modmul and modexp

This commit is contained in:
Nicholas Ward 2023-03-07 15:15:20 -08:00
parent 1e0193566d
commit 4cef5aaa84
5 changed files with 478 additions and 1 deletions

View File

@ -17,6 +17,8 @@ pub(crate) fn combined_kernel() -> Kernel {
include_str!("asm/bignum/addmul.asm"),
include_str!("asm/bignum/cmp.asm"),
include_str!("asm/bignum/iszero.asm"),
include_str!("asm/bignum/modexp.asm"),
include_str!("asm/bignum/modmul.asm"),
include_str!("asm/bignum/mul.asm"),
include_str!("asm/bignum/shr.asm"),
include_str!("asm/bignum/util.asm"),

View File

@ -0,0 +1,169 @@
// Arithmetic on little-endian integers represented with 128-bit limbs.
// All integers must be under a given length bound, and are padded with leading zeroes.
// Stores b ^ e % m in output_loc, leaving b, e, and m unchanged.
// b, e, and m must have the same length.
// output_loc must have size length and be initialized with zeroes; scratch_1 must have size length.
// All of scratch_2..scratch_6 must have size 2 * length and be initialized with zeroes.
global modexp_bignum:
// stack: length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
// We store the repeated-squares accumulator x_i in scratch_1, starting with x_0 := b.
DUP1
// stack: length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP3
// stack: b_start_loc, length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP8
// stack: scratch_1, b_start_loc, length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%memcpy_kernel_general
// stack: length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
// We store the accumulated output value x_i in output_loc, starting with x_0=1.
PUSH 1
// stack: 1, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP6
// stack: output_loc, 1, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%mstore_kernel_general
modexp_loop:
// stack: length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
// y := e % 2
DUP3
// stack: e_start_loc, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%mload_kernel_general
// stack: e_first, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%mod_const(2)
// stack: y = e_first % 2 = e % 2, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
ISZERO
// stack: y == 0, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%jumpi(modexp_y_0)
// if y == 1, modular-multiply output_loc by scratch_1, using scratch_2..scratch_5 as scratch space, and store in scratch_6.
PUSH modexp_mul_return
// stack: modexp_mul_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP11
// stack: scratch_5, modexp_mul_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP11
// stack: scratch_4, scratch_5, modexp_mul_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP11
// stack: scratch_3, scratch_4, scratch_5, modexp_mul_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP11
// stack: scratch_2, scratch_3, scratch_4, scratch_5, modexp_mul_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP16
// stack: scratch_6, scratch_2, scratch_3, scratch_4, scratch_5, modexp_mul_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP10
// stack: m_start_loc, scratch_6, scratch_2, scratch_3, scratch_4, scratch_5, modexp_mul_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP13
// stack: scratch_1, m_start_loc, scratch_6, scratch_2, scratch_3, scratch_4, scratch_5, modexp_mul_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP13
// stack: output_loc, scratch_1, m_start_loc, scratch_6, scratch_2, scratch_3, scratch_4, scratch_5, modexp_mul_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP10
// stack: length, output_loc, scratch_1, m_start_loc, scratch_6, scratch_2, scratch_3, scratch_4, scratch_5, modexp_mul_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%jump(modmul_bignum)
modexp_mul_return:
// stack: length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
// Copy scratch_6 to output_loc.
DUP1
// stack: length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP12
// stack: scratch_6, length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP7
// stack: output_loc, scratch_6, length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%memcpy_kernel_general
// stack: length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
// Zero out scratch_2..scratch_6.
DUP1
// stack: length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%mul_const(10)
// stack: 10 * length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP8
// stack: scratch_2, 10 * length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%clear_kernel_general
// stack: length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
modexp_y_0:
// if y == 0, do nothing
// Modular-square repeated-squares accumulator x_i (in scratch_1), using scratch_2..scratch_5 as scratch space, and store in scratch_6.
PUSH modexp_square_return
// stack: modexp_square_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP11
// stack: scratch_5, modexp_square_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP11
// stack: scratch_4, scratch_5, modexp_square_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP11
// stack: scratch_3, scratch_4, scratch_5, modexp_square_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP11
// stack: scratch_2, scratch_3, scratch_4, scratch_5, modexp_square_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP16
// stack: scratch_6, scratch_2, scratch_3, scratch_4, scratch_5, modexp_square_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP10
// stack: m_start_loc, scratch_6, scratch_2, scratch_3, scratch_4, scratch_5, modexp_square_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP13
// stack: scratch_1, m_start_loc, scratch_6, scratch_2, scratch_3, scratch_4, scratch_5, modexp_square_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP1
// stack: scratch_1, scratch_1, m_start_loc, scratch_6, scratch_2, scratch_3, scratch_4, scratch_5, modexp_square_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP10
// stack: length, scratch_1, scratch_1, m_start_loc, scratch_6, scratch_2, scratch_3, scratch_4, scratch_5, modexp_square_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%jump(modmul_bignum)
// stack: length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
modexp_square_return:
// Copy scratch_6 to scratch_1.
DUP1
// stack: length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP12
// stack: scratch_6, length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP8
// stack: scratch_1, scratch_6, length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%memcpy_kernel_general
// stack: length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
// Zero out scratch_2..scratch_6.
DUP1
// stack: length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%mul_const(10)
// stack: 10 * length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP8
// stack: scratch_2, 10 * length, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%clear_kernel_general
// stack: length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
// e //= 2 (with shr_bignum)
PUSH modexp_shr_return
// stack: modexp_shr_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP4
// stack: e_start_loc, modexp_shr_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP3
// stack: length, e_start_loc, modexp_shr_return, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%jump(shr_bignum)
modexp_shr_return:
// stack: length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
// check if e == 0 (with iszero_bignum)
PUSH modexp_iszero_return
// stack: modexp_return_6, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP4
// stack: e_start_loc, modexp_return_6, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
DUP3
// stack: length, e_start_loc, modexp_return_6, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%jump(iszero_bignum)
modexp_iszero_return:
// stack: e == 0, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
ISZERO
// stack: e != 0, length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%jumpi(modexp_loop)
modexp_end:
// stack: length, b_start_loc, e_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, scratch_5, scratch_6, retdest
%rep 11
POP
%endrep
// stack: retdest
JUMP

