mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-11 10:13:09 +00:00
Merge pull request #375 from mir-protocol/no_more_clippy
Fix all clippy lints
This commit is contained in:
commit
25c0614dff
@ -30,7 +30,7 @@ jobs:
|
||||
args: --all
|
||||
|
||||
lints:
|
||||
name: Formatting
|
||||
name: Formatting and Clippy
|
||||
runs-on: ubuntu-latest
|
||||
if: "! contains(toJSON(github.event.commits.*.message), '[skip-ci]')"
|
||||
steps:
|
||||
@ -43,10 +43,17 @@ jobs:
|
||||
profile: minimal
|
||||
toolchain: nightly
|
||||
override: true
|
||||
components: rustfmt
|
||||
components: rustfmt, clippy
|
||||
|
||||
- name: Run cargo fmt
|
||||
uses: actions-rs/cargo@v1
|
||||
with:
|
||||
command: fmt
|
||||
args: --all -- --check
|
||||
|
||||
- name: Run cargo clippy
|
||||
uses: actions-rs/cargo@v1
|
||||
with:
|
||||
command: clippy
|
||||
args: --all-features --all-targets -- -D warnings -A incomplete-features
|
||||
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion};
|
||||
use plonky2::field::field_types::Field;
|
||||
use plonky2::field::goldilocks_field::GoldilocksField;
|
||||
use plonky2::polynomial::polynomial::PolynomialCoeffs;
|
||||
use plonky2::polynomial::PolynomialCoeffs;
|
||||
use tynm::type_name;
|
||||
|
||||
pub(crate) fn bench_ffts<F: Field>(c: &mut Criterion) {
|
||||
|
||||
@ -2,7 +2,7 @@ use std::time::Instant;
|
||||
|
||||
use plonky2::field::field_types::Field;
|
||||
use plonky2::field::goldilocks_field::GoldilocksField;
|
||||
use plonky2::polynomial::polynomial::PolynomialValues;
|
||||
use plonky2::polynomial::PolynomialValues;
|
||||
use rayon::prelude::*;
|
||||
|
||||
type F = GoldilocksField;
|
||||
|
||||
@ -1,5 +1,7 @@
|
||||
//! Generates random constants using ChaCha20, seeded with zero.
|
||||
|
||||
#![allow(clippy::needless_range_loop)]
|
||||
|
||||
use plonky2::field::field_types::PrimeField;
|
||||
use plonky2::field::goldilocks_field::GoldilocksField;
|
||||
use rand::{Rng, SeedableRng};
|
||||
|
||||
@ -35,6 +35,7 @@ impl<const D: usize> ExtensionTarget<D> {
|
||||
let arr = self.to_target_array();
|
||||
let k = (F::order() - 1u32) / (D as u64);
|
||||
let z0 = F::Extension::W.exp_biguint(&(k * count as u64));
|
||||
#[allow(clippy::needless_collect)]
|
||||
let zs = z0
|
||||
.powers()
|
||||
.take(D)
|
||||
|
||||
@ -6,7 +6,7 @@ use unroll::unroll_for_loops;
|
||||
use crate::field::field_types::Field;
|
||||
use crate::field::packable::Packable;
|
||||
use crate::field::packed_field::{PackedField, Singleton};
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::util::{log2_strict, reverse_index_bits};
|
||||
|
||||
pub(crate) type FftRootTable<F> = Vec<Vec<F>>;
|
||||
@ -38,12 +38,12 @@ fn fft_dispatch<F: Field>(
|
||||
zero_factor: Option<usize>,
|
||||
root_table: Option<&FftRootTable<F>>,
|
||||
) -> Vec<F> {
|
||||
let computed_root_table = if let Some(_) = root_table {
|
||||
let computed_root_table = if root_table.is_some() {
|
||||
None
|
||||
} else {
|
||||
Some(fft_root_table(input.len()))
|
||||
};
|
||||
let used_root_table = root_table.or(computed_root_table.as_ref()).unwrap();
|
||||
let used_root_table = root_table.or_else(|| computed_root_table.as_ref()).unwrap();
|
||||
|
||||
fft_classic(input, zero_factor.unwrap_or(0), used_root_table)
|
||||
}
|
||||
@ -122,8 +122,8 @@ fn fft_classic_simd<P: PackedField>(
|
||||
|
||||
// Set omega to root_table[lg_half_m][0..half_m] but repeated.
|
||||
let mut omega_vec = P::zero().to_vec();
|
||||
for j in 0..omega_vec.len() {
|
||||
omega_vec[j] = root_table[lg_half_m][j % half_m];
|
||||
for (j, omega) in omega_vec.iter_mut().enumerate() {
|
||||
*omega = root_table[lg_half_m][j % half_m];
|
||||
}
|
||||
let omega = P::from_slice(&omega_vec[..]);
|
||||
|
||||
@ -201,9 +201,9 @@ pub(crate) fn fft_classic<F: Field>(input: &[F], r: usize, root_table: &FftRootT
|
||||
if lg_n <= lg_packed_width {
|
||||
// Need the slice to be at least the width of two packed vectors for the vectorized version
|
||||
// to work. Do this tiny problem in scalar.
