Vec::new();
|
||||
let mut remainder = v;
|
||||
while remainder.len() > max_degree {
|
||||
let products = remainder
|
||||
.chunks(max_degree)
|
||||
.map(|chunk| chunk.iter().copied().product::<T>());
|
||||
let products_len = products.len();
|
||||
res.extend(products.zip(partials).map(|(a, &b)| a - b));
|
||||
(remainder, partials) = partials.split_at(products_len);
|
||||
let mut acc = v[0];
|
||||
let chunk_size = max_degree - 1;
|
||||
let num_chunks = ceil_div_usize(v.len() - 1, chunk_size) - 1;
|
||||
for i in 0..num_chunks {
|
||||
acc *= v[1 + i * chunk_size..1 + (i + 1) * chunk_size]
|
||||
.iter()
|
||||
.copied()
|
||||
.product();
|
||||
res.push(acc - *partials.next().unwrap());
|
||||
}
|
||||
debug_assert!(partials.next().is_none());
|
||||
|
||||
res
|
||||
}
|
||||
@ -67,22 +67,20 @@ pub fn check_partial_products_recursively<F: RichField + Extendable<D>, const D:
|
||||
partials: &[ExtensionTarget<D>],
|
||||
max_degree: usize,
|
||||
) -> Vec<ExtensionTarget<D>> {
|
||||
debug_assert!(max_degree > 1);
|
||||
let mut partials = partials.iter();
|
||||
let mut res = Vec::new();
|
||||
let mut remainder = v.to_vec();
|
||||
let mut partials = partials.to_vec();
|
||||
while remainder.len() > max_degree {
|
||||
let products = remainder
|
||||
.chunks(max_degree)
|
||||
.map(|chunk| builder.mul_many_extension(chunk))
|
||||
.collect::<Vec<_>>();
|
||||
res.extend(
|
||||
products
|
||||
.iter()
|
||||
.zip(&partials)
|
||||
.map(|(&a, &b)| builder.sub_extension(a, b)),
|
||||
);
|
||||
remainder = partials.drain(..products.len()).collect();
|
||||
let mut acc = v[0];
|
||||
let chunk_size = max_degree - 1;
|
||||
let num_chunks = ceil_div_usize(v.len() - 1, chunk_size) - 1;
|
||||
for i in 0..num_chunks {
|
||||
let mut chunk = v[1 + i * chunk_size..1 + (i + 1) * chunk_size].to_vec();
|
||||
chunk.push(acc);
|
||||
acc = builder.mul_many_extension(&chunk);
|
||||
|
||||
res.push(builder.sub_extension(acc, *partials.next().unwrap()));
|
||||
}
|
||||
debug_assert!(partials.next().is_none());
|
||||
|
||||
res
|
||||
}
|
||||
@ -97,15 +95,15 @@ mod tests {
|
||||
fn test_partial_products() {
|
||||
let v = vec![1, 2, 3, 4, 5, 6];
|
||||
let p = partial_products(&v, 2);
|
||||
assert_eq!(p, vec![2, 12, 30, 24, 30]);
|
||||
assert_eq!(p, vec![2, 6, 24, 120]);
|
||||
let nums = num_partial_products(v.len(), 2);
|
||||
assert_eq!(p.len(), nums.0);
|
||||
assert!(check_partial_products(&v, &p, 2)
|
||||
.iter()
|
||||
.all(|x| x.is_zero()));
|
||||
assert_eq!(
|
||||
*p.last().unwrap() * v[nums.1..].iter().copied().product::<i32>(),
|
||||
v.into_iter().product::<i32>(),
|
||||
p[p.len() - nums.1..].iter().copied().product(),
|
||||
);
|
||||
|
||||
let v = vec![1, 2, 3, 4, 5, 6];
|
||||
@ -117,8 +115,8 @@ mod tests {
|
||||
.iter()
|
||||
.all(|x| x.is_zero()));
|
||||
assert_eq!(
|
||||
*p.last().unwrap() * v[nums.1..].iter().copied().product::<i32>(),
|
||||
v.into_iter().product::<i32>(),
|
||||
p[p.len() - nums.1..].iter().copied().product(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user