Merge pull request #466 from mir-protocol/glv

Glv
This commit is contained in:
Nicholas Ward 2022-03-28 08:29:04 -07:00 committed by GitHub
commit 270ff9858d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
32 changed files with 1684 additions and 329 deletions

View File

@ -1,5 +1,5 @@
[workspace]
members = ["field", "insertion", "plonky2", "starky", "system_zero", "util", "waksman"]
members = ["field", "insertion", "plonky2", "starky", "system_zero", "util", "waksman", "ecdsa"]
[profile.release]
opt-level = 3

17
ecdsa/Cargo.toml Normal file
View File

@ -0,0 +1,17 @@
[package]
name = "plonky2_ecdsa"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
plonky2 = { path = "../plonky2" }
plonky2_util = { path = "../util" }
plonky2_field = { path = "../field" }
num = "0.4.0"
itertools = "0.10.0"
rayon = "1.5.1"
serde = { version = "1.0", features = ["derive"] }
anyhow = "1.0.40"
rand = "0.8.4"

View File

@ -36,6 +36,7 @@ impl<C: Curve> ProjectivePoint<C> {
MultiplicationPrecomputation { powers }
}
#[must_use]
pub fn mul_with_precomputation(
&self,
scalar: C::ScalarField,

View File

@ -78,6 +78,7 @@ impl<C: Curve> AffinePoint<C> {
affine_points.iter().map(Self::to_projective).collect()
}
#[must_use]
pub fn double(&self) -> Self {
let AffinePoint { x: x1, y: y1, zero } = *self;
@ -187,6 +188,7 @@ impl<C: Curve> ProjectivePoint<C> {
}
// From https://www.hyperelliptic.org/EFD/g1p/data/shortw/projective/doubling/dbl-2007-bl
#[must_use]
pub fn double(&self) -> Self {
let Self { x, y, z } = *self;
if z == C::BaseField::ZERO {
@ -222,6 +224,7 @@ impl<C: Curve> ProjectivePoint<C> {
.collect()
}
#[must_use]
pub fn neg(&self) -> Self {
Self {
x: self.x,

View File

@ -1,8 +1,8 @@
use plonky2_field::field_types::Field;
use serde::{Deserialize, Serialize};
use crate::curve::curve_msm::msm_parallel;
use crate::curve::curve_types::{base_to_scalar, AffinePoint, Curve, CurveScalar};
use crate::field::field_types::Field;
#[derive(Copy, Clone, Debug, Deserialize, Eq, Hash, PartialEq, Serialize)]
pub struct ECDSASignature<C: Curve> {
@ -13,13 +13,15 @@ pub struct ECDSASignature<C: Curve> {
#[derive(Copy, Clone, Debug, Deserialize, Eq, Hash, PartialEq, Serialize)]
pub struct ECDSASecretKey<C: Curve>(pub C::ScalarField);
impl<C: Curve> ECDSASecretKey<C> {
pub fn to_public(&self) -> ECDSAPublicKey<C> {
ECDSAPublicKey((CurveScalar(self.0) * C::GENERATOR_PROJECTIVE).to_affine())
}
}
#[derive(Copy, Clone, Debug, Deserialize, Eq, Hash, PartialEq, Serialize)]
pub struct ECDSAPublicKey<C: Curve>(pub AffinePoint<C>);
pub fn secret_to_public<C: Curve>(sk: ECDSASecretKey<C>) -> ECDSAPublicKey<C> {
ECDSAPublicKey((CurveScalar(sk.0) * C::GENERATOR_PROJECTIVE).to_affine())
}
pub fn sign_message<C: Curve>(msg: C::ScalarField, sk: ECDSASecretKey<C>) -> ECDSASignature<C> {
let (k, rr) = {
let mut k = C::ScalarField::rand();
@ -61,10 +63,11 @@ pub fn verify_message<C: Curve>(
#[cfg(test)]
mod tests {
use crate::curve::ecdsa::{secret_to_public, sign_message, verify_message, ECDSASecretKey};
use plonky2_field::field_types::Field;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use crate::curve::ecdsa::{sign_message, verify_message, ECDSASecretKey};
use crate::curve::secp256k1::Secp256K1;
use crate::field::field_types::Field;
use crate::field::secp256k1_scalar::Secp256K1Scalar;
#[test]
fn test_ecdsa_native() {
@ -72,7 +75,7 @@ mod tests {
let msg = Secp256K1Scalar::rand();
let sk = ECDSASecretKey::<C>(Secp256K1Scalar::rand());
let pk = secret_to_public(sk);
let pk = sk.to_public();
let sig = sign_message(msg, sk);
let result = verify_message(msg, sig, pk);

140
ecdsa/src/curve/glv.rs Normal file
View File

@ -0,0 +1,140 @@
use num::rational::Ratio;
use num::BigUint;
use plonky2_field::field_types::{Field, PrimeField};
use plonky2_field::secp256k1_base::Secp256K1Base;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use crate::curve::curve_msm::msm_parallel;
use crate::curve::curve_types::{AffinePoint, ProjectivePoint};
use crate::curve::secp256k1::Secp256K1;
pub const GLV_BETA: Secp256K1Base = Secp256K1Base([
13923278643952681454,
11308619431505398165,
7954561588662645993,
8856726876819556112,
]);
pub const GLV_S: Secp256K1Scalar = Secp256K1Scalar([
16069571880186789234,
1310022930574435960,
11900229862571533402,
6008836872998760672,
]);
const A1: Secp256K1Scalar = Secp256K1Scalar([16747920425669159701, 3496713202691238861, 0, 0]);
const MINUS_B1: Secp256K1Scalar =
Secp256K1Scalar([8022177200260244675, 16448129721693014056, 0, 0]);
const A2: Secp256K1Scalar = Secp256K1Scalar([6323353552219852760, 1498098850674701302, 1, 0]);
const B2: Secp256K1Scalar = Secp256K1Scalar([16747920425669159701, 3496713202691238861, 0, 0]);
/// Algorithm 15.41 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.
/// Decompose a scalar `k` into two small scalars `k1, k2` with `|k1|, |k2| < √p` that satisfy
/// `k1 + s * k2 = k`.
/// Returns `(|k1|, |k2|, k1 < 0, k2 < 0)`.
pub fn decompose_secp256k1_scalar(
k: Secp256K1Scalar,
) -> (Secp256K1Scalar, Secp256K1Scalar, bool, bool) {
let p = Secp256K1Scalar::order();
let c1_biguint = Ratio::new(
B2.to_canonical_biguint() * k.to_canonical_biguint(),
p.clone(),
)
.round()
.to_integer();
let c1 = Secp256K1Scalar::from_biguint(c1_biguint);
let c2_biguint = Ratio::new(
MINUS_B1.to_canonical_biguint() * k.to_canonical_biguint(),
p.clone(),
)
.round()
.to_integer();
let c2 = Secp256K1Scalar::from_biguint(c2_biguint);
let k1_raw = k - c1 * A1 - c2 * A2;
let k2_raw = c1 * MINUS_B1 - c2 * B2;
debug_assert!(k1_raw + GLV_S * k2_raw == k);
let two = BigUint::from_slice(&[2]);
let k1_neg = k1_raw.to_canonical_biguint() > p.clone() / two.clone();
let k1 = if k1_neg {
Secp256K1Scalar::from_biguint(p.clone() - k1_raw.to_canonical_biguint())
} else {
k1_raw
};
let k2_neg = k2_raw.to_canonical_biguint() > p.clone() / two;
let k2 = if k2_neg {
Secp256K1Scalar::from_biguint(p - k2_raw.to_canonical_biguint())
} else {
k2_raw
};
(k1, k2, k1_neg, k2_neg)
}
/// See Section 15.2.1 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.
/// GLV scalar multiplication `k * P = k1 * P + k2 * psi(P)`, where `k = k1 + s * k2` is the
/// decomposition computed in `decompose_secp256k1_scalar(k)` and `psi` is the Secp256k1
/// endomorphism `psi: (x, y) |-> (beta * x, y)` equivalent to scalar multiplication by `s`.
pub fn glv_mul(p: ProjectivePoint<Secp256K1>, k: Secp256K1Scalar) -> ProjectivePoint<Secp256K1> {
let (k1, k2, k1_neg, k2_neg) = decompose_secp256k1_scalar(k);
let p_affine = p.to_affine();
let sp = AffinePoint::<Secp256K1> {
x: p_affine.x * GLV_BETA,
y: p_affine.y,
zero: p_affine.zero,
};
let first = if k1_neg { p.neg() } else { p };
let second = if k2_neg {
sp.to_projective().neg()
} else {
sp.to_projective()
};
msm_parallel(&[k1, k2], &[first, second], 5)
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2_field::field_types::Field;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::curve::glv::{decompose_secp256k1_scalar, glv_mul, GLV_S};
use crate::curve::secp256k1::Secp256K1;
#[test]
fn test_glv_decompose() -> Result<()> {
let k = Secp256K1Scalar::rand();
let (k1, k2, k1_neg, k2_neg) = decompose_secp256k1_scalar(k);
let one = Secp256K1Scalar::ONE;
let m1 = if k1_neg { -one } else { one };
let m2 = if k2_neg { -one } else { one };
assert!(k1 * m1 + GLV_S * k2 * m2 == k);
Ok(())
}
#[test]
fn test_glv_mul() -> Result<()> {
for _ in 0..20 {
let k = Secp256K1Scalar::rand();
let p = CurveScalar(Secp256K1Scalar::rand()) * Secp256K1::GENERATOR_PROJECTIVE;
let kp = CurveScalar(k) * p;
let glv = glv_mul(p, k);
assert!(kp == glv);
}
Ok(())
}
}

View File

@ -4,4 +4,5 @@ pub mod curve_multiplication;
pub mod curve_summation;
pub mod curve_types;
pub mod ecdsa;
pub mod glv;
pub mod secp256k1;