View File

@ -0,0 +1,202 @@
// Arithmetic on little-endian integers represented with 128-bit limbs.
// All integers must be under a given length bound, and are padded with leading zeroes.
// Stores a * b % m in output_loc, leaving a, b, and m unchanged.
// a, b, and m must have the same length.
// Both output_loc and scratch_1 must have size length.
// All of scratch_2, scratch_3, and scratch_4 must have size 2 * length and be initialized with zeroes.
global modmul_bignum:
// stack: length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
// The prover provides x := (a * b) % m, which we store in output_loc.
PUSH 0
// stack: i=0, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
modmul_remainder_loop:
// stack: i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
PROVER_INPUT(bignum_modmul::remainder)
// stack: PI, i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
DUP7
// stack: output_loc, PI, i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
DUP3
// stack: i, output_loc, PI, i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
ADD
// stack: output_loc[i], PI, i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
%mstore_kernel_general
// stack: i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
%increment
// stack: i+1, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
DUP2
DUP2
// stack: i+1, length, i+1, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
EQ
// stack: i+1==length, i+1, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
ISZERO
// stack: i+1!=length, i+1, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
%jumpi(modmul_remainder_loop)
modmul_remainder_end:
// stack: i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
POP
// The prover provides k := (a * b) / m, which we store in scratch_1.
// stack: length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
PUSH 0
// stack: i=0, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
modmul_quotient_loop:
// stack: i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
PROVER_INPUT(bignum_modmul::quotient)
// stack: PI, i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
DUP8
// stack: scratch_1, PI, i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
DUP3
// stack: i, scratch_1, PI, i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
ADD
// stack: scratch_1[i], PI, i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
%mstore_kernel_general
// stack: i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
%increment
// stack: i+1, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
DUP2
DUP2
// stack: i+1, length, i+1, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
%neq
// stack: i+1!=length, i+1, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
%jumpi(modmul_quotient_loop)
modmul_quotient_end:
// stack: i, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
POP
// stack: length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
// Verification step 1: calculate x + k * m.
// Store k * m in scratch_2, using scratch_3 as scratch space.
PUSH modmul_return_1
// stack: modmul_return_1, length, a_start_loc, b_start_loc, m_start_loc, output_loc, scratch_1, scratch_2, scratch_3, scratch_4, retdest
%stack (return, len, a, b, m, out, s1, s2, s3) -> (len, s1, m, s2, s3, return, len, a, b, out, s2, s3)
// stack: length, scratch_1, m_start_loc, scratch_2, scratch_3, modmul_return_1, length, a_start_loc, b_start_loc, output_loc, scratch_2, scratch_3, scratch_4, retdest
%jump(mul_bignum)
modmul_return_1:
// stack: length, a_start_loc, b_start_loc, output_loc, scratch_2, scratch_3, scratch_4, retdest
// Add x into k * m (in scratch_2).
PUSH modmul_return_2
// stack: modmul_return_2, length, a_start_loc, b_start_loc, output_loc, scratch_2, scratch_3, scratch_4, retdest
%stack (return, len, a, b, out, s2) -> (len, s2, out, return, len, a, b, s2)
// stack: length, scratch_2, output_loc, modmul_return_2, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
%jump(add_bignum)
modmul_return_2:
// stack: carry, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
ISZERO
%jumpi(no_carry)
// input is correct, x + k * m will equal a * b, which has length at most 2 * length).