|
||||
fft_classic_simd::<Singleton<F>>(&mut values[..], r, lg_n, &root_table);
|
||||
fft_classic_simd::<Singleton<F>>(&mut values[..], r, lg_n, root_table);
|
||||
} else {
|
||||
fft_classic_simd::<<F as Packable>::PackedType>(&mut values[..], r, lg_n, &root_table);
|
||||
fft_classic_simd::<<F as Packable>::PackedType>(&mut values[..], r, lg_n, root_table);
|
||||
}
|
||||
values
|
||||
}
|
||||
@ -213,7 +213,7 @@ mod tests {
|
||||
use crate::field::fft::{fft, fft_with_options, ifft};
|
||||
use crate::field::field_types::Field;
|
||||
use crate::field::goldilocks_field::GoldilocksField;
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::util::{log2_ceil, log2_strict};
|
||||
|
||||
#[test]
|
||||
@ -267,7 +267,7 @@ mod tests {
|
||||
|
||||
let values = subgroup
|
||||
.into_iter()
|
||||
.map(|x| evaluate_at_naive(&coefficients, x))
|
||||
.map(|x| evaluate_at_naive(coefficients, x))
|
||||
.collect();
|
||||
PolynomialValues::new(values)
|
||||
}
|
||||
@ -276,8 +276,8 @@ mod tests {
|
||||
let mut sum = F::ZERO;
|
||||
let mut point_power = F::ONE;
|
||||
for &c in &coefficients.coeffs {
|
||||
sum = sum + c * point_power;
|
||||
point_power = point_power * point;
|
||||
sum += c * point_power;
|
||||
point_power *= point;
|
||||
}
|
||||
sum
|
||||
}
|
||||
|
||||
@ -88,6 +88,7 @@ macro_rules! test_field_arithmetic {
|
||||
};
|
||||
}
|
||||
|
||||
#[allow(clippy::eq_op)]
|
||||
pub(crate) fn test_add_neg_sub_mul<BF: Extendable<D>, const D: usize>() {
|
||||
let x = BF::Extension::rand();
|
||||
let y = BF::Extension::rand();
|
||||
|
||||
@ -335,7 +335,7 @@ pub trait Field:
|
||||
}
|
||||
|
||||
fn kth_root_u64(&self, k: u64) -> Self {
|
||||
let p = Self::order().clone();
|
||||
let p = Self::order();
|
||||
let p_minus_1 = &p - 1u32;
|
||||
debug_assert!(
|
||||
Self::is_monomial_permutation_u64(k),
|
||||
@ -422,6 +422,7 @@ pub trait PrimeField: Field {
|
||||
unsafe { self.sub_canonical_u64(1) }
|
||||
}
|
||||
|
||||
/// # Safety
|
||||
/// Equivalent to *self + Self::from_canonical_u64(rhs), but may be cheaper. The caller must
|
||||
/// ensure that 0 <= rhs < Self::ORDER. The function may return incorrect results if this
|
||||
/// precondition is not met. It is marked unsafe for this reason.
|
||||
@ -431,6 +432,7 @@ pub trait PrimeField: Field {
|
||||
*self + Self::from_canonical_u64(rhs)
|
||||
}
|
||||
|
||||
/// # Safety
|
||||
/// Equivalent to *self - Self::from_canonical_u64(rhs), but may be cheaper. The caller must
|
||||
/// ensure that 0 <= rhs < Self::ORDER. The function may return incorrect results if this
|
||||
/// precondition is not met. It is marked unsafe for this reason.
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
use crate::field::fft::ifft;
|
||||
use crate::field::field_types::Field;
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::util::log2_ceil;
|
||||
|
||||
/// Computes the unique degree < n interpolant of an arbitrary list of n (point, value) pairs.
|
||||
@ -80,7 +80,7 @@ mod tests {
|
||||
use crate::field::extension_field::quartic::QuarticExtension;
|
||||
use crate::field::field_types::Field;
|
||||
use crate::field::goldilocks_field::GoldilocksField;
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
use crate::polynomial::PolynomialCoeffs;
|
||||
|
||||
#[test]
|
||||
fn interpolant_random() {
|
||||
|
||||
@ -24,7 +24,7 @@ where
|
||||
ExpectedOp: Fn(u64) -> u64,
|
||||
{
|
||||
let inputs = test_inputs(F::ORDER);
|
||||
let expected: Vec<_> = inputs.iter().map(|x| expected_op(x.clone())).collect();
|
||||
let expected: Vec<_> = inputs.iter().map(|&x| expected_op(x)).collect();
|
||||
let output: Vec<_> = inputs
|
||||
.iter()
|
||||
.cloned()
|
||||
|
||||
@ -10,7 +10,7 @@ use crate::iop::challenger::Challenger;
|
||||
use crate::plonk::circuit_data::CommonCircuitData;
|
||||
use crate::plonk::plonk_common::PlonkPolynomials;
|
||||
use crate::plonk::proof::OpeningSet;
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::timed;
|
||||
use crate::util::reducing::ReducingFactor;
|
||||
use crate::util::timing::TimingTree;
|
||||
@ -216,7 +216,7 @@ impl<F: RichField> PolynomialBatchCommitment<F> {
|
||||
lde_final_poly,
|
||||
lde_final_values,
|
||||
challenger,
|
||||
&common_data,
|
||||
common_data,
|
||||
timing,
|
||||
);
|
||||
|
||||
|
||||
@ -15,7 +15,7 @@ use crate::iop::target::Target;
|
||||
use crate::plonk::circuit_data::CommonCircuitData;
|
||||
use crate::plonk::plonk_common::PolynomialsIndexBlinding;
|
||||
use crate::plonk::proof::{FriInferredElements, ProofChallenges};
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
use crate::polynomial::PolynomialCoeffs;
|
||||
|
||||
/// Evaluations and Merkle proof produced by the prover in a FRI query step.
