diff --git a/evm/src/bn254_arithmetic.rs b/evm/src/bn254_arithmetic.rs index 7940b347..22bf92c4 100644 --- a/evm/src/bn254_arithmetic.rs +++ b/evm/src/bn254_arithmetic.rs @@ -254,9 +254,9 @@ impl Mul for Fp6 { } } -/// Let x_n = x^(p^n) and note that +/// Let x_n = x^(p^n) and note that /// x_0 = x^(p^0) = x^1 = x -/// (x_n)_m = (x^(p^n))^(p^m) = x^(p^n * p^m) = x^(p^(n+m)) = x_{n+m} +/// (x_n)_m = (x^(p^n))^(p^m) = x^(p^n * p^m) = x^(p^(n+m)) = x_{n+m} /// By Galois Theory, given x: Fp6, the product /// phi = x_0 * x_1 * x_2 * x_3 * x_4 * x_5 /// lands in Fp, and hence the inverse of x is given by