// stack: length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
DUP4
// stack: scratch_2, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
DUP2
// stack: length, scratch_2, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
ADD
// stack: cur_loc=scratch_2 + length, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
increment_loop:
// stack: cur_loc, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
DUP1
%mload_kernel_general
// stack: val, cur_loc, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
%increment
// stack: val+1, cur_loc, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
DUP1
// stack: val+1, val+1, cur_loc, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
%eq_const(@BIGNUM_LIMB_BASE)
// stack: val+1==limb_base, val+1, cur_loc, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
DUP1
// stack: val+1==limb_base, val+1==limb_base, val+1, cur_loc, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
ISZERO
// stack: val+1!=limb_base, val+1==limb_base, val+1, cur_loc, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
SWAP1
SWAP2
// stack: val+1, val+1!=limb_base, val+1==limb_base, cur_loc, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
MUL
// stack: to_write=(val+1)*(val+1!=limb_base), continue=val+1==limb_base, cur_loc, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
DUP3
// stack: cur_loc, to_write, continue, cur_loc, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
%mstore_kernel_general
// stack: continue, cur_loc, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
SWAP1
// stack: cur_loc, continue, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
%increment
// stack: cur_loc + 1, continue, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
DUP1
// stack: cur_loc + 1, cur_loc + 1, continue, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
DUP8
// stack: scratch_3, cur_loc + 1, cur_loc + 1, continue, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
EQ
// stack: cur_loc + 1 == scratch_3, cur_loc + 1, continue, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
ISZERO
// stack: cur_loc + 1 != scratch_3, cur_loc + 1, continue, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
SWAP1
SWAP2
// stack: continue, cur_loc + 1 != scratch_3, cur_loc + 1, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
MUL
// stack: new_continue=continue*(cur_loc + 1 != scratch_3), cur_loc + 1, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
%jumpi(increment_loop)
// stack: cur_loc + 1, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
POP
no_carry:
// stack: length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
// Calculate a * b.
// Store zeroes in scratch_3.
DUP1
// stack: length, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
DUP6
// stack: scratch_3, length, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
%clear_kernel_general
// stack: length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
// Store a * b in scratch_3, using scratch_4 as scratch space.
PUSH modmul_return_3
// stack: modmul_return_3, length, a_start_loc, b_start_loc, scratch_2, scratch_3, scratch_4, retdest
%stack (return, len, a, b, s2, s3, s4) -> (len, a, b, s3, s4, return, len, s2, s3)
// stack: length, a_start_loc, b_start_loc, scratch_3, scratch_4, modmul_return_3, length, scratch_2, scratch_3, retdest
%jump(mul_bignum)
modmul_return_3:
// stack: length, scratch_2, scratch_3, retdest
// Check that x + k * m = a * b.
// Walk through scratch_2 and scratch_3, checking that they are equal.
// stack: n=length, i=scratch_2, j=scratch_3, retdest
modmul_check_loop:
// stack: n, i, j, retdest
%stack (l, idx: 2) -> (idx, l, idx)
// stack: i, j, n, i, j, retdest
%mload_kernel_general
SWAP1
%mload_kernel_general
SWAP1
// stack: mem[i], mem[j], n, i, j, retdest
%assert_eq
// stack: n, i, j, retdest
%decrement
// stack: n-1, i, j, retdest
SWAP1
// stack: i, n-1, j, retdest
%increment
// stack: i+1, n-1, j, retdest
SWAP2
// stack: j, n-1, i+1, retdest
%increment
// stack: j+1, n-1, i+1, retdest
SWAP2
SWAP1
// stack: n-1, i+1, j+1, retdest
DUP1
// stack: n-1, n-1, i+1, j+1, retdest
%jumpi(modmul_check_loop)
modmul_check_end:
// stack: n-1, i+1, j+1, retdest
%pop3
// stack: retdest
JUMP