|
||||
#[derive(Serialize, Deserialize, Clone, Debug, Eq, PartialEq)]
|
||||
|
||||
@ -10,7 +10,7 @@ use crate::hash::merkle_tree::MerkleTree;
|
||||
use crate::iop::challenger::Challenger;
|
||||
use crate::plonk::circuit_data::CommonCircuitData;
|
||||
use crate::plonk::plonk_common::reduce_with_powers;
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::timed;
|
||||
use crate::util::reverse_index_bits_in_place;
|
||||
use crate::util::timing::TimingTree;
|
||||
|
||||
@ -407,7 +407,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
arity_bits,
|
||||
evals,
|
||||
betas[i],
|
||||
&common_data
|
||||
common_data
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
@ -142,9 +142,9 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
|
||||
let mut combined_limbs = vec![];
|
||||
let mut carry = self.zero_u32();
|
||||
for i in 0..total_limbs {
|
||||
to_add[i].push(carry);
|
||||
let (new_result, new_carry) = self.add_many_u32(&to_add[i].clone());
|
||||
for summands in &mut to_add {
|
||||
summands.push(carry);
|
||||
let (new_result, new_carry) = self.add_many_u32(summands);
|
||||
combined_limbs.push(new_result);
|
||||
carry = new_carry;
|
||||
}
|
||||
@ -172,9 +172,9 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
_phantom: PhantomData,
|
||||
});
|
||||
|
||||
let div_b = self.mul_biguint(&div, &b);
|
||||
let div_b = self.mul_biguint(&div, b);
|
||||
let div_b_plus_rem = self.add_biguint(&div_b, &rem);
|
||||
self.connect_biguint(&a, &div_b_plus_rem);
|
||||
self.connect_biguint(a, &div_b_plus_rem);
|
||||
|
||||
let cmp_rem_b = self.cmp_biguint(&rem, b);
|
||||
self.assert_one(cmp_rem_b.target);
|
||||
|
||||
@ -378,7 +378,7 @@ mod tests {
|
||||
let pw = PartialWitness::new();
|
||||
let mut builder = CircuitBuilder::<F, D>::new(config);
|
||||
|
||||
let lst: Vec<F> = (0..size * 2).map(|n| F::from_canonical_usize(n)).collect();
|
||||
let lst: Vec<F> = (0..size * 2).map(F::from_canonical_usize).collect();
|
||||
let a: Vec<Vec<Target>> = lst[..]
|
||||
.chunks(2)
|
||||
.map(|pair| vec![builder.constant(pair[0]), builder.constant(pair[1])])
|
||||
|
||||
@ -224,7 +224,7 @@ mod tests {
|
||||
izip!(is_write_vals, address_vals, timestamp_vals, value_vals)
|
||||
.zip(combined_vals_u64)
|
||||
.collect::<Vec<_>>();
|
||||
input_ops_and_keys.sort_by_key(|(_, val)| val.clone());
|
||||
input_ops_and_keys.sort_by_key(|(_, val)| *val);
|
||||
let input_ops_sorted: Vec<_> = input_ops_and_keys.iter().map(|(x, _)| x).collect();
|
||||
|
||||
let output_ops =
|
||||
|
||||
@ -261,17 +261,11 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
|
||||
fn dependencies(&self) -> Vec<Target> {
|
||||
let local_target = |input| Target::wire(self.gate_index, input);
|
||||
|
||||
let mut deps = Vec::with_capacity(3);
|
||||
deps.push(local_target(
|
||||
U32ArithmeticGate::<F, D>::wire_ith_multiplicand_0(self.i),
|
||||
));
|
||||
deps.push(local_target(
|
||||
U32ArithmeticGate::<F, D>::wire_ith_multiplicand_1(self.i),
|
||||
));
|
||||
deps.push(local_target(U32ArithmeticGate::<F, D>::wire_ith_addend(
|
||||
self.i,
|
||||
)));
|
||||
deps
|
||||
vec![
|
||||
local_target(U32ArithmeticGate::<F, D>::wire_ith_multiplicand_0(self.i)),
|
||||
local_target(U32ArithmeticGate::<F, D>::wire_ith_multiplicand_1(self.i)),
|
||||
local_target(U32ArithmeticGate::<F, D>::wire_ith_addend(self.i)),
|
||||
]
|
||||
}
|
||||
|
||||
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
||||
@ -307,23 +301,19 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
|
||||
|
||||
let num_limbs = U32ArithmeticGate::<F, D>::num_limbs();
|
||||
let limb_base = 1 << U32ArithmeticGate::<F, D>::limb_bits();
|
||||
let output_limbs_u64: Vec<_> = unfold((), move |_| {
|
||||
let output_limbs_u64 = unfold((), move |_| {
|
||||
let ret = output_u64 % limb_base;
|
||||
output_u64 /= limb_base;
|
||||
Some(ret)
|
||||
})
|
||||
.take(num_limbs)
|
||||
.collect();
|
||||
let output_limbs_f: Vec<_> = output_limbs_u64
|
||||
.into_iter()
|
||||
.map(F::from_canonical_u64)
|
||||
.collect();
|
||||
.take(num_limbs);
|
||||
let output_limbs_f = output_limbs_u64.map(F::from_canonical_u64);
|
||||
|
||||
for j in 0..num_limbs {
|
||||
for (j, output_limb) in output_limbs_f.enumerate() {
|
||||
let wire = local_wire(U32ArithmeticGate::<F, D>::wire_ith_output_jth_limb(
|
||||
self.i, j,
|
||||
));
|
||||
out_buffer.set_wire(wire, output_limbs_f[j]);
|
||||
out_buffer.set_wire(wire, output_limb);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -340,10 +340,10 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
|
||||
fn dependencies(&self) -> Vec<Target> {
|
||||
let local_target = |input| Target::wire(self.gate_index, input);
|
||||
|
||||
let mut deps = Vec::new();
|
||||
deps.push(local_target(self.gate.wire_first_input()));
|
||||
deps.push(local_target(self.gate.wire_second_input()));
|
||||
deps
|
||||
vec![
|
||||
local_target(self.gate.wire_first_input()),
|
||||
local_target(self.gate.wire_second_input()),
|
||||
]
|
||||
}
|
||||
|
||||
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
||||
@ -555,7 +555,7 @@ mod tests {
|
||||
};
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
let max: u64 = 1 << num_bits - 1;
|
||||
let max: u64 = 1 << (num_bits - 1);
|
||||
let first_input_u64 = rng.gen_range(0..max);
|
||||
let second_input_u64 = {
|
||||
let mut val = rng.gen_range(0..max);
|
||||
|
||||
@ -151,10 +151,8 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for ComparisonGate
|
||||
.collect();
|
||||
|
||||
// Range-check the bits.
|
||||
for i in 0..most_significant_diff_bits.len() {
|
||||
constraints.push(
|
||||
most_significant_diff_bits[i] * (F::Extension::ONE - most_significant_diff_bits[i]),
|
||||
);
|
||||
for &bit in &most_significant_diff_bits {
|
||||
constraints.push(bit * (F::Extension::ONE - bit));
|
||||
}
|
||||
|
||||
let bits_combined = reduce_with_powers(&most_significant_diff_bits, F::Extension::TWO);
|
||||
@ -232,9 +230,8 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for ComparisonGate
|
||||
.collect();
|
||||
|
||||
// Range-check the bits.