View File

@ -1,14 +1,14 @@
use std::marker::PhantomData;
use num::{BigUint, Integer, Zero};
use plonky2::gadgets::arithmetic_u32::U32Target;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::generator::{GeneratedValues, SimpleGenerator};
use plonky2::iop::target::{BoolTarget, Target};
use plonky2::iop::witness::{PartitionWitness, Witness};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2_field::extension_field::Extendable;
use crate::gadgets::arithmetic_u32::U32Target;
use crate::hash::hash_types::RichField;
use crate::iop::generator::{GeneratedValues, SimpleGenerator};
use crate::iop::target::{BoolTarget, Target};
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use plonky2_field::field_types::PrimeField;
#[derive(Clone, Debug)]
pub struct BigUintTarget {
@ -25,19 +25,67 @@ impl BigUintTarget {
}
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub fn constant_biguint(&mut self, value: &BigUint) -> BigUintTarget {
pub trait CircuitBuilderBiguint<F: RichField + Extendable<D>, const D: usize> {
fn constant_biguint(&mut self, value: &BigUint) -> BigUintTarget;
fn zero_biguint(&mut self) -> BigUintTarget;
fn connect_biguint(&mut self, lhs: &BigUintTarget, rhs: &BigUintTarget);
fn pad_biguints(
&mut self,
a: &BigUintTarget,
b: &BigUintTarget,
) -> (BigUintTarget, BigUintTarget);
fn cmp_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BoolTarget;
fn add_virtual_biguint_target(&mut self, num_limbs: usize) -> BigUintTarget;
/// Add two `BigUintTarget`s.
fn add_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget;
/// Subtract two `BigUintTarget`s. We assume that the first is larger than the second.
fn sub_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget;
fn mul_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget;
fn mul_biguint_by_bool(&mut self, a: &BigUintTarget, b: BoolTarget) -> BigUintTarget;
/// Returns x * y + z. This is no more efficient than mul-then-add; it's purely for convenience (only need to call one CircuitBuilder function).
fn mul_add_biguint(
&mut self,
x: &BigUintTarget,
y: &BigUintTarget,
z: &BigUintTarget,
) -> BigUintTarget;
fn div_rem_biguint(
&mut self,
a: &BigUintTarget,
b: &BigUintTarget,
) -> (BigUintTarget, BigUintTarget);
fn div_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget;
fn rem_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget;
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilderBiguint<F, D>
for CircuitBuilder<F, D>
{
fn constant_biguint(&mut self, value: &BigUint) -> BigUintTarget {
let limb_values = value.to_u32_digits();
let limbs = limb_values.iter().map(|&l| self.constant_u32(l)).collect();
BigUintTarget { limbs }
}
pub fn zero_biguint(&mut self) -> BigUintTarget {
fn zero_biguint(&mut self) -> BigUintTarget {
self.constant_biguint(&BigUint::zero())
}
pub fn connect_biguint(&mut self, lhs: &BigUintTarget, rhs: &BigUintTarget) {
fn connect_biguint(&mut self, lhs: &BigUintTarget, rhs: &BigUintTarget) {
let min_limbs = lhs.num_limbs().min(rhs.num_limbs());
for i in 0..min_limbs {
self.connect_u32(lhs.get_limb(i), rhs.get_limb(i));
@ -51,7 +99,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
pub fn pad_biguints(
fn pad_biguints(
&mut self,
a: &BigUintTarget,
b: &BigUintTarget,
@ -73,20 +121,19 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
pub fn cmp_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BoolTarget {
fn cmp_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BoolTarget {
let (a, b) = self.pad_biguints(a, b);
self.list_le_u32(a.limbs, b.limbs)
}
pub fn add_virtual_biguint_target(&mut self, num_limbs: usize) -> BigUintTarget {
fn add_virtual_biguint_target(&mut self, num_limbs: usize) -> BigUintTarget {
let limbs = self.add_virtual_u32_targets(num_limbs);
BigUintTarget { limbs }
}
// Add two `BigUintTarget`s.
pub fn add_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget {
fn add_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget {
let num_limbs = a.num_limbs().max(b.num_limbs());
let mut combined_limbs = vec![];
@ -110,8 +157,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
// Subtract two `BigUintTarget`s. We assume that the first is larger than the second.
pub fn sub_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget {
fn sub_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget {
let (a, b) = self.pad_biguints(a, b);
let num_limbs = a.limbs.len();
@ -130,7 +176,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
pub fn mul_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget {
fn mul_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget {
let total_limbs = a.limbs.len() + b.limbs.len();
let mut to_add = vec![vec![]; total_limbs];
@ -156,7 +202,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
pub fn mul_biguint_by_bool(&mut self, a: &BigUintTarget, b: BoolTarget) -> BigUintTarget {
fn mul_biguint_by_bool(&mut self, a: &BigUintTarget, b: BoolTarget) -> BigUintTarget {
let t = b.target;
BigUintTarget {
@ -168,8 +214,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
// Returns x * y + z. This is no more efficient than mul-then-add; it's purely for convenience (only need to call one CircuitBuilder function).
pub fn mul_add_biguint(
fn mul_add_biguint(
&mut self,
x: &BigUintTarget,
y: &BigUintTarget,
@ -179,7 +224,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.add_biguint(&prod, z)
}
pub fn div_rem_biguint(
fn div_rem_biguint(
&mut self,
a: &BigUintTarget,
b: &BigUintTarget,
@ -212,17 +257,55 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
(div, rem)
}
pub fn div_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget {
fn div_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget {
let (div, _rem) = self.div_rem_biguint(a, b);
div
}
pub fn rem_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget {
fn rem_biguint(&mut self, a: &BigUintTarget, b: &BigUintTarget) -> BigUintTarget {
let (_div, rem) = self.div_rem_biguint(a, b);
rem
}
}
pub fn witness_get_biguint_target<W: Witness<F>, F: PrimeField>(
witness: &W,
bt: BigUintTarget,
) -> BigUint {
bt.limbs
.into_iter()
.rev()
.fold(BigUint::zero(), |acc, limb| {
(acc << 32) + witness.get_target(limb.0).to_canonical_biguint()
})
}
pub fn witness_set_biguint_target<W: Witness<F>, F: PrimeField>(
witness: &mut W,
target: &BigUintTarget,
value: &BigUint,
) {
let mut limbs = value.to_u32_digits();
assert!(target.num_limbs() >= limbs.len());
limbs.resize(target.num_limbs(), 0);
for i in 0..target.num_limbs() {
witness.set_u32_target(target.limbs[i], limbs[i]);
}
}
pub fn buffer_set_biguint_target<F: PrimeField>(
buffer: &mut GeneratedValues<F>,
target: &BigUintTarget,
value: &BigUint,
) {
let mut limbs = value.to_u32_digits();
assert!(target.num_limbs() >= limbs.len());
limbs.resize(target.num_limbs(), 0);
for i in 0..target.num_limbs() {
buffer.set_u32_target(target.get_limb(i), limbs[i]);
}
}
#[derive(Debug)]
struct BigUintDivRemGenerator<F: RichField + Extendable<D>, const D: usize> {
a: BigUintTarget,
@ -245,12 +328,12 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let a = witness.get_biguint_target(self.a.clone());
let b = witness.get_biguint_target(self.b.clone());
let a = witness_get_biguint_target(witness, self.a.clone());
let b = witness_get_biguint_target(witness, self.b.clone());
let (div, rem) = a.div_rem(&b);
out_buffer.set_biguint_target(self.div.clone(), div);
out_buffer.set_biguint_target(self.rem.clone(), rem);
buffer_set_biguint_target(out_buffer, &self.div, &div);
buffer_set_biguint_target(out_buffer, &self.rem, &rem);
}
}
@ -258,14 +341,14 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
mod tests {
use anyhow::Result;
use num::{BigUint, FromPrimitive, Integer};
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2::{
iop::witness::PartialWitness,
plonk::{circuit_builder::CircuitBuilder, circuit_data::CircuitConfig},
};
use rand::Rng;
use crate::iop::witness::Witness;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::{
iop::witness::PartialWitness,
plonk::{circuit_builder::CircuitBuilder, circuit_data::CircuitConfig, verifier::verify},
};
use crate::gadgets::biguint::{witness_set_biguint_target, CircuitBuilderBiguint};
#[test]
fn test_biguint_add() -> Result<()> {
@ -288,13 +371,13 @@ mod tests {
let expected_z = builder.add_virtual_biguint_target(expected_z_value.to_u32_digits().len());
builder.connect_biguint(&z, &expected_z);
pw.set_biguint_target(&x, &x_value);
pw.set_biguint_target(&y, &y_value);
pw.set_biguint_target(&expected_z, &expected_z_value);
witness_set_biguint_target(&mut pw, &x, &x_value);
witness_set_biguint_target(&mut pw, &y, &y_value);
witness_set_biguint_target(&mut pw, &expected_z, &expected_z_value);
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
@ -324,7 +407,7 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
@ -348,13 +431,13 @@ mod tests {
let expected_z = builder.add_virtual_biguint_target(expected_z_value.to_u32_digits().len());
builder.connect_biguint(&z, &expected_z);
pw.set_biguint_target(&x, &x_value);
pw.set_biguint_target(&y, &y_value);
pw.set_biguint_target(&expected_z, &expected_z_value);
witness_set_biguint_target(&mut pw, &x, &x_value);
witness_set_biguint_target(&mut pw, &y, &y_value);
witness_set_biguint_target(&mut pw, &expected_z, &expected_z_value);
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
@ -380,7 +463,7 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
@ -413,6 +496,6 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
}