View File

@ -3,6 +3,7 @@ use std::str::FromStr;
use anyhow::{bail, Error};
use ethereum_types::{BigEndianHash, H256, U256};
use itertools::Itertools;
use plonky2::field::types::Field;
use crate::bn254_arithmetic::Fp12;
@ -11,7 +12,8 @@ use crate::generation::prover_input::EvmField::{
};
use crate::generation::prover_input::FieldOp::{Inverse, Sqrt};
use crate::generation::state::GenerationState;
use crate::memory::segments::Segment::BnPairing;
use crate::memory::segments::{Segment, Segment::BnPairing};
use crate::util::{biguint_to_mem_vec, mem_vec_to_biguint};
use crate::witness::util::{kernel_peek, stack_peek};
/// Prover input function represented as a scoped function name.
@ -34,6 +36,7 @@ impl<F: Field> GenerationState<F> {
"mpt" => self.run_mpt(),
"rlp" => self.run_rlp(),
"account_code" => self.run_account_code(input_fn),
"bignum_modmul" => self.run_bignum_modmul(input_fn),
_ => panic!("Unrecognized prover input function."),
}
}
@ -123,6 +126,101 @@ impl<F: Field> GenerationState<F> {
_ => panic!("Invalid prover input function."),
}
}
// Bignum modular multiplication related code.
fn run_bignum_modmul(&mut self, input_fn: &ProverInputFn) -> U256 {
if self.bignum_modmul_prover_inputs.is_empty() {
let function = input_fn.0[1].as_str();
let len = stack_peek(self, 1)
.expect("Stack does not have enough items")
.try_into()
.unwrap();
let a_start_loc = stack_peek(self, 2)
.expect("Stack does not have enough items")
.try_into()
.unwrap();
let b_start_loc = stack_peek(self, 3)
.expect("Stack does not have enough items")
.try_into()
.unwrap();
let m_start_loc = stack_peek(self, 4)
.expect("Stack does not have enough items")
.try_into()
.unwrap();
let result = match function {
"remainder" => {
self.bignum_modmul_remainder(len, a_start_loc, b_start_loc, m_start_loc)
}
"quotient" => {
self.bignum_modmul_quotient(len, a_start_loc, b_start_loc, m_start_loc)
}
_ => panic!("Invalid prover input function."),
};
self.bignum_modmul_prover_inputs = result
.iter()
.cloned()
.pad_using(len, |_| 0.into())
.collect();
self.bignum_modmul_prover_inputs.reverse();
}
self.bignum_modmul_prover_inputs.pop().unwrap()
}
fn bignum_modmul_remainder(
&mut self,
len: usize,
a_start_loc: usize,
b_start_loc: usize,
m_start_loc: usize,
) -> Vec<U256> {
let a = &self.memory.contexts[0].segments[Segment::KernelGeneral as usize].content
[a_start_loc..a_start_loc + len];
let b = &self.memory.contexts[0].segments[Segment::KernelGeneral as usize].content
[b_start_loc..b_start_loc + len];
let m = &self.memory.contexts[0].segments[Segment::KernelGeneral as usize].content
[m_start_loc..m_start_loc + len];
let a_biguint = mem_vec_to_biguint(a);
let b_biguint = mem_vec_to_biguint(b);
let m_biguint = mem_vec_to_biguint(m);
let result_biguint = (a_biguint * b_biguint) % m_biguint;
dbg!("remainder");
dbg!(result_biguint.clone());
biguint_to_mem_vec(result_biguint)
}
fn bignum_modmul_quotient(
&mut self,
len: usize,
a_start_loc: usize,
b_start_loc: usize,
m_start_loc: usize,
) -> Vec<U256> {
let a = &self.memory.contexts[0].segments[Segment::KernelGeneral as usize].content
[a_start_loc..a_start_loc + len];
let b = &self.memory.contexts[0].segments[Segment::KernelGeneral as usize].content
[b_start_loc..b_start_loc + len];
let m = &self.memory.contexts[0].segments[Segment::KernelGeneral as usize].content
[m_start_loc..m_start_loc + len];
let a_biguint = mem_vec_to_biguint(a);
let b_biguint = mem_vec_to_biguint(b);
let m_biguint = mem_vec_to_biguint(m);
dbg!(a_biguint.clone());
dbg!(b_biguint.clone());
dbg!(m_biguint.clone());
let result_biguint = (a_biguint * b_biguint) / m_biguint;
dbg!("quotient");
dbg!(result_biguint.clone());
biguint_to_mem_vec(result_biguint)
}
}
enum EvmField {

View File

@ -39,6 +39,10 @@ pub(crate) struct GenerationState<F: Field> {
/// useful to see the actual addresses for debugging. Here we store the mapping for all known
/// addresses.
pub(crate) state_key_to_address: HashMap<H256, Address>,
/// Prover inputs containing the result of a MODMUL-related operation, in reverse order so that the next
/// input can be obtained via `pop()`.
pub(crate) bignum_modmul_prover_inputs: Vec<U256>,
}
impl<F: Field> GenerationState<F> {
@ -54,6 +58,7 @@ impl<F: Field> GenerationState<F> {
log::debug!("Input contract_code: {:?}", &inputs.contract_code);
let mpt_prover_inputs = all_mpt_prover_inputs_reversed(&inputs.tries);
let rlp_prover_inputs = all_rlp_prover_inputs_reversed(&inputs.signed_txns);
let bignum_modmul_prover_inputs = Vec::new();
Self {
inputs,
@ -64,6 +69,7 @@ impl<F: Field> GenerationState<F> {
mpt_prover_inputs,
rlp_prover_inputs,
state_key_to_address: HashMap::new(),
bignum_modmul_prover_inputs,
}
}