|
||||
for i in 0..most_significant_diff_bits.len() {
|
||||
constraints
|
||||
.push(most_significant_diff_bits[i] * (F::ONE - most_significant_diff_bits[i]));
|
||||
for &bit in &most_significant_diff_bits {
|
||||
constraints.push(bit * (F::ONE - bit));
|
||||
}
|
||||
|
||||
let bits_combined = reduce_with_powers(&most_significant_diff_bits, F::TWO);
|
||||
@ -324,8 +321,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for ComparisonGate
|
||||
.collect();
|
||||
|
||||
// Range-check the bits.
|
||||
for i in 0..most_significant_diff_bits.len() {
|
||||
let this_bit = most_significant_diff_bits[i];
|
||||
for &this_bit in &most_significant_diff_bits {
|
||||
let inverse = builder.sub_extension(one, this_bit);
|
||||
constraints.push(builder.mul_extension(this_bit, inverse));
|
||||
}
|
||||
@ -388,10 +384,10 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
|
||||
fn dependencies(&self) -> Vec<Target> {
|
||||
let local_target = |input| Target::wire(self.gate_index, input);
|
||||
|
||||
let mut deps = Vec::new();
|
||||
deps.push(local_target(self.gate.wire_first_input()));
|
||||
deps.push(local_target(self.gate.wire_second_input()));
|
||||
deps
|
||||
vec![
|
||||
local_target(self.gate.wire_first_input()),
|
||||
local_target(self.gate.wire_second_input()),
|
||||
]
|
||||
}
|
||||
|
||||
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
||||
@ -638,7 +634,7 @@ mod tests {
|
||||
};
|
||||
|
||||
let mut rng = rand::thread_rng();
|
||||
let max: u64 = 1 << num_bits - 1;
|
||||
let max: u64 = 1 << (num_bits - 1);
|
||||
let first_input_u64 = rng.gen_range(0..max);
|
||||
let second_input_u64 = {
|
||||
let mut val = rng.gen_range(0..max);
|
||||
|
||||
@ -335,9 +335,8 @@ mod tests {
|
||||
.map(|b| F::from_canonical_u64(*b))
|
||||
.collect();
|
||||
|
||||
let mut v = Vec::new();
|
||||
v.push(base);
|
||||
v.extend(power_bits_f.clone());
|
||||
let mut v = vec![base];
|
||||
v.extend(power_bits_f);
|
||||
|
||||
let mut intermediate_values = Vec::new();
|
||||
let mut current_intermediate_value = F::ONE;
|
||||
|
||||
@ -9,7 +9,7 @@ use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
use crate::plonk::circuit_data::CircuitConfig;
|
||||
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
|
||||
use crate::plonk::verifier::verify;
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::util::{log2_ceil, transpose};
|
||||
|
||||
const WITNESS_SIZE: usize = 1 << 5;
|
||||
|
||||
@ -251,8 +251,7 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F> for Insert
|
||||
|
||||
let local_targets = |inputs: Range<usize>| inputs.map(local_target);
|
||||
|
||||
let mut deps = Vec::new();
|
||||
deps.push(local_target(self.gate.wires_insertion_index()));
|
||||
let mut deps = vec![local_target(self.gate.wires_insertion_index())];
|
||||
deps.extend(local_targets(self.gate.wires_element_to_insert()));
|
||||
for i in 0..self.gate.vec_size {
|
||||
deps.extend(local_targets(self.gate.wires_original_list_item(i)));
|
||||
@ -291,7 +290,7 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F> for Insert
|
||||
vec_size
|
||||
);
|
||||
|
||||
let mut new_vec = orig_vec.clone();
|
||||
let mut new_vec = orig_vec;
|
||||
new_vec.insert(insertion_index, to_insert);
|
||||
|
||||
let mut equality_dummy_vals = Vec::new();
|
||||
@ -372,14 +371,13 @@ mod tests {
|
||||
fn get_wires(orig_vec: Vec<FF>, insertion_index: usize, element_to_insert: FF) -> Vec<FF> {
|
||||
let vec_size = orig_vec.len();
|
||||
|
||||
let mut v = Vec::new();
|
||||
v.push(F::from_canonical_usize(insertion_index));
|
||||
let mut v = vec![F::from_canonical_usize(insertion_index)];
|
||||
v.extend(element_to_insert.0);
|
||||
for j in 0..vec_size {
|
||||
v.extend(orig_vec[j].0);
|
||||
}
|
||||
|
||||
let mut new_vec = orig_vec.clone();
|
||||
let mut new_vec = orig_vec;
|
||||
new_vec.insert(insertion_index, element_to_insert);
|
||||
let mut equality_dummy_vals = Vec::new();
|
||||
for i in 0..=vec_size {
|
||||
|
||||
@ -15,7 +15,7 @@ use crate::iop::wire::Wire;
|
||||
use crate::iop::witness::{PartitionWitness, Witness};
|
||||
use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
use crate::polynomial::PolynomialCoeffs;
|
||||
|
||||
/// Interpolation gate with constraints of degree at most `1<<subgroup_bits`.
|
||||
/// `eval_unfiltered_recursively` uses less gates than `LowDegreeInterpolationGate`.
|
||||
@ -72,7 +72,7 @@ impl<F: RichField + Extendable<D>, const D: usize> HighDegreeInterpolationGate<F
|
||||
g.powers()
|
||||
.take(size)
|
||||
.map(move |x| {
|
||||
let subgroup_element = builder.constant(x.into());
|
||||
let subgroup_element = builder.constant(x);
|
||||
builder.scalar_mul_ext(subgroup_element, shift)
|
||||
})
|
||||
.collect()
|
||||
@ -283,7 +283,7 @@ mod tests {
|
||||
use crate::gates::interpolation::HighDegreeInterpolationGate;
|
||||
use crate::hash::hash_types::HashOut;
|
||||
use crate::plonk::vars::EvaluationVars;
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
use crate::polynomial::PolynomialCoeffs;
|
||||
|
||||
#[test]
|
||||
fn wire_indices() {
|
||||
|
||||
@ -15,7 +15,7 @@ use crate::iop::wire::Wire;
|
||||
use crate::iop::witness::{PartitionWitness, Witness};
|
||||
use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
use crate::polynomial::PolynomialCoeffs;
|
||||
|
||||
/// Interpolation gate with constraints of degree 2.