View File

@ -1,10 +1,11 @@
use plonky2::hash::hash_types::RichField;
use plonky2::iop::target::BoolTarget;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2_field::extension_field::Extendable;
use plonky2_field::field_types::Field;
use crate::curve::curve_types::{AffinePoint, Curve, CurveScalar};
use crate::gadgets::nonnative::NonNativeTarget;
use crate::hash::hash_types::RichField;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::gadgets::nonnative::{CircuitBuilderNonNative, NonNativeTarget};
/// A Target representing an affine point on the curve `C`. We use incomplete arithmetic for efficiency,
/// so we assume these points are not zero.
@ -20,11 +21,60 @@ impl<C: Curve> AffinePointTarget<C> {
}
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub fn constant_affine_point<C: Curve>(
pub trait CircuitBuilderCurve<F: RichField + Extendable<D>, const D: usize> {
fn constant_affine_point<C: Curve>(&mut self, point: AffinePoint<C>) -> AffinePointTarget<C>;
fn connect_affine_point<C: Curve>(
&mut self,
point: AffinePoint<C>,
) -> AffinePointTarget<C> {
lhs: &AffinePointTarget<C>,
rhs: &AffinePointTarget<C>,
);
fn add_virtual_affine_point_target<C: Curve>(&mut self) -> AffinePointTarget<C>;
fn curve_assert_valid<C: Curve>(&mut self, p: &AffinePointTarget<C>);
fn curve_neg<C: Curve>(&mut self, p: &AffinePointTarget<C>) -> AffinePointTarget<C>;
fn curve_conditional_neg<C: Curve>(
&mut self,
p: &AffinePointTarget<C>,
b: BoolTarget,
) -> AffinePointTarget<C>;
fn curve_double<C: Curve>(&mut self, p: &AffinePointTarget<C>) -> AffinePointTarget<C>;
fn curve_repeated_double<C: Curve>(
&mut self,
p: &AffinePointTarget<C>,
n: usize,
) -> AffinePointTarget<C>;
/// Add two points, which are assumed to be non-equal.
fn curve_add<C: Curve>(
&mut self,
p1: &AffinePointTarget<C>,
p2: &AffinePointTarget<C>,
) -> AffinePointTarget<C>;
fn curve_conditional_add<C: Curve>(
&mut self,
p1: &AffinePointTarget<C>,
p2: &AffinePointTarget<C>,
b: BoolTarget,
) -> AffinePointTarget<C>;
fn curve_scalar_mul<C: Curve>(
&mut self,
p: &AffinePointTarget<C>,
n: &NonNativeTarget<C::ScalarField>,
) -> AffinePointTarget<C>;
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilderCurve<F, D>
for CircuitBuilder<F, D>
{
fn constant_affine_point<C: Curve>(&mut self, point: AffinePoint<C>) -> AffinePointTarget<C> {
debug_assert!(!point.zero);
AffinePointTarget {
x: self.constant_nonnative(point.x),
@ -32,7 +82,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
pub fn connect_affine_point<C: Curve>(
fn connect_affine_point<C: Curve>(
&mut self,
lhs: &AffinePointTarget<C>,
rhs: &AffinePointTarget<C>,
@ -41,14 +91,14 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.connect_nonnative(&lhs.y, &rhs.y);
}
pub fn add_virtual_affine_point_target<C: Curve>(&mut self) -> AffinePointTarget<C> {
fn add_virtual_affine_point_target<C: Curve>(&mut self) -> AffinePointTarget<C> {
let x = self.add_virtual_nonnative_target();
let y = self.add_virtual_nonnative_target();
AffinePointTarget { x, y }
}
pub fn curve_assert_valid<C: Curve>(&mut self, p: &AffinePointTarget<C>) {
fn curve_assert_valid<C: Curve>(&mut self, p: &AffinePointTarget<C>) {
let a = self.constant_nonnative(C::A);
let b = self.constant_nonnative(C::B);
@ -62,7 +112,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.connect_nonnative(&y_squared, &rhs);
}
pub fn curve_neg<C: Curve>(&mut self, p: &AffinePointTarget<C>) -> AffinePointTarget<C> {
fn curve_neg<C: Curve>(&mut self, p: &AffinePointTarget<C>) -> AffinePointTarget<C> {
let neg_y = self.neg_nonnative(&p.y);
AffinePointTarget {
x: p.x.clone(),
@ -70,7 +120,18 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
pub fn curve_double<C: Curve>(&mut self, p: &AffinePointTarget<C>) -> AffinePointTarget<C> {
fn curve_conditional_neg<C: Curve>(
&mut self,
p: &AffinePointTarget<C>,
b: BoolTarget,
) -> AffinePointTarget<C> {
AffinePointTarget {
x: p.x.clone(),
y: self.nonnative_conditional_neg(&p.y, b),
}
}
fn curve_double<C: Curve>(&mut self, p: &AffinePointTarget<C>) -> AffinePointTarget<C> {
let AffinePointTarget { x, y } = p;
let double_y = self.add_nonnative(y, y);
let inv_double_y = self.inv_nonnative(&double_y);
@ -94,8 +155,21 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
AffinePointTarget { x: x3, y: y3 }
}
// Add two points, which are assumed to be non-equal.
pub fn curve_add<C: Curve>(
fn curve_repeated_double<C: Curve>(
&mut self,
p: &AffinePointTarget<C>,
n: usize,
) -> AffinePointTarget<C> {
let mut result = p.clone();
for _ in 0..n {
result = self.curve_double(&result);
}
result
}
fn curve_add<C: Curve>(
&mut self,
p1: &AffinePointTarget<C>,
p2: &AffinePointTarget<C>,
@ -117,7 +191,26 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
AffinePointTarget { x: x3, y: y3 }
}
pub fn curve_scalar_mul<C: Curve>(
fn curve_conditional_add<C: Curve>(
&mut self,
p1: &AffinePointTarget<C>,
p2: &AffinePointTarget<C>,
b: BoolTarget,
) -> AffinePointTarget<C> {
let not_b = self.not(b);
let sum = self.curve_add(p1, p2);
let x_if_true = self.mul_nonnative_by_bool(&sum.x, b);
let y_if_true = self.mul_nonnative_by_bool(&sum.y, b);
let x_if_false = self.mul_nonnative_by_bool(&p1.x, not_b);
let y_if_false = self.mul_nonnative_by_bool(&p1.y, not_b);
let x = self.add_nonnative(&x_if_true, &x_if_false);
let y = self.add_nonnative(&y_if_true, &y_if_false);
AffinePointTarget { x, y }
}
fn curve_scalar_mul<C: Curve>(
&mut self,
p: &AffinePointTarget<C>,
n: &NonNativeTarget<C::ScalarField>,
@ -164,17 +257,18 @@ mod tests {
use std::ops::Neg;
use anyhow::Result;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2_field::field_types::Field;
use plonky2_field::secp256k1_base::Secp256K1Base;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use crate::curve::curve_types::{AffinePoint, Curve, CurveScalar};
use crate::curve::secp256k1::Secp256K1;
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::plonk::verifier::verify;
use crate::gadgets::curve::CircuitBuilderCurve;
use crate::gadgets::nonnative::CircuitBuilderNonNative;
#[test]
fn test_curve_point_is_valid() -> Result<()> {
@ -197,7 +291,7 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
@ -225,7 +319,7 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common).unwrap();
data.verify(proof).unwrap()
}
#[test]
@ -262,7 +356,7 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
@ -292,7 +386,39 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
fn test_curve_conditional_add() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_ecc_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let g = Secp256K1::GENERATOR_AFFINE;
let double_g = g.double();
let g_plus_2g = (g + double_g).to_affine();
let g_plus_2g_expected = builder.constant_affine_point(g_plus_2g);
let g_expected = builder.constant_affine_point(g);
let double_g_target = builder.curve_double(&g_expected);
let t = builder._true();
let f = builder._false();
let g_plus_2g_actual = builder.curve_conditional_add(&g_expected, &double_g_target, t);
let g_actual = builder.curve_conditional_add(&g_expected, &double_g_target, f);
builder.connect_affine_point(&g_plus_2g_expected, &g_plus_2g_actual);
builder.connect_affine_point(&g_expected, &g_actual);
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
data.verify(proof)
}
#[test]
@ -307,7 +433,7 @@ mod tests {
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let g = Secp256K1::GENERATOR_AFFINE;
let g = Secp256K1::GENERATOR_PROJECTIVE.to_affine();
let five = Secp256K1Scalar::from_canonical_usize(5);
let neg_five = five.neg();
let neg_five_scalar = CurveScalar::<Secp256K1>(neg_five);
@ -325,10 +451,11 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
#[ignore]
fn test_curve_random() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
@ -351,6 +478,6 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
}

View File

@ -0,0 +1,113 @@
use num::BigUint;
use plonky2::hash::hash_types::RichField;
use plonky2::hash::keccak::KeccakHash;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::config::{GenericHashOut, Hasher};
use plonky2_field::extension_field::Extendable;
use plonky2_field::field_types::Field;
use crate::curve::curve_types::{AffinePoint, Curve, CurveScalar};
use crate::gadgets::curve::{AffinePointTarget, CircuitBuilderCurve};
use crate::gadgets::curve_windowed_mul::CircuitBuilderWindowedMul;
use crate::gadgets::nonnative::NonNativeTarget;
use crate::gadgets::split_nonnative::CircuitBuilderSplit;
/// Compute windowed fixed-base scalar multiplication, using a 4-bit window.
pub fn fixed_base_curve_mul_circuit<C: Curve, F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
base: AffinePoint<C>,
scalar: &NonNativeTarget<C::ScalarField>,
) -> AffinePointTarget<C> {
// Holds `(16^i) * base` for `i=0..scalar.value.limbs.len() * 8`.
let scaled_base = (0..scalar.value.limbs.len() * 8).scan(base, |acc, _| {
let tmp = *acc;
for _ in 0..4 {
*acc = acc.double();
}
Some(tmp)
});
let limbs = builder.split_nonnative_to_4_bit_limbs(scalar);
let hash_0 = KeccakHash::<32>::hash_no_pad(&[F::ZERO]);
let hash_0_scalar = C::ScalarField::from_biguint(BigUint::from_bytes_le(
&GenericHashOut::<F>::to_bytes(&hash_0),
));
let rando = (CurveScalar(hash_0_scalar) * C::GENERATOR_PROJECTIVE).to_affine();
let zero = builder.zero();
let mut result = builder.constant_affine_point(rando);
// `s * P = sum s_i * P_i` with `P_i = (16^i) * P` and `s = sum s_i * (16^i)`.
for (limb, point) in limbs.into_iter().zip(scaled_base) {
// `muls_point[t] = t * P_i` for `t=0..16`.
let muls_point = (0..16)
.scan(AffinePoint::ZERO, |acc, _| {
let tmp = *acc;
*acc = (point + *acc).to_affine();
Some(tmp)
})
.map(|p| builder.constant_affine_point(p))
.collect::<Vec<_>>();
let is_zero = builder.is_equal(limb, zero);
let should_add = builder.not(is_zero);
// `r = s_i * P_i`
let r = builder.random_access_curve_points(limb, muls_point);
result = builder.curve_conditional_add(&result, &r, should_add);
}
let to_add = builder.constant_affine_point(-rando);
builder.curve_add(&result, &to_add)
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2_field::field_types::Field;
use plonky2_field::field_types::PrimeField;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::curve::secp256k1::Secp256K1;
use crate::gadgets::biguint::witness_set_biguint_target;
use crate::gadgets::curve::CircuitBuilderCurve;
use crate::gadgets::curve_fixed_base::fixed_base_curve_mul_circuit;
use crate::gadgets::nonnative::CircuitBuilderNonNative;
#[test]
#[ignore]
fn test_fixed_base() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_ecc_config();
let mut pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let g = Secp256K1::GENERATOR_AFFINE;
let n = Secp256K1Scalar::rand();
let res = (CurveScalar(n) * g.to_projective()).to_affine();
let res_expected = builder.constant_affine_point(res);
builder.curve_assert_valid(&res_expected);
let n_target = builder.add_virtual_nonnative_target::<Secp256K1Scalar>();
witness_set_biguint_target(&mut pw, &n_target.value, &n.to_canonical_biguint());
let res_target = fixed_base_curve_mul_circuit(&mut builder, g, &n_target);
builder.curve_assert_valid(&res_target);
builder.connect_affine_point(&res_target, &res_expected);
dbg!(builder.num_gates());
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
data.verify(proof)
}
}