|
||||
/// `eval_unfiltered_recursively` uses more gates than `HighDegreeInterpolationGate`.
|
||||
@ -393,7 +393,7 @@ mod tests {
|
||||
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
|
||||
use crate::hash::hash_types::HashOut;
|
||||
use crate::plonk::vars::EvaluationVars;
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
use crate::polynomial::PolynomialCoeffs;
|
||||
|
||||
#[test]
|
||||
fn low_degree() {
|
||||
|
||||
@ -157,7 +157,7 @@ where
|
||||
|
||||
// Partial rounds.
|
||||
<F as Poseidon<WIDTH>>::partial_first_constant_layer(&mut state);
|
||||
state = <F as Poseidon<WIDTH>>::mds_partial_layer_init(&mut state);
|
||||
state = <F as Poseidon<WIDTH>>::mds_partial_layer_init(&state);
|
||||
for r in 0..(poseidon::N_PARTIAL_ROUNDS - 1) {
|
||||
let sbox_in = vars.local_wires[Self::wire_partial_sbox(r)];
|
||||
constraints.push(state[0] - sbox_in);
|
||||
@ -243,7 +243,7 @@ where
|
||||
|
||||
// Partial rounds.
|
||||
<F as Poseidon<WIDTH>>::partial_first_constant_layer(&mut state);
|
||||
state = <F as Poseidon<WIDTH>>::mds_partial_layer_init(&mut state);
|
||||
state = <F as Poseidon<WIDTH>>::mds_partial_layer_init(&state);
|
||||
for r in 0..(poseidon::N_PARTIAL_ROUNDS - 1) {
|
||||
let sbox_in = vars.local_wires[Self::wire_partial_sbox(r)];
|
||||
constraints.push(state[0] - sbox_in);
|
||||
@ -345,7 +345,7 @@ where
|
||||
}
|
||||
} else {
|
||||
<F as Poseidon<WIDTH>>::partial_first_constant_layer_recursive(builder, &mut state);
|
||||
state = <F as Poseidon<WIDTH>>::mds_partial_layer_init_recursive(builder, &mut state);
|
||||
state = <F as Poseidon<WIDTH>>::mds_partial_layer_init_recursive(builder, &state);
|
||||
for r in 0..(poseidon::N_PARTIAL_ROUNDS - 1) {
|
||||
let sbox_in = vars.local_wires[Self::wire_partial_sbox(r)];
|
||||
constraints.push(builder.sub_extension(state[0], sbox_in));
|
||||
@ -489,7 +489,7 @@ where
|
||||
}
|
||||
|
||||
<F as Poseidon<WIDTH>>::partial_first_constant_layer(&mut state);
|
||||
state = <F as Poseidon<WIDTH>>::mds_partial_layer_init(&mut state);
|
||||
state = <F as Poseidon<WIDTH>>::mds_partial_layer_init(&state);
|
||||
for r in 0..(poseidon::N_PARTIAL_ROUNDS - 1) {
|
||||
out_buffer.set_wire(
|
||||
local_wire(PoseidonGate::<F, D, WIDTH>::wire_partial_sbox(r)),
|
||||
|
||||
@ -263,8 +263,7 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
|
||||
fn dependencies(&self) -> Vec<Target> {
|
||||
let local_target = |input| Target::wire(self.gate_index, input);
|
||||
|
||||
let mut deps = Vec::new();
|
||||
deps.push(local_target(self.gate.wire_access_index(self.copy)));
|
||||
let mut deps = vec![local_target(self.gate.wire_access_index(self.copy))];
|
||||
for i in 0..self.gate.vec_size() {
|
||||
deps.push(local_target(self.gate.wire_list_item(i, self.copy)));
|
||||
}
|
||||
|
||||
@ -244,17 +244,11 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
|
||||
fn dependencies(&self) -> Vec<Target> {
|
||||
let local_target = |input| Target::wire(self.gate_index, input);
|
||||
|
||||
let mut deps = Vec::with_capacity(3);
|
||||
deps.push(local_target(U32SubtractionGate::<F, D>::wire_ith_input_x(
|
||||
self.i,
|
||||
)));
|
||||
deps.push(local_target(U32SubtractionGate::<F, D>::wire_ith_input_y(
|
||||
self.i,
|
||||
)));
|
||||
deps.push(local_target(
|
||||
U32SubtractionGate::<F, D>::wire_ith_input_borrow(self.i),
|
||||
));
|
||||
deps
|
||||
vec![
|
||||
local_target(U32SubtractionGate::<F, D>::wire_ith_input_x(self.i)),
|
||||
local_target(U32SubtractionGate::<F, D>::wire_ith_input_y(self.i)),
|
||||
local_target(U32SubtractionGate::<F, D>::wire_ith_input_borrow(self.i)),
|
||||
]
|
||||
}
|
||||
|
||||
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
||||
|
||||
@ -1,3 +1,5 @@
|
||||
#![allow(clippy::assertions_on_constants)]
|
||||
|
||||
use std::arch::aarch64::*;
|
||||
|
||||
use static_assertions::const_assert;
|
||||
@ -171,9 +173,7 @@ unsafe fn multiply(x: u64, y: u64) -> u64 {
|
||||
let xy_hi_lo_mul_epsilon = mul_epsilon(xy_hi);
|
||||
|
||||
// add_with_wraparound is safe, as xy_hi_lo_mul_epsilon <= 0xfffffffe00000001 <= ORDER.
|
||||
let res1 = add_with_wraparound(res0, xy_hi_lo_mul_epsilon);
|
||||
|
||||
res1
|
||||
add_with_wraparound(res0, xy_hi_lo_mul_epsilon)
|
||||
}
|
||||
|
||||
// ==================================== STANDALONE CONST LAYER =====================================
|
||||
@ -266,9 +266,7 @@ unsafe fn mds_reduce(
|
||||
// Multiply by EPSILON and accumulate.
|
||||
let res_unadj = vmlal_laneq_u32::<0>(res_lo, res_hi_hi, mds_consts0);
|
||||
let res_adj = vcgtq_u64(res_lo, res_unadj);
|
||||
let res = vsraq_n_u64::<32>(res_unadj, res_adj);
|
||||
|
||||
res
|
||||
vsraq_n_u64::<32>(res_unadj, res_adj)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
@ -968,8 +966,7 @@ unsafe fn partial_round(
|
||||
#[inline(always)]
|
||||
unsafe fn full_round(state: [u64; 12], round_constants: &[u64; WIDTH]) -> [u64; 12] {
|
||||
let state = sbox_layer_full(state);
|
||||
let state = mds_const_layers_full(state, round_constants);
|
||||
state
|
||||
mds_const_layers_full(state, round_constants)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
|
||||
@ -110,9 +110,7 @@ pub fn hash_n_to_m<F: RichField>(mut inputs: Vec<F>, num_outputs: usize, pad: bo
|
||||
|
||||
// Absorb all input chunks.
|
||||
for input_chunk in inputs.chunks(SPONGE_RATE) {
|
||||
for i in 0..input_chunk.len() {
|
||||
state[i] = input_chunk[i];
|
||||
}
|
||||
state[..input_chunk.len()].copy_from_slice(input_chunk);
|
||||
state = permute(state);
|
||||
}
|
||||
|
||||
|
||||
@ -41,6 +41,7 @@ impl Target {
|
||||
|
||||
/// A `Target` which has already been constrained such that it can only be 0 or 1.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[allow(clippy::manual_non_exhaustive)]
|
||||
pub struct BoolTarget {
|
||||
pub target: Target,
|
||||
/// This private field is here to force all instantiations to go through `new_unsafe`.
|
||||
|
||||
@ -1,5 +1,9 @@
|
||||
#![allow(incomplete_features)]
|
||||
#![allow(const_evaluatable_unchecked)]
|
||||
#![allow(clippy::new_without_default)]
|
||||
#![allow(clippy::too_many_arguments)]
|
||||
#![allow(clippy::len_without_is_empty)]
|
||||
#![allow(clippy::needless_range_loop)]
|
||||
#![feature(asm)]
|
||||
#![feature(asm_sym)]
|
||||
#![feature(destructuring_assignment)]
|
||||
|
||||
@ -40,7 +40,7 @@ use crate::plonk::circuit_data::{
|
||||
use crate::plonk::copy_constraint::CopyConstraint;
|
||||
use crate::plonk::permutation_argument::Forest;
|
||||
use crate::plonk::plonk_common::PlonkPolynomials;
|
||||
use crate::polynomial::polynomial::PolynomialValues;
|
||||
use crate::polynomial::PolynomialValues;
|
||||
use crate::util::context_tree::ContextTree;
|
||||
use crate::util::marking::{Markable, MarkedTargets};
|
||||
use crate::util::partial_products::num_partial_products;
|
||||
@ -634,7 +634,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
|
||||
// Precompute FFT roots.
|
||||
let max_fft_points =
|
||||
1 << degree_bits + max(self.config.rate_bits, log2_ceil(quotient_degree_factor));
|
||||
1 << (degree_bits + max(self.config.rate_bits, log2_ceil(quotient_degree_factor)));
|
||||
let fft_root_table = fft_root_table(max_fft_points);
|
||||
|
||||
let constants_sigmas_vecs = [constant_vecs, sigma_vecs.clone()].concat();
|
||||
@ -669,7 +669,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
let watch_rep_index = forest.parents[watch_index];
|
||||
generator_indices_by_watches
|
||||
.entry(watch_rep_index)
|
||||
.or_insert(vec![])
|
||||
.or_insert_with(Vec::new)
|
||||
.push(i);
|
||||
}
|
||||
}
|
||||
|
||||
@ -13,7 +13,7 @@ use crate::plonk::proof::{
|
||||
CompressedProof, CompressedProofWithPublicInputs, FriInferredElements, OpeningSet, Proof,
|
||||
ProofChallenges, ProofWithPublicInputs,
|
||||
};
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
use crate::polynomial::PolynomialCoeffs;
|
||||
use crate::util::reverse_bits;
|
||||
|
||||
fn get_challenges<F: RichField + Extendable<D>, const D: usize>(
|
||||
|
||||
@ -5,7 +5,7 @@ use rayon::prelude::*;
|
||||
use crate::field::field_types::Field;
|
||||
use crate::iop::target::Target;
|
||||
use crate::iop::wire::Wire;
|
||||
use crate::polynomial::polynomial::PolynomialValues;
|
||||
use crate::polynomial::PolynomialValues;
|
||||
|
||||
/// Disjoint Set Forest data-structure following https://en.wikipedia.org/wiki/Disjoint-set_data_structure.