View File

@ -0,0 +1,136 @@
use num::BigUint;
use plonky2::hash::hash_types::RichField;
use plonky2::hash::keccak::KeccakHash;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::config::{GenericHashOut, Hasher};
use plonky2_field::extension_field::Extendable;
use plonky2_field::field_types::Field;
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::gadgets::curve::{AffinePointTarget, CircuitBuilderCurve};
use crate::gadgets::curve_windowed_mul::CircuitBuilderWindowedMul;
use crate::gadgets::nonnative::NonNativeTarget;
use crate::gadgets::split_nonnative::CircuitBuilderSplit;
/// Computes `n*p + m*q` using windowed MSM, with a 2-bit window.
/// See Algorithm 9.23 in Handbook of Elliptic and Hyperelliptic Curve Cryptography for a
/// description.
/// Note: Doesn't work if `p == q`.
pub fn curve_msm_circuit<C: Curve, F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
p: &AffinePointTarget<C>,
q: &AffinePointTarget<C>,
n: &NonNativeTarget<C::ScalarField>,
m: &NonNativeTarget<C::ScalarField>,
) -> AffinePointTarget<C> {
let limbs_n = builder.split_nonnative_to_2_bit_limbs(n);
let limbs_m = builder.split_nonnative_to_2_bit_limbs(m);
assert_eq!(limbs_n.len(), limbs_m.len());
let num_limbs = limbs_n.len();
let hash_0 = KeccakHash::<32>::hash_no_pad(&[F::ZERO]);
let hash_0_scalar = C::ScalarField::from_biguint(BigUint::from_bytes_le(
&GenericHashOut::<F>::to_bytes(&hash_0),
));
let rando = (CurveScalar(hash_0_scalar) * C::GENERATOR_PROJECTIVE).to_affine();
let rando_t = builder.constant_affine_point(rando);
let neg_rando = builder.constant_affine_point(-rando);
// Precomputes `precomputation[i + 4*j] = i*p + j*q` for `i,j=0..4`.
let mut precomputation = vec![p.clone(); 16];
let mut cur_p = rando_t.clone();
let mut cur_q = rando_t.clone();
for i in 0..4 {
precomputation[i] = cur_p.clone();
precomputation[4 * i] = cur_q.clone();
cur_p = builder.curve_add(&cur_p, p);
cur_q = builder.curve_add(&cur_q, q);
}
for i in 1..4 {
precomputation[i] = builder.curve_add(&precomputation[i], &neg_rando);
precomputation[4 * i] = builder.curve_add(&precomputation[4 * i], &neg_rando);
}
for i in 1..4 {
for j in 1..4 {
precomputation[i + 4 * j] =
builder.curve_add(&precomputation[i], &precomputation[4 * j]);
}
}
let four = builder.constant(F::from_canonical_usize(4));
let zero = builder.zero();
let mut result = rando_t;
for (limb_n, limb_m) in limbs_n.into_iter().zip(limbs_m).rev() {
result = builder.curve_repeated_double(&result, 2);
let index = builder.mul_add(four, limb_m, limb_n);
let r = builder.random_access_curve_points(index, precomputation.clone());
let is_zero = builder.is_equal(index, zero);
let should_add = builder.not(is_zero);
result = builder.curve_conditional_add(&result, &r, should_add);
}
let starting_point_multiplied = (0..2 * num_limbs).fold(rando, |acc, _| acc.double());
let to_add = builder.constant_affine_point(-starting_point_multiplied);
result = builder.curve_add(&result, &to_add);
result
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2_field::field_types::Field;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::curve::secp256k1::Secp256K1;
use crate::gadgets::curve::CircuitBuilderCurve;
use crate::gadgets::curve_msm::curve_msm_circuit;
use crate::gadgets::nonnative::CircuitBuilderNonNative;
#[test]
#[ignore]
fn test_curve_msm() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_ecc_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let p =
(CurveScalar(Secp256K1Scalar::rand()) * Secp256K1::GENERATOR_PROJECTIVE).to_affine();
let q =
(CurveScalar(Secp256K1Scalar::rand()) * Secp256K1::GENERATOR_PROJECTIVE).to_affine();
let n = Secp256K1Scalar::rand();
let m = Secp256K1Scalar::rand();
let res =
(CurveScalar(n) * p.to_projective() + CurveScalar(m) * q.to_projective()).to_affine();
let res_expected = builder.constant_affine_point(res);
builder.curve_assert_valid(&res_expected);
let p_target = builder.constant_affine_point(p);
let q_target = builder.constant_affine_point(q);
let n_target = builder.constant_nonnative(n);
let m_target = builder.constant_nonnative(m);
let res_target =
curve_msm_circuit(&mut builder, &p_target, &q_target, &n_target, &m_target);
builder.curve_assert_valid(&res_target);
builder.connect_affine_point(&res_target, &res_expected);
dbg!(builder.num_gates());
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
data.verify(proof)
}
}

View File

@ -0,0 +1,256 @@
use std::marker::PhantomData;
use num::BigUint;
use plonky2::gadgets::arithmetic_u32::U32Target;
use plonky2::hash::hash_types::RichField;
use plonky2::hash::keccak::KeccakHash;
use plonky2::iop::target::{BoolTarget, Target};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::config::{GenericHashOut, Hasher};
use plonky2_field::extension_field::Extendable;
use plonky2_field::field_types::Field;
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::gadgets::biguint::BigUintTarget;
use crate::gadgets::curve::{AffinePointTarget, CircuitBuilderCurve};
use crate::gadgets::nonnative::{CircuitBuilderNonNative, NonNativeTarget};
use crate::gadgets::split_nonnative::CircuitBuilderSplit;
const WINDOW_SIZE: usize = 4;
pub trait CircuitBuilderWindowedMul<F: RichField + Extendable<D>, const D: usize> {
fn precompute_window<C: Curve>(
&mut self,
p: &AffinePointTarget<C>,
) -> Vec<AffinePointTarget<C>>;
fn random_access_curve_points<C: Curve>(
&mut self,
access_index: Target,
v: Vec<AffinePointTarget<C>>,
) -> AffinePointTarget<C>;
fn if_affine_point<C: Curve>(
&mut self,
b: BoolTarget,
p1: &AffinePointTarget<C>,
p2: &AffinePointTarget<C>,
) -> AffinePointTarget<C>;
fn curve_scalar_mul_windowed<C: Curve>(
&mut self,
p: &AffinePointTarget<C>,
n: &NonNativeTarget<C::ScalarField>,
) -> AffinePointTarget<C>;
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilderWindowedMul<F, D>
for CircuitBuilder<F, D>
{
fn precompute_window<C: Curve>(
&mut self,
p: &AffinePointTarget<C>,
) -> Vec<AffinePointTarget<C>> {
let g = (CurveScalar(C::ScalarField::rand()) * C::GENERATOR_PROJECTIVE).to_affine();
let neg = {
let mut neg = g;
neg.y = -neg.y;
self.constant_affine_point(neg)
};
let mut multiples = vec![self.constant_affine_point(g)];
for i in 1..1 << WINDOW_SIZE {
multiples.push(self.curve_add(p, &multiples[i - 1]));
}
for i in 1..1 << WINDOW_SIZE {
multiples[i] = self.curve_add(&neg, &multiples[i]);
}
multiples
}
fn random_access_curve_points<C: Curve>(
&mut self,
access_index: Target,
v: Vec<AffinePointTarget<C>>,
) -> AffinePointTarget<C> {
let num_limbs = C::BaseField::BITS / 32;
let zero = self.zero_u32();
let x_limbs: Vec<Vec<_>> = (0..num_limbs)
.map(|i| {
v.iter()
.map(|p| p.x.value.limbs.get(i).unwrap_or(&zero).0)
.collect()
})
.collect();
let y_limbs: Vec<Vec<_>> = (0..num_limbs)
.map(|i| {
v.iter()
.map(|p| p.y.value.limbs.get(i).unwrap_or(&zero).0)
.collect()
})
.collect();
let selected_x_limbs: Vec<_> = x_limbs
.iter()
.map(|limbs| U32Target(self.random_access(access_index, limbs.clone())))
.collect();
let selected_y_limbs: Vec<_> = y_limbs
.iter()
.map(|limbs| U32Target(self.random_access(access_index, limbs.clone())))
.collect();
let x = NonNativeTarget {
value: BigUintTarget {
limbs: selected_x_limbs,
},
_phantom: PhantomData,
};
let y = NonNativeTarget {
value: BigUintTarget {
limbs: selected_y_limbs,
},
_phantom: PhantomData,
};
AffinePointTarget { x, y }
}
fn if_affine_point<C: Curve>(
&mut self,
b: BoolTarget,
p1: &AffinePointTarget<C>,
p2: &AffinePointTarget<C>,
) -> AffinePointTarget<C> {
let new_x = self.if_nonnative(b, &p1.x, &p2.x);
let new_y = self.if_nonnative(b, &p1.y, &p2.y);
AffinePointTarget { x: new_x, y: new_y }
}
fn curve_scalar_mul_windowed<C: Curve>(
&mut self,
p: &AffinePointTarget<C>,
n: &NonNativeTarget<C::ScalarField>,
) -> AffinePointTarget<C> {
let hash_0 = KeccakHash::<25>::hash_no_pad(&[F::ZERO]);
let hash_0_scalar = C::ScalarField::from_biguint(BigUint::from_bytes_le(
&GenericHashOut::<F>::to_bytes(&hash_0),
));
let starting_point = CurveScalar(hash_0_scalar) * C::GENERATOR_PROJECTIVE;
let starting_point_multiplied = {
let mut cur = starting_point;
for _ in 0..C::ScalarField::BITS {
cur = cur.double();
}
cur
};
let mut result = self.constant_affine_point(starting_point.to_affine());
let precomputation = self.precompute_window(p);
let zero = self.zero();
let windows = self.split_nonnative_to_4_bit_limbs(n);
for i in (0..windows.len()).rev() {
result = self.curve_repeated_double(&result, WINDOW_SIZE);
let window = windows[i];
let to_add = self.random_access_curve_points(window, precomputation.clone());
let is_zero = self.is_equal(window, zero);
let should_add = self.not(is_zero);
result = self.curve_conditional_add(&result, &to_add, should_add);
}
let to_subtract = self.constant_affine_point(starting_point_multiplied.to_affine());
let to_add = self.curve_neg(&to_subtract);
result = self.curve_add(&result, &to_add);
result
}
}
#[cfg(test)]
mod tests {
use std::ops::Neg;
use anyhow::Result;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2_field::field_types::Field;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use rand::Rng;
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::curve::secp256k1::Secp256K1;
use crate::gadgets::curve::CircuitBuilderCurve;
use crate::gadgets::curve_windowed_mul::CircuitBuilderWindowedMul;
use crate::gadgets::nonnative::CircuitBuilderNonNative;
#[test]
fn test_random_access_curve_points() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_ecc_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let num_points = 16;
let points: Vec<_> = (0..num_points)
.map(|_| {
let g = (CurveScalar(Secp256K1Scalar::rand()) * Secp256K1::GENERATOR_PROJECTIVE)
.to_affine();
builder.constant_affine_point(g)
})
.collect();
let mut rng = rand::thread_rng();
let access_index = rng.gen::<usize>() % num_points;
let access_index_target = builder.constant(F::from_canonical_usize(access_index));
let selected = builder.random_access_curve_points(access_index_target, points.clone());
let expected = points[access_index].clone();
builder.connect_affine_point(&selected, &expected);
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
data.verify(proof)
}
#[test]
#[ignore]
fn test_curve_windowed_mul() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_ecc_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let g =
(CurveScalar(Secp256K1Scalar::rand()) * Secp256K1::GENERATOR_PROJECTIVE).to_affine();
let five = Secp256K1Scalar::from_canonical_usize(5);
let neg_five = five.neg();
let neg_five_scalar = CurveScalar::<Secp256K1>(neg_five);
let neg_five_g = (neg_five_scalar * g.to_projective()).to_affine();
let neg_five_g_expected = builder.constant_affine_point(neg_five_g);
builder.curve_assert_valid(&neg_five_g_expected);
let g_target = builder.constant_affine_point(g);
let neg_five_target = builder.constant_nonnative(neg_five);
let neg_five_g_actual = builder.curve_scalar_mul_windowed(&g_target, &neg_five_target);
builder.curve_assert_valid(&neg_five_g_actual);
builder.connect_affine_point(&neg_five_g_expected, &neg_five_g_actual);
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
data.verify(proof)
}
}

117
ecdsa/src/gadgets/ecdsa.rs Normal file
View File

@ -0,0 +1,117 @@
use std::marker::PhantomData;
use plonky2::hash::hash_types::RichField;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2_field::extension_field::Extendable;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use crate::curve::curve_types::Curve;
use crate::curve::secp256k1::Secp256K1;
use crate::gadgets::curve::{AffinePointTarget, CircuitBuilderCurve};
use crate::gadgets::curve_fixed_base::fixed_base_curve_mul_circuit;
use crate::gadgets::glv::CircuitBuilderGlv;
use crate::gadgets::nonnative::{CircuitBuilderNonNative, NonNativeTarget};
#[derive(Clone, Debug)]
pub struct ECDSASecretKeyTarget<C: Curve>(NonNativeTarget<C::ScalarField>);
#[derive(Clone, Debug)]
pub struct ECDSAPublicKeyTarget<C: Curve>(AffinePointTarget<C>);
#[derive(Clone, Debug)]
pub struct ECDSASignatureTarget<C: Curve> {
pub r: NonNativeTarget<C::ScalarField>,
pub s: NonNativeTarget<C::ScalarField>,
}
pub fn verify_message_circuit<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
msg: NonNativeTarget<Secp256K1Scalar>,
sig: ECDSASignatureTarget<Secp256K1>,
pk: ECDSAPublicKeyTarget<Secp256K1>,
) {
let ECDSASignatureTarget { r, s } = sig;
builder.curve_assert_valid(&pk.0);
let c = builder.inv_nonnative(&s);
let u1 = builder.mul_nonnative(&msg, &c);
let u2 = builder.mul_nonnative(&r, &c);
let point1 = fixed_base_curve_mul_circuit(builder, Secp256K1::GENERATOR_AFFINE, &u1);
let point2 = builder.glv_mul(&pk.0, &u2);
let point = builder.curve_add(&point1, &point2);
let x = NonNativeTarget::<Secp256K1Scalar> {
value: point.x.value,
_phantom: PhantomData,
};
builder.connect_nonnative(&r, &x);
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2_field::field_types::Field;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use super::{ECDSAPublicKeyTarget, ECDSASignatureTarget};
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::curve::ecdsa::{sign_message, ECDSAPublicKey, ECDSASecretKey, ECDSASignature};
use crate::curve::secp256k1::Secp256K1;
use crate::gadgets::curve::CircuitBuilderCurve;
use crate::gadgets::ecdsa::verify_message_circuit;
use crate::gadgets::nonnative::CircuitBuilderNonNative;
fn test_ecdsa_circuit_with_config(config: CircuitConfig) -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type Curve = Secp256K1;
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let msg = Secp256K1Scalar::rand();
let msg_target = builder.constant_nonnative(msg);
let sk = ECDSASecretKey::<Curve>(Secp256K1Scalar::rand());
let pk = ECDSAPublicKey((CurveScalar(sk.0) * Curve::GENERATOR_PROJECTIVE).to_affine());
let pk_target = ECDSAPublicKeyTarget(builder.constant_affine_point(pk.0));
let sig = sign_message(msg, sk);
let ECDSASignature { r, s } = sig;
let r_target = builder.constant_nonnative(r);
let s_target = builder.constant_nonnative(s);
let sig_target = ECDSASignatureTarget {
r: r_target,
s: s_target,
};
verify_message_circuit(&mut builder, msg_target, sig_target, pk_target);
dbg!(builder.num_gates());
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
data.verify(proof)
}
#[test]
#[ignore]
fn test_ecdsa_circuit_narrow() -> Result<()> {
test_ecdsa_circuit_with_config(CircuitConfig::standard_ecc_config())
}
#[test]
#[ignore]
fn test_ecdsa_circuit_wide() -> Result<()> {
test_ecdsa_circuit_with_config(CircuitConfig::wide_ecc_config())
}
}

180
ecdsa/src/gadgets/glv.rs Normal file
View File

@ -0,0 +1,180 @@
use std::marker::PhantomData;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::generator::{GeneratedValues, SimpleGenerator};
use plonky2::iop::target::{BoolTarget, Target};
use plonky2::iop::witness::PartitionWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2_field::extension_field::Extendable;
use plonky2_field::field_types::{Field, PrimeField};
use plonky2_field::secp256k1_base::Secp256K1Base;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use crate::curve::glv::{decompose_secp256k1_scalar, GLV_BETA, GLV_S};
use crate::curve::secp256k1::Secp256K1;
use crate::gadgets::biguint::{buffer_set_biguint_target, witness_get_biguint_target};
use crate::gadgets::curve::{AffinePointTarget, CircuitBuilderCurve};
use crate::gadgets::curve_msm::curve_msm_circuit;
use crate::gadgets::nonnative::{CircuitBuilderNonNative, NonNativeTarget};
pub trait CircuitBuilderGlv<F: RichField + Extendable<D>, const D: usize> {
fn secp256k1_glv_beta(&mut self) -> NonNativeTarget<Secp256K1Base>;
fn decompose_secp256k1_scalar(
&mut self,
k: &NonNativeTarget<Secp256K1Scalar>,
) -> (
NonNativeTarget<Secp256K1Scalar>,
NonNativeTarget<Secp256K1Scalar>,
BoolTarget,
BoolTarget,
);
fn glv_mul(
&mut self,
p: &AffinePointTarget<Secp256K1>,
k: &NonNativeTarget<Secp256K1Scalar>,
) -> AffinePointTarget<Secp256K1>;
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilderGlv<F, D>
for CircuitBuilder<F, D>
{
fn secp256k1_glv_beta(&mut self) -> NonNativeTarget<Secp256K1Base> {
self.constant_nonnative(GLV_BETA)
}
fn decompose_secp256k1_scalar(
&mut self,
k: &NonNativeTarget<Secp256K1Scalar>,
) -> (
NonNativeTarget<Secp256K1Scalar>,
NonNativeTarget<Secp256K1Scalar>,
BoolTarget,
BoolTarget,
) {
let k1 = self.add_virtual_nonnative_target_sized::<Secp256K1Scalar>(4);
let k2 = self.add_virtual_nonnative_target_sized::<Secp256K1Scalar>(4);
let k1_neg = self.add_virtual_bool_target();
let k2_neg = self.add_virtual_bool_target();
self.add_simple_generator(GLVDecompositionGenerator::<F, D> {
k: k.clone(),
k1: k1.clone(),
k2: k2.clone(),
k1_neg,
k2_neg,
_phantom: PhantomData,
});
// Check that `k1_raw + GLV_S * k2_raw == k`.
let k1_raw = self.nonnative_conditional_neg(&k1, k1_neg);
let k2_raw = self.nonnative_conditional_neg(&k2, k2_neg);
let s = self.constant_nonnative(GLV_S);
let mut should_be_k = self.mul_nonnative(&s, &k2_raw);
should_be_k = self.add_nonnative(&should_be_k, &k1_raw);
self.connect_nonnative(&should_be_k, k);
(k1, k2, k1_neg, k2_neg)
}
fn glv_mul(
&mut self,
p: &AffinePointTarget<Secp256K1>,
k: &NonNativeTarget<Secp256K1Scalar>,
) -> AffinePointTarget<Secp256K1> {
let (k1, k2, k1_neg, k2_neg) = self.decompose_secp256k1_scalar(k);
let beta = self.secp256k1_glv_beta();
let beta_px = self.mul_nonnative(&beta, &p.x);
let sp = AffinePointTarget::<Secp256K1> {
x: beta_px,
y: p.y.clone(),
};
let p_neg = self.curve_conditional_neg(p, k1_neg);
let sp_neg = self.curve_conditional_neg(&sp, k2_neg);
curve_msm_circuit(self, &p_neg, &sp_neg, &k1, &k2)
}
}
#[derive(Debug)]
struct GLVDecompositionGenerator<F: RichField + Extendable<D>, const D: usize> {
k: NonNativeTarget<Secp256K1Scalar>,
k1: NonNativeTarget<Secp256K1Scalar>,
k2: NonNativeTarget<Secp256K1Scalar>,
k1_neg: BoolTarget,
k2_neg: BoolTarget,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
for GLVDecompositionGenerator<F, D>
{
fn dependencies(&self) -> Vec<Target> {
self.k.value.limbs.iter().map(|l| l.0).collect()
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let k = Secp256K1Scalar::from_biguint(witness_get_biguint_target(
witness,
self.k.value.clone(),
));
let (k1, k2, k1_neg, k2_neg) = decompose_secp256k1_scalar(k);
buffer_set_biguint_target(out_buffer, &self.k1.value, &k1.to_canonical_biguint());
buffer_set_biguint_target(out_buffer, &self.k2.value, &k2.to_canonical_biguint());
out_buffer.set_bool_target(self.k1_neg, k1_neg);
out_buffer.set_bool_target(self.k2_neg, k2_neg);
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2_field::field_types::Field;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::curve::glv::glv_mul;
use crate::curve::secp256k1::Secp256K1;
use crate::gadgets::curve::CircuitBuilderCurve;
use crate::gadgets::glv::CircuitBuilderGlv;
use crate::gadgets::nonnative::CircuitBuilderNonNative;
#[test]
#[ignore]
fn test_glv_gadget() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_ecc_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let rando =
(CurveScalar(Secp256K1Scalar::rand()) * Secp256K1::GENERATOR_PROJECTIVE).to_affine();
let randot = builder.constant_affine_point(rando);
let scalar = Secp256K1Scalar::rand();
let scalar_target = builder.constant_nonnative(scalar);
let rando_glv_scalar = glv_mul(rando.to_projective(), scalar);
let expected = builder.constant_affine_point(rando_glv_scalar.to_affine());
let actual = builder.glv_mul(&randot, &scalar_target);
builder.connect_affine_point(&expected, &actual);
dbg!(builder.num_gates());
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
data.verify(proof)
}
}

9
ecdsa/src/gadgets/mod.rs Normal file
View File

@ -0,0 +1,9 @@
pub mod biguint;
pub mod curve;
pub mod curve_fixed_base;
pub mod curve_msm;
pub mod curve_windowed_mul;
pub mod ecdsa;
pub mod glv;
pub mod nonnative;
pub mod split_nonnative;