|
||||
pub struct Forest {
|
||||
|
||||
@ -138,11 +138,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CompressedProof<F, D> {
|
||||
plonk_zs_partial_products_cap,
|
||||
quotient_polys_cap,
|
||||
openings,
|
||||
opening_proof: opening_proof.decompress(
|
||||
&challenges,
|
||||
fri_inferred_elements,
|
||||
common_data,
|
||||
),
|
||||
opening_proof: opening_proof.decompress(challenges, fri_inferred_elements, common_data),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -17,7 +17,7 @@ use crate::plonk::plonk_common::ZeroPolyOnCoset;
|
||||
use crate::plonk::proof::{Proof, ProofWithPublicInputs};
|
||||
use crate::plonk::vanishing_poly::eval_vanishing_poly_base_batch;
|
||||
use crate::plonk::vars::EvaluationVarsBase;
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::timed;
|
||||
use crate::util::partial_products::{partial_products_and_z_gx, quotient_chunk_products};
|
||||
use crate::util::timing::TimingTree;
|
||||
|
||||
@ -527,7 +527,7 @@ mod tests {
|
||||
&inner_vd.constants_sigmas_cap,
|
||||
);
|
||||
|
||||
builder.add_recursive_verifier(pt, &inner_config, &inner_data, &inner_cd);
|
||||
builder.add_recursive_verifier(pt, inner_config, &inner_data, &inner_cd);
|
||||
|
||||
if print_gate_counts {
|
||||
builder.print_gate_counts(0);
|
||||
@ -563,12 +563,12 @@ mod tests {
|
||||
) -> Result<()> {
|
||||
let proof_bytes = proof.to_bytes()?;
|
||||
info!("Proof length: {} bytes", proof_bytes.len());
|
||||
let proof_from_bytes = ProofWithPublicInputs::from_bytes(proof_bytes, &cd)?;
|
||||
let proof_from_bytes = ProofWithPublicInputs::from_bytes(proof_bytes, cd)?;
|
||||
assert_eq!(proof, &proof_from_bytes);
|
||||
|
||||
let now = std::time::Instant::now();
|
||||
let compressed_proof = proof.clone().compress(&cd)?;
|
||||
let decompressed_compressed_proof = compressed_proof.clone().decompress(&cd)?;
|
||||
let compressed_proof = proof.clone().compress(cd)?;
|
||||
let decompressed_compressed_proof = compressed_proof.clone().decompress(cd)?;
|
||||
info!("{:.4}s to compress proof", now.elapsed().as_secs_f64());
|
||||
assert_eq!(proof, &decompressed_compressed_proof);
|
||||
|
||||
@ -578,7 +578,7 @@ mod tests {
|
||||
compressed_proof_bytes.len()
|
||||
);
|
||||
let compressed_proof_from_bytes =
|
||||
CompressedProofWithPublicInputs::from_bytes(compressed_proof_bytes, &cd)?;
|
||||
CompressedProofWithPublicInputs::from_bytes(compressed_proof_bytes, cd)?;
|
||||
assert_eq!(compressed_proof, compressed_proof_from_bytes);
|
||||
|
||||
Ok(())
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
use crate::field::field_types::Field;
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
use crate::polynomial::PolynomialCoeffs;
|
||||
use crate::util::log2_ceil;
|
||||
|
||||
impl<F: Field> PolynomialCoeffs<F> {
|
||||
@ -129,7 +129,7 @@ mod tests {
|
||||
use crate::field::extension_field::quartic::QuarticExtension;
|
||||
use crate::field::field_types::Field;
|
||||
use crate::field::goldilocks_field::GoldilocksField;
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
use crate::polynomial::PolynomialCoeffs;
|
||||
|
||||
#[test]
|
||||
#[ignore]
|
||||
|
||||
@ -1,2 +1,616 @@
|
||||
pub(crate) mod division;
|
||||
pub mod polynomial;
|
||||
|
||||
use std::cmp::max;
|
||||
use std::iter::Sum;
|
||||
use std::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign};
|
||||
|
||||
use anyhow::{ensure, Result};
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::field::extension_field::{Extendable, FieldExtension};
|
||||
use crate::field::fft::{fft, fft_with_options, ifft, FftRootTable};
|
||||
use crate::field::field_types::Field;
|
||||
use crate::util::log2_strict;
|
||||
|
||||
/// A polynomial in point-value form.
|
||||
///
|
||||
/// The points are implicitly `g^i`, where `g` generates the subgroup whose size equals the number
|
||||
/// of points.
|
||||
#[derive(Clone, Debug, Eq, PartialEq)]
|
||||
pub struct PolynomialValues<F: Field> {
|
||||
pub values: Vec<F>,
|
||||
}
|
||||
|
||||
impl<F: Field> PolynomialValues<F> {
|
||||
pub fn new(values: Vec<F>) -> Self {
|
||||
PolynomialValues { values }
|
||||
}
|
||||
|
||||
/// The number of values stored.
|
||||
pub(crate) fn len(&self) -> usize {
|
||||
self.values.len()
|
||||
}
|
||||
|
||||
pub fn ifft(&self) -> PolynomialCoeffs<F> {
|
||||
ifft(self)
|
||||
}
|
||||
|
||||
/// Returns the polynomial whose evaluation on the coset `shift*H` is `self`.
|
||||
pub fn coset_ifft(&self, shift: F) -> PolynomialCoeffs<F> {
|
||||
let mut shifted_coeffs = self.ifft();
|
||||
shifted_coeffs
|
||||
.coeffs
|
||||
.iter_mut()
|
||||
.zip(shift.inverse().powers())
|
||||
.for_each(|(c, r)| {
|
||||
*c *= r;
|
||||
});
|
||||
shifted_coeffs
|
||||
}
|
||||
|
||||
pub fn lde_multiple(polys: Vec<Self>, rate_bits: usize) -> Vec<Self> {
|
||||
polys.into_iter().map(|p| p.lde(rate_bits)).collect()
|
||||
}
|
||||
|
||||
pub fn lde(&self, rate_bits: usize) -> Self {
|
||||
let coeffs = ifft(self).lde(rate_bits);
|
||||
fft_with_options(&coeffs, Some(rate_bits), None)
|
||||
}
|
||||
|
||||
pub fn degree(&self) -> usize {
|
||||
self.degree_plus_one()
|
||||
.checked_sub(1)
|
||||
.expect("deg(0) is undefined")
|
||||
}
|
||||
|
||||
pub fn degree_plus_one(&self) -> usize {
|
||||
self.ifft().degree_plus_one()
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> From<Vec<F>> for PolynomialValues<F> {
|
||||
fn from(values: Vec<F>) -> Self {
|
||||
Self::new(values)
|
||||
}
|
||||
}
|
||||
|
||||
/// A polynomial in coefficient form.