View File

@ -1,17 +1,19 @@
use std::marker::PhantomData;
use num::{BigUint, Integer, One, Zero};
use plonky2::gadgets::arithmetic_u32::U32Target;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::generator::{GeneratedValues, SimpleGenerator};
use plonky2::iop::target::{BoolTarget, Target};
use plonky2::iop::witness::PartitionWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2_field::field_types::PrimeField;
use plonky2_field::{extension_field::Extendable, field_types::Field};
use plonky2_util::ceil_div_usize;
use crate::gadgets::arithmetic_u32::U32Target;
use crate::gadgets::biguint::BigUintTarget;
use crate::hash::hash_types::RichField;
use crate::iop::generator::{GeneratedValues, SimpleGenerator};
use crate::iop::target::{BoolTarget, Target};
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::gadgets::biguint::{
buffer_set_biguint_target, witness_get_biguint_target, BigUintTarget, CircuitBuilderBiguint,
};
#[derive(Clone, Debug)]
pub struct NonNativeTarget<FF: Field> {
@ -19,33 +21,131 @@ pub struct NonNativeTarget<FF: Field> {
pub(crate) _phantom: PhantomData<FF>,
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub trait CircuitBuilderNonNative<F: RichField + Extendable<D>, const D: usize> {
fn num_nonnative_limbs<FF: Field>() -> usize {
ceil_div_usize(FF::BITS, 32)
}
pub fn biguint_to_nonnative<FF: Field>(&mut self, x: &BigUintTarget) -> NonNativeTarget<FF> {
fn biguint_to_nonnative<FF: Field>(&mut self, x: &BigUintTarget) -> NonNativeTarget<FF>;
fn nonnative_to_canonical_biguint<FF: Field>(
&mut self,
x: &NonNativeTarget<FF>,
) -> BigUintTarget;
fn constant_nonnative<FF: PrimeField>(&mut self, x: FF) -> NonNativeTarget<FF>;
fn zero_nonnative<FF: PrimeField>(&mut self) -> NonNativeTarget<FF>;
// Assert that two NonNativeTarget's, both assumed to be in reduced form, are equal.
fn connect_nonnative<FF: Field>(
&mut self,
lhs: &NonNativeTarget<FF>,
rhs: &NonNativeTarget<FF>,
);
fn add_virtual_nonnative_target<FF: Field>(&mut self) -> NonNativeTarget<FF>;
fn add_virtual_nonnative_target_sized<FF: Field>(
&mut self,
num_limbs: usize,
) -> NonNativeTarget<FF>;
fn add_nonnative<FF: PrimeField>(
&mut self,
a: &NonNativeTarget<FF>,
b: &NonNativeTarget<FF>,
) -> NonNativeTarget<FF>;
fn mul_nonnative_by_bool<FF: Field>(
&mut self,
a: &NonNativeTarget<FF>,
b: BoolTarget,
) -> NonNativeTarget<FF>;
fn if_nonnative<FF: PrimeField>(
&mut self,
b: BoolTarget,
x: &NonNativeTarget<FF>,
y: &NonNativeTarget<FF>,
) -> NonNativeTarget<FF>;
fn add_many_nonnative<FF: PrimeField>(
&mut self,
to_add: &[NonNativeTarget<FF>],
) -> NonNativeTarget<FF>;
// Subtract two `NonNativeTarget`s.
fn sub_nonnative<FF: PrimeField>(
&mut self,
a: &NonNativeTarget<FF>,
b: &NonNativeTarget<FF>,
) -> NonNativeTarget<FF>;
fn mul_nonnative<FF: PrimeField>(
&mut self,
a: &NonNativeTarget<FF>,
b: &NonNativeTarget<FF>,
) -> NonNativeTarget<FF>;
fn mul_many_nonnative<FF: PrimeField>(
&mut self,
to_mul: &[NonNativeTarget<FF>],
) -> NonNativeTarget<FF>;
fn neg_nonnative<FF: PrimeField>(&mut self, x: &NonNativeTarget<FF>) -> NonNativeTarget<FF>;
fn inv_nonnative<FF: PrimeField>(&mut self, x: &NonNativeTarget<FF>) -> NonNativeTarget<FF>;
/// Returns `x % |FF|` as a `NonNativeTarget`.
fn reduce<FF: Field>(&mut self, x: &BigUintTarget) -> NonNativeTarget<FF>;
fn reduce_nonnative<FF: Field>(&mut self, x: &NonNativeTarget<FF>) -> NonNativeTarget<FF>;
fn bool_to_nonnative<FF: Field>(&mut self, b: &BoolTarget) -> NonNativeTarget<FF>;
// Split a nonnative field element to bits.
fn split_nonnative_to_bits<FF: Field>(&mut self, x: &NonNativeTarget<FF>) -> Vec<BoolTarget>;
fn nonnative_conditional_neg<FF: PrimeField>(
&mut self,
x: &NonNativeTarget<FF>,
b: BoolTarget,
) -> NonNativeTarget<FF>;
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilderNonNative<F, D>
for CircuitBuilder<F, D>
{
fn num_nonnative_limbs<FF: Field>() -> usize {
ceil_div_usize(FF::BITS, 32)
}
fn biguint_to_nonnative<FF: Field>(&mut self, x: &BigUintTarget) -> NonNativeTarget<FF> {
NonNativeTarget {
value: x.clone(),
_phantom: PhantomData,
}
}
pub fn nonnative_to_biguint<FF: Field>(&mut self, x: &NonNativeTarget<FF>) -> BigUintTarget {
fn nonnative_to_canonical_biguint<FF: Field>(
&mut self,
x: &NonNativeTarget<FF>,
) -> BigUintTarget {
x.value.clone()
}
pub fn constant_nonnative<FF: PrimeField>(&mut self, x: FF) -> NonNativeTarget<FF> {
fn constant_nonnative<FF: PrimeField>(&mut self, x: FF) -> NonNativeTarget<FF> {
let x_biguint = self.constant_biguint(&x.to_canonical_biguint());
self.biguint_to_nonnative(&x_biguint)
}
pub fn zero_nonnative<FF: PrimeField>(&mut self) -> NonNativeTarget<FF> {
fn zero_nonnative<FF: PrimeField>(&mut self) -> NonNativeTarget<FF> {
self.constant_nonnative(FF::ZERO)
}
// Assert that two NonNativeTarget's, both assumed to be in reduced form, are equal.
pub fn connect_nonnative<FF: Field>(
fn connect_nonnative<FF: Field>(
&mut self,
lhs: &NonNativeTarget<FF>,
rhs: &NonNativeTarget<FF>,
@ -53,7 +153,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
self.connect_biguint(&lhs.value, &rhs.value);
}
pub fn add_virtual_nonnative_target<FF: Field>(&mut self) -> NonNativeTarget<FF> {
fn add_virtual_nonnative_target<FF: Field>(&mut self) -> NonNativeTarget<FF> {
let num_limbs = Self::num_nonnative_limbs::<FF>();
let value = self.add_virtual_biguint_target(num_limbs);
@ -63,7 +163,19 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
pub fn add_nonnative<FF: PrimeField>(
fn add_virtual_nonnative_target_sized<FF: Field>(
&mut self,
num_limbs: usize,
) -> NonNativeTarget<FF> {
let value = self.add_virtual_biguint_target(num_limbs);
NonNativeTarget {
value,
_phantom: PhantomData,
}
}
fn add_nonnative<FF: PrimeField>(
&mut self,
a: &NonNativeTarget<FF>,
b: &NonNativeTarget<FF>,
@ -95,7 +207,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
sum
}
pub fn mul_nonnative_by_bool<FF: Field>(
fn mul_nonnative_by_bool<FF: Field>(
&mut self,
a: &NonNativeTarget<FF>,
b: BoolTarget,
@ -106,7 +218,19 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
pub fn add_many_nonnative<FF: PrimeField>(
fn if_nonnative<FF: PrimeField>(
&mut self,
b: BoolTarget,
x: &NonNativeTarget<FF>,
y: &NonNativeTarget<FF>,
) -> NonNativeTarget<FF> {
let not_b = self.not(b);
let maybe_x = self.mul_nonnative_by_bool(x, b);
let maybe_y = self.mul_nonnative_by_bool(y, not_b);
self.add_nonnative(&maybe_x, &maybe_y)
}
fn add_many_nonnative<FF: PrimeField>(
&mut self,
to_add: &[NonNativeTarget<FF>],
) -> NonNativeTarget<FF> {
@ -150,7 +274,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
// Subtract two `NonNativeTarget`s.
pub fn sub_nonnative<FF: PrimeField>(
fn sub_nonnative<FF: PrimeField>(
&mut self,
a: &NonNativeTarget<FF>,
b: &NonNativeTarget<FF>,
@ -178,7 +302,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
diff
}
pub fn mul_nonnative<FF: PrimeField>(
fn mul_nonnative<FF: PrimeField>(
&mut self,
a: &NonNativeTarget<FF>,
b: &NonNativeTarget<FF>,
@ -209,7 +333,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
prod
}
pub fn mul_many_nonnative<FF: PrimeField>(
fn mul_many_nonnative<FF: PrimeField>(
&mut self,
to_mul: &[NonNativeTarget<FF>],
) -> NonNativeTarget<FF> {
@ -218,26 +342,20 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
let mut accumulator = self.mul_nonnative(&to_mul[0], &to_mul[1]);
for i in 2..to_mul.len() {
accumulator = self.mul_nonnative(&accumulator, &to_mul[i]);
for t in to_mul.iter().skip(2) {
accumulator = self.mul_nonnative(&accumulator, t);
}
accumulator
}
pub fn neg_nonnative<FF: PrimeField>(
&mut self,
x: &NonNativeTarget<FF>,
) -> NonNativeTarget<FF> {
fn neg_nonnative<FF: PrimeField>(&mut self, x: &NonNativeTarget<FF>) -> NonNativeTarget<FF> {
let zero_target = self.constant_biguint(&BigUint::zero());
let zero_ff = self.biguint_to_nonnative(&zero_target);
self.sub_nonnative(&zero_ff, x)
}
pub fn inv_nonnative<FF: PrimeField>(
&mut self,
x: &NonNativeTarget<FF>,
) -> NonNativeTarget<FF> {
fn inv_nonnative<FF: PrimeField>(&mut self, x: &NonNativeTarget<FF>) -> NonNativeTarget<FF> {
let num_limbs = x.value.num_limbs();
let inv_biguint = self.add_virtual_biguint_target(num_limbs);
let div = self.add_virtual_biguint_target(num_limbs);
@ -275,12 +393,12 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
pub fn reduce_nonnative<FF: Field>(&mut self, x: &NonNativeTarget<FF>) -> NonNativeTarget<FF> {
let x_biguint = self.nonnative_to_biguint(x);
fn reduce_nonnative<FF: Field>(&mut self, x: &NonNativeTarget<FF>) -> NonNativeTarget<FF> {
let x_biguint = self.nonnative_to_canonical_biguint(x);
self.reduce(&x_biguint)
}
pub fn bool_to_nonnative<FF: Field>(&mut self, b: &BoolTarget) -> NonNativeTarget<FF> {
fn bool_to_nonnative<FF: Field>(&mut self, b: &BoolTarget) -> NonNativeTarget<FF> {
let limbs = vec![U32Target(b.target)];
let value = BigUintTarget { limbs };
@ -291,10 +409,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
// Split a nonnative field element to bits.
pub fn split_nonnative_to_bits<FF: Field>(
&mut self,
x: &NonNativeTarget<FF>,
) -> Vec<BoolTarget> {
fn split_nonnative_to_bits<FF: Field>(&mut self, x: &NonNativeTarget<FF>) -> Vec<BoolTarget> {
let num_limbs = x.value.num_limbs();
let mut result = Vec::with_capacity(num_limbs * 32);
@ -311,6 +426,19 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
result
}
fn nonnative_conditional_neg<FF: PrimeField>(
&mut self,
x: &NonNativeTarget<FF>,
b: BoolTarget,
) -> NonNativeTarget<FF> {
let not_b = self.not(b);
let neg = self.neg_nonnative(x);
let x_if_true = self.mul_nonnative_by_bool(&neg, b);
let x_if_false = self.mul_nonnative_by_bool(x, not_b);
self.add_nonnative(&x_if_true, &x_if_false)
}
}
#[derive(Debug)]
@ -337,8 +465,8 @@ impl<F: RichField + Extendable<D>, const D: usize, FF: PrimeField> SimpleGenerat
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let a = witness.get_nonnative_target(self.a.clone());
let b = witness.get_nonnative_target(self.b.clone());
let a = FF::from_biguint(witness_get_biguint_target(witness, self.a.value.clone()));
let b = FF::from_biguint(witness_get_biguint_target(witness, self.b.value.clone()));
let a_biguint = a.to_canonical_biguint();
let b_biguint = b.to_canonical_biguint();
let sum_biguint = a_biguint + b_biguint;
@ -349,7 +477,7 @@ impl<F: RichField + Extendable<D>, const D: usize, FF: PrimeField> SimpleGenerat
(false, sum_biguint)
};
out_buffer.set_biguint_target(self.sum.value.clone(), sum_reduced);
buffer_set_biguint_target(out_buffer, &self.sum.value, &sum_reduced);
out_buffer.set_bool_target(self.overflow, overflow);
}
}
@ -377,7 +505,9 @@ impl<F: RichField + Extendable<D>, const D: usize, FF: PrimeField> SimpleGenerat
let summands: Vec<_> = self
.summands
.iter()
.map(|summand| witness.get_nonnative_target(summand.clone()))
.map(|summand| {
FF::from_biguint(witness_get_biguint_target(witness, summand.value.clone()))
})
.collect();
let summand_biguints: Vec<_> = summands
.iter()
@ -392,7 +522,7 @@ impl<F: RichField + Extendable<D>, const D: usize, FF: PrimeField> SimpleGenerat
let (overflow_biguint, sum_reduced) = sum_biguint.div_rem(&modulus);
let overflow = overflow_biguint.to_u64_digits()[0] as u32;
out_buffer.set_biguint_target(self.sum.value.clone(), sum_reduced);
buffer_set_biguint_target(out_buffer, &self.sum.value, &sum_reduced);
out_buffer.set_u32_target(self.overflow, overflow);
}
}
@ -421,19 +551,19 @@ impl<F: RichField + Extendable<D>, const D: usize, FF: PrimeField> SimpleGenerat
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let a = witness.get_nonnative_target(self.a.clone());
let b = witness.get_nonnative_target(self.b.clone());
let a = FF::from_biguint(witness_get_biguint_target(witness, self.a.value.clone()));
let b = FF::from_biguint(witness_get_biguint_target(witness, self.b.value.clone()));
let a_biguint = a.to_canonical_biguint();
let b_biguint = b.to_canonical_biguint();
let modulus = FF::order();
let (diff_biguint, overflow) = if a_biguint > b_biguint {
let (diff_biguint, overflow) = if a_biguint >= b_biguint {
(a_biguint - b_biguint, false)
} else {
(modulus + a_biguint - b_biguint, true)
};
out_buffer.set_biguint_target(self.diff.value.clone(), diff_biguint);
buffer_set_biguint_target(out_buffer, &self.diff.value, &diff_biguint);
out_buffer.set_bool_target(self.overflow, overflow);
}
}
@ -462,8 +592,8 @@ impl<F: RichField + Extendable<D>, const D: usize, FF: PrimeField> SimpleGenerat
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let a = witness.get_nonnative_target(self.a.clone());
let b = witness.get_nonnative_target(self.b.clone());
let a = FF::from_biguint(witness_get_biguint_target(witness, self.a.value.clone()));
let b = FF::from_biguint(witness_get_biguint_target(witness, self.b.value.clone()));
let a_biguint = a.to_canonical_biguint();
let b_biguint = b.to_canonical_biguint();
@ -472,8 +602,8 @@ impl<F: RichField + Extendable<D>, const D: usize, FF: PrimeField> SimpleGenerat
let modulus = FF::order();
let (overflow_biguint, prod_reduced) = prod_biguint.div_rem(&modulus);
out_buffer.set_biguint_target(self.prod.value.clone(), prod_reduced);
out_buffer.set_biguint_target(self.overflow.clone(), overflow_biguint);
buffer_set_biguint_target(out_buffer, &self.prod.value, &prod_reduced);
buffer_set_biguint_target(out_buffer, &self.overflow, &overflow_biguint);
}
}
@ -493,7 +623,7 @@ impl<F: RichField + Extendable<D>, const D: usize, FF: PrimeField> SimpleGenerat
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let x = witness.get_nonnative_target(self.x.clone());
let x = FF::from_biguint(witness_get_biguint_target(witness, self.x.value.clone()));
let inv = x.inverse();
let x_biguint = x.to_canonical_biguint();
@ -502,22 +632,22 @@ impl<F: RichField + Extendable<D>, const D: usize, FF: PrimeField> SimpleGenerat
let modulus = FF::order();
let (div, _rem) = prod.div_rem(&modulus);
out_buffer.set_biguint_target(self.div.clone(), div);
out_buffer.set_biguint_target(self.inv.clone(), inv_biguint);
buffer_set_biguint_target(out_buffer, &self.div, &div);
buffer_set_biguint_target(out_buffer, &self.inv, &inv_biguint);
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2_field::field_types::{Field, PrimeField};
use plonky2_field::secp256k1_base::Secp256K1Base;
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::plonk::verifier::verify;
use crate::gadgets::nonnative::CircuitBuilderNonNative;
#[test]
fn test_nonnative_add() -> Result<()> {
@ -543,7 +673,7 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
@ -583,7 +713,7 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
@ -613,7 +743,7 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
@ -639,7 +769,7 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
@ -663,7 +793,7 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
#[test]
@ -687,6 +817,6 @@ mod tests {
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
data.verify(proof)
}
}

View File

@ -0,0 +1,131 @@
use std::marker::PhantomData;
use itertools::Itertools;
use plonky2::gadgets::arithmetic_u32::U32Target;
use plonky2::hash::hash_types::RichField;
use plonky2::iop::target::Target;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2_field::extension_field::Extendable;
use plonky2_field::field_types::Field;
use crate::gadgets::biguint::BigUintTarget;
use crate::gadgets::nonnative::NonNativeTarget;
pub trait CircuitBuilderSplit<F: RichField + Extendable<D>, const D: usize> {
fn split_u32_to_4_bit_limbs(&mut self, val: U32Target) -> Vec<Target>;
fn split_nonnative_to_4_bit_limbs<FF: Field>(
&mut self,
val: &NonNativeTarget<FF>,
) -> Vec<Target>;
fn split_nonnative_to_2_bit_limbs<FF: Field>(
&mut self,
val: &NonNativeTarget<FF>,
) -> Vec<Target>;
// Note: assumes its inputs are 4-bit limbs, and does not range-check.
fn recombine_nonnative_4_bit_limbs<FF: Field>(
&mut self,
limbs: Vec<Target>,
) -> NonNativeTarget<FF>;
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilderSplit<F, D>
for CircuitBuilder<F, D>
{
fn split_u32_to_4_bit_limbs(&mut self, val: U32Target) -> Vec<Target> {
let two_bit_limbs = self.split_le_base::<4>(val.0, 16);
let four = self.constant(F::from_canonical_usize(4));
let combined_limbs = two_bit_limbs
.iter()
.tuples()
.map(|(&a, &b)| self.mul_add(b, four, a))
.collect();
combined_limbs
}
fn split_nonnative_to_4_bit_limbs<FF: Field>(
&mut self,
val: &NonNativeTarget<FF>,
) -> Vec<Target> {
val.value
.limbs
.iter()
.flat_map(|&l| self.split_u32_to_4_bit_limbs(l))
.collect()
}
fn split_nonnative_to_2_bit_limbs<FF: Field>(
&mut self,
val: &NonNativeTarget<FF>,
) -> Vec<Target> {
val.value
.limbs
.iter()
.flat_map(|&l| self.split_le_base::<4>(l.0, 16))
.collect()
}
// Note: assumes its inputs are 4-bit limbs, and does not range-check.
fn recombine_nonnative_4_bit_limbs<FF: Field>(
&mut self,
limbs: Vec<Target>,
) -> NonNativeTarget<FF> {
let base = self.constant_u32(1 << 4);
let u32_limbs = limbs
.chunks(8)
.map(|chunk| {
let mut combined_chunk = self.zero_u32();
for i in (0..8).rev() {
let (low, _high) = self.mul_add_u32(combined_chunk, base, U32Target(chunk[i]));
combined_chunk = low;
}
combined_chunk
})
.collect();
NonNativeTarget {
value: BigUintTarget { limbs: u32_limbs },
_phantom: PhantomData,
}
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use plonky2::iop::witness::PartialWitness;
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use plonky2_field::field_types::Field;
use plonky2_field::secp256k1_scalar::Secp256K1Scalar;
use crate::gadgets::nonnative::{CircuitBuilderNonNative, NonNativeTarget};
use crate::gadgets::split_nonnative::CircuitBuilderSplit;
#[test]
fn test_split_nonnative() -> Result<()> {
type FF = Secp256K1Scalar;
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_ecc_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let x = FF::rand();
let x_target = builder.constant_nonnative(x);
let split = builder.split_nonnative_to_4_bit_limbs(&x_target);
let combined: NonNativeTarget<Secp256K1Scalar> =
builder.recombine_nonnative_4_bit_limbs(split);
builder.connect_nonnative(&x_target, &combined);
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
data.verify(proof)
}
}

4
ecdsa/src/lib.rs Normal file
View File

@ -0,0 +1,4 @@
#![allow(clippy::needless_range_loop)]
pub mod curve;
pub mod gadgets;

View File

@ -332,7 +332,8 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let x_index_within_coset = self.le_sum(x_index_within_coset_bits.iter());
// Check consistency with our old evaluation from the previous round.
self.random_access_extension(x_index_within_coset, old_eval, evals.clone());
let new_eval = self.random_access_extension(x_index_within_coset, evals.clone());
self.connect_extension(new_eval, old_eval);
// Infer P(y) from {P(x)}_{x^arity=y}.
old_eval = with_context!(

View File

@ -6,7 +6,9 @@ use plonky2_field::field_types::Field64;
use crate::gates::arithmetic_base::ArithmeticGate;
use crate::gates::exponentiation::ExponentiationGate;
use crate::hash::hash_types::RichField;
use crate::iop::generator::{GeneratedValues, SimpleGenerator};
use crate::iop::target::{BoolTarget, Target};
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
@ -323,6 +325,60 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let res = self.sub(one, b.target);
BoolTarget::new_unsafe(res)
}
pub fn and(&mut self, b1: BoolTarget, b2: BoolTarget) -> BoolTarget {
BoolTarget::new_unsafe(self.mul(b1.target, b2.target))
}
pub fn _if(&mut self, b: BoolTarget, x: Target, y: Target) -> Target {
let not_b = self.not(b);
let maybe_x = self.mul(b.target, x);
self.mul_add(not_b.target, y, maybe_x)
}
pub fn is_equal(&mut self, x: Target, y: Target) -> BoolTarget {
let zero = self.zero();
let equal = self.add_virtual_bool_target();
let not_equal = self.not(equal);
let inv = self.add_virtual_target();
self.add_simple_generator(EqualityGenerator { x, y, equal, inv });
let diff = self.sub(x, y);
let not_equal_check = self.mul(equal.target, diff);
let diff_normalized = self.mul(diff, inv);
let equal_check = self.sub(diff_normalized, not_equal.target);
self.connect(not_equal_check, zero);
self.connect(equal_check, zero);
equal
}
}
#[derive(Debug)]
struct EqualityGenerator {
x: Target,
y: Target,
equal: BoolTarget,
inv: Target,
}
impl<F: RichField> SimpleGenerator<F> for EqualityGenerator {
fn dependencies(&self) -> Vec<Target> {
vec![self.x, self.y]
}
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
let x = witness.get_target(self.x);
let y = witness.get_target(self.y);
let inv = if x != y { (x - y).inverse() } else { F::ZERO };
out_buffer.set_bool_target(self.equal, x == y);
out_buffer.set_target(self.inv, inv);
}
}
/// Represents a base arithmetic operation in the circuit. Used to memoize results.

View File

@ -1,104 +0,0 @@
use std::marker::PhantomData;
use crate::curve::curve_types::Curve;
use crate::field::extension_field::Extendable;
use crate::gadgets::curve::AffinePointTarget;
use crate::gadgets::nonnative::NonNativeTarget;
use crate::hash::hash_types::RichField;
use crate::plonk::circuit_builder::CircuitBuilder;
#[derive(Clone, Debug)]
pub struct ECDSASecretKeyTarget<C: Curve>(pub NonNativeTarget<C::ScalarField>);
#[derive(Clone, Debug)]
pub struct ECDSAPublicKeyTarget<C: Curve>(pub AffinePointTarget<C>);
#[derive(Clone, Debug)]
pub struct ECDSASignatureTarget<C: Curve> {
pub r: NonNativeTarget<C::ScalarField>,
pub s: NonNativeTarget<C::ScalarField>,
}
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub fn verify_message<C: Curve>(
&mut self,
msg: NonNativeTarget<C::ScalarField>,
sig: ECDSASignatureTarget<C>,
pk: ECDSAPublicKeyTarget<C>,
) {
let ECDSASignatureTarget { r, s } = sig;
self.curve_assert_valid(&pk.0);
let c = self.inv_nonnative(&s);
let u1 = self.mul_nonnative(&msg, &c);
let u2 = self.mul_nonnative(&r, &c);
let g = self.constant_affine_point(C::GENERATOR_AFFINE);
let point1 = self.curve_scalar_mul(&g, &u1);
let point2 = self.curve_scalar_mul(&pk.0, &u2);
let point = self.curve_add(&point1, &point2);
let x = NonNativeTarget::<C::ScalarField> {
value: point.x.value,
_phantom: PhantomData,
};
self.connect_nonnative(&r, &x);
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use crate::curve::curve_types::{Curve, CurveScalar};
use crate::curve::ecdsa::{sign_message, ECDSAPublicKey, ECDSASecretKey, ECDSASignature};
use crate::curve::secp256k1::Secp256K1;
use crate::field::field_types::Field;
use crate::field::secp256k1_scalar::Secp256K1Scalar;
use crate::gadgets::ecdsa::{ECDSAPublicKeyTarget, ECDSASignatureTarget};
use crate::iop::witness::PartialWitness;
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
use crate::plonk::verifier::verify;
#[test]
#[ignore]
fn test_ecdsa_circuit() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
type Curve = Secp256K1;
let config = CircuitConfig::standard_ecc_config();
let pw = PartialWitness::new();
let mut builder = CircuitBuilder::<F, D>::new(config);
let msg = Secp256K1Scalar::rand();
let msg_target = builder.constant_nonnative(msg);
let sk = ECDSASecretKey::<Curve>(Secp256K1Scalar::rand());
let pk = ECDSAPublicKey((CurveScalar(sk.0) * Curve::GENERATOR_PROJECTIVE).to_affine());
let pk_target = ECDSAPublicKeyTarget(builder.constant_affine_point(pk.0));
let sig = sign_message(msg, sk);
let ECDSASignature { r, s } = sig;
let r_target = builder.constant_nonnative(r);
let s_target = builder.constant_nonnative(s);
let sig_target = ECDSASignatureTarget {
r: r_target,
s: s_target,
};
builder.verify_message(msg_target, sig_target, pk_target);
let data = builder.build::<C>();
let proof = data.prove(pw).unwrap();
verify(proof, &data.verifier_only, &data.common)
}
}

View File

@ -1,13 +1,9 @@
pub mod arithmetic;
pub mod arithmetic_extension;
pub mod arithmetic_u32;
pub mod biguint;
pub mod curve;
pub mod ecdsa;
pub mod hash;
pub mod interpolation;
pub mod multiple_comparison;
pub mod nonnative;
pub mod polynomial;
pub mod random_access;
pub mod range_check;

View File

@ -10,13 +10,15 @@ use crate::plonk::circuit_builder::CircuitBuilder;
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Checks that a `Target` matches a vector at a non-deterministic index.
/// Note: `access_index` is not range-checked.
pub fn random_access(&mut self, access_index: Target, claimed_element: Target, v: Vec<Target>) {
pub fn random_access(&mut self, access_index: Target, v: Vec<Target>) -> Target {
let vec_size = v.len();
let bits = log2_strict(vec_size);
debug_assert!(vec_size > 0);
if vec_size == 1 {
return self.connect(claimed_element, v[0]);
return v[0];
}
let claimed_element = self.add_virtual_target();
let dummy_gate = RandomAccessGate::<F, D>::new_from_config(&self.config, bits);
let (gate_index, copy) = self.find_slot(dummy_gate, &[], &[]);
@ -34,6 +36,8 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
claimed_element,
Target::wire(gate_index, dummy_gate.wire_claimed_element(copy)),
);
claimed_element
}
/// Checks that an `ExtensionTarget` matches a vector at a non-deterministic index.
@ -41,16 +45,13 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
pub fn random_access_extension(
&mut self,
access_index: Target,
claimed_element: ExtensionTarget<D>,
v: Vec<ExtensionTarget<D>>,
) {
for i in 0..D {
self.random_access(
access_index,
claimed_element.0[i],
v.iter().map(|et| et.0[i]).collect(),
);
}
) -> ExtensionTarget<D> {
let v: Vec<_> = (0..D)
.map(|i| self.random_access(access_index, v.iter().map(|et| et.0[i]).collect()))
.collect();
ExtensionTarget(v.try_into().unwrap())
}
}
@ -80,7 +81,8 @@ mod tests {
for i in 0..len {
let it = builder.constant(F::from_canonical_usize(i));
let elem = builder.constant_extension(vec[i]);
builder.random_access_extension(it, elem, v.clone());
let res = builder.random_access_extension(it, v.clone());
builder.connect_extension(elem, res);
}
let data = builder.build::<C>();

View File

@ -78,11 +78,9 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let index = self.le_sum(leaf_index_bits[proof.siblings.len()..].iter().copied());
for i in 0..4 {
self.random_access(
index,
state.elements[i],
merkle_cap.0.iter().map(|h| h.elements[i]).collect(),
);
let result =
self.random_access(index, merkle_cap.0.iter().map(|h| h.elements[i]).collect());
self.connect(result, state.elements[i]);
}
}
@ -110,11 +108,11 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
for i in 0..4 {
self.random_access(
let result = self.random_access(
cap_index,
state.elements[i],
merkle_cap.0.iter().map(|h| h.elements[i]).collect(),
);
self.connect(result, state.elements[i]);
}
}

View File

@ -1,13 +1,10 @@
use std::fmt::Debug;
use std::marker::PhantomData;
use num::BigUint;
use plonky2_field::extension_field::{Extendable, FieldExtension};
use plonky2_field::field_types::{Field, PrimeField};
use plonky2_field::field_types::Field;
use crate::gadgets::arithmetic_u32::U32Target;
use crate::gadgets::biguint::BigUintTarget;
use crate::gadgets::nonnative::NonNativeTarget;
use crate::hash::hash_types::{HashOut, HashOutTarget, RichField};
use crate::iop::ext_target::ExtensionTarget;
use crate::iop::target::{BoolTarget, Target};
@ -169,21 +166,6 @@ impl<F: Field> GeneratedValues<F> {
self.set_target(target.0, F::from_canonical_u32(value))
}
pub fn set_biguint_target(&mut self, target: BigUintTarget, value: BigUint) {
let mut limbs = value.to_u32_digits();
assert!(target.num_limbs() >= limbs.len());
limbs.resize(target.num_limbs(), 0);
for i in 0..target.num_limbs() {
self.set_u32_target(target.get_limb(i), limbs[i]);
}
}
pub fn set_nonnative_target<FF: PrimeField>(&mut self, target: NonNativeTarget<FF>, value: FF) {
self.set_biguint_target(target.value, value.to_canonical_biguint())
}
pub fn set_hash_target(&mut self, ht: HashOutTarget, value: HashOut<F>) {
ht.elements
.iter()

View File

@ -1,15 +1,12 @@
use std::collections::HashMap;
use itertools::Itertools;
use num::{BigUint, FromPrimitive, Zero};
use plonky2_field::extension_field::{Extendable, FieldExtension};
use plonky2_field::field_types::{Field, PrimeField};
use plonky2_field::field_types::Field;
use crate::fri::structure::{FriOpenings, FriOpeningsTarget};
use crate::fri::witness_util::set_fri_proof_target;
use crate::gadgets::arithmetic_u32::U32Target;
use crate::gadgets::biguint::BigUintTarget;
use crate::gadgets::nonnative::NonNativeTarget;
use crate::hash::hash_types::HashOutTarget;
use crate::hash::hash_types::RichField;
use crate::hash::hash_types::{HashOut, MerkleCapTarget};
@ -63,30 +60,6 @@ pub trait Witness<F: Field> {
panic!("not a bool")
}
fn get_biguint_target(&self, target: BigUintTarget) -> BigUint
where
F: PrimeField,
{
let mut result = BigUint::zero();
let limb_base = BigUint::from_u64(1 << 32u64).unwrap();
for i in (0..target.num_limbs()).rev() {
let limb = target.get_limb(i);
result *= &limb_base;
result += self.get_target(limb.0).to_canonical_biguint();
}
result
}
fn get_nonnative_target<FF: PrimeField>(&self, target: NonNativeTarget<FF>) -> FF
where
F: PrimeField,
{
let val = self.get_biguint_target(target.value);
FF::from_biguint(val)
}
fn get_hash_target(&self, ht: HashOutTarget) -> HashOut<F> {
HashOut {
elements: self.get_targets(&ht.elements).try_into().unwrap(),
@ -159,12 +132,6 @@ pub trait Witness<F: Field> {
self.set_target(target.0, F::from_canonical_u32(value))
}
fn set_biguint_target(&mut self, target: &BigUintTarget, value: &BigUint) {
for (&lt, &l) in target.limbs.iter().zip(&value.to_u32_digits()) {
self.set_u32_target(lt, l);
}
}
/// Set the targets in a `ProofWithPublicInputsTarget` to their corresponding values in a
/// `ProofWithPublicInputs`.
fn set_proof_with_pis_target<C: GenericConfig<D, F = F>, const D: usize>(

View File

@ -12,7 +12,6 @@
pub use plonky2_field as field;
pub mod curve;
pub mod fri;
pub mod gadgets;
pub mod gates;

View File

@ -86,6 +86,13 @@ impl CircuitConfig {
}
}
pub fn wide_ecc_config() -> Self {
Self {
num_wires: 234,
..Self::standard_recursion_config()
}
}
pub fn standard_recursion_zk_config() -> Self {
CircuitConfig {
zero_knowledge: true,