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(bound = "")]
|
||||
pub struct PolynomialCoeffs<F: Field> {
|
||||
pub(crate) coeffs: Vec<F>,
|
||||
}
|
||||
|
||||
impl<F: Field> PolynomialCoeffs<F> {
|
||||
pub fn new(coeffs: Vec<F>) -> Self {
|
||||
PolynomialCoeffs { coeffs }
|
||||
}
|
||||
|
||||
pub(crate) fn empty() -> Self {
|
||||
Self::new(Vec::new())
|
||||
}
|
||||
|
||||
pub(crate) fn zero(len: usize) -> Self {
|
||||
Self::new(vec![F::ZERO; len])
|
||||
}
|
||||
|
||||
pub(crate) fn is_zero(&self) -> bool {
|
||||
self.coeffs.iter().all(|x| x.is_zero())
|
||||
}
|
||||
|
||||
/// The number of coefficients. This does not filter out any zero coefficients, so it is not
|
||||
/// necessarily related to the degree.
|
||||
pub fn len(&self) -> usize {
|
||||
self.coeffs.len()
|
||||
}
|
||||
|
||||
pub fn log_len(&self) -> usize {
|
||||
log2_strict(self.len())
|
||||
}
|
||||
|
||||
pub(crate) fn chunks(&self, chunk_size: usize) -> Vec<Self> {
|
||||
self.coeffs
|
||||
.chunks(chunk_size)
|
||||
.map(|chunk| PolynomialCoeffs::new(chunk.to_vec()))
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub fn eval(&self, x: F) -> F {
|
||||
self.coeffs
|
||||
.iter()
|
||||
.rev()
|
||||
.fold(F::ZERO, |acc, &c| acc * x + c)
|
||||
}
|
||||
|
||||
/// Evaluate the polynomial at a point given its powers. The first power is the point itself, not 1.
|
||||
pub fn eval_with_powers(&self, powers: &[F]) -> F {
|
||||
debug_assert_eq!(self.coeffs.len(), powers.len() + 1);
|
||||
let acc = self.coeffs[0];
|
||||
self.coeffs[1..]
|
||||
.iter()
|
||||
.zip(powers)
|
||||
.fold(acc, |acc, (&x, &c)| acc + c * x)
|
||||
}
|
||||
|
||||
pub fn eval_base<const D: usize>(&self, x: F::BaseField) -> F
|
||||
where
|
||||
F: FieldExtension<D>,
|
||||
{
|
||||
self.coeffs
|
||||
.iter()
|
||||
.rev()
|
||||
.fold(F::ZERO, |acc, &c| acc.scalar_mul(x) + c)
|
||||
}
|
||||
|
||||
/// Evaluate the polynomial at a point given its powers. The first power is the point itself, not 1.
|
||||
pub fn eval_base_with_powers<const D: usize>(&self, powers: &[F::BaseField]) -> F
|
||||
where
|
||||
F: FieldExtension<D>,
|
||||
{
|
||||
debug_assert_eq!(self.coeffs.len(), powers.len() + 1);
|
||||
let acc = self.coeffs[0];
|
||||
self.coeffs[1..]
|
||||
.iter()
|
||||
.zip(powers)
|
||||
.fold(acc, |acc, (&x, &c)| acc + x.scalar_mul(c))
|
||||
}
|
||||
|
||||
pub fn lde_multiple(polys: Vec<&Self>, rate_bits: usize) -> Vec<Self> {
|
||||
polys.into_iter().map(|p| p.lde(rate_bits)).collect()
|
||||
}
|
||||
|
||||
pub fn lde(&self, rate_bits: usize) -> Self {
|
||||
self.padded(self.len() << rate_bits)
|
||||
}
|
||||
|
||||
pub(crate) fn pad(&mut self, new_len: usize) -> Result<()> {
|
||||
ensure!(
|
||||
new_len >= self.len(),
|
||||
"Trying to pad a polynomial of length {} to a length of {}.",
|
||||
self.len(),
|
||||
new_len
|
||||
);
|
||||
self.coeffs.resize(new_len, F::ZERO);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub(crate) fn padded(&self, new_len: usize) -> Self {
|
||||
let mut poly = self.clone();
|
||||
poly.pad(new_len).unwrap();
|
||||
poly
|
||||
}
|
||||
|
||||
/// Removes leading zero coefficients.
|
||||
pub fn trim(&mut self) {
|
||||
self.coeffs.truncate(self.degree_plus_one());
|
||||
}
|
||||
|
||||
/// Removes leading zero coefficients.
|
||||
pub fn trimmed(&self) -> Self {
|
||||
let coeffs = self.coeffs[..self.degree_plus_one()].to_vec();
|
||||
Self { coeffs }
|
||||
}
|
||||
|
||||
/// Degree of the polynomial + 1, or 0 for a polynomial with no non-zero coefficients.
|
||||
pub(crate) fn degree_plus_one(&self) -> usize {
|
||||
(0usize..self.len())
|
||||
.rev()
|
||||
.find(|&i| self.coeffs[i].is_nonzero())
|
||||
.map_or(0, |i| i + 1)
|
||||
}
|
||||
|
||||
/// Leading coefficient.
|
||||
pub fn lead(&self) -> F {
|
||||
self.coeffs
|
||||
.iter()
|
||||
.rev()
|
||||
.find(|x| x.is_nonzero())
|
||||
.map_or(F::ZERO, |x| *x)
|
||||
}
|
||||
|
||||
/// Reverse the order of the coefficients, not taking into account the leading zero coefficients.
|
||||
pub(crate) fn rev(&self) -> Self {
|
||||
Self::new(self.trimmed().coeffs.into_iter().rev().collect())
|
||||
}
|
||||
|
||||
pub fn fft(&self) -> PolynomialValues<F> {
|
||||
fft(self)
|
||||
}
|
||||
|
||||
pub fn fft_with_options(
|
||||
&self,
|
||||
zero_factor: Option<usize>,
|
||||
root_table: Option<&FftRootTable<F>>,
|
||||
) -> PolynomialValues<F> {
|
||||
fft_with_options(self, zero_factor, root_table)
|
||||
}
|
||||
|
||||
/// Returns the evaluation of the polynomial on the coset `shift*H`.
|
||||
pub fn coset_fft(&self, shift: F) -> PolynomialValues<F> {
|
||||
self.coset_fft_with_options(shift, None, None)
|
||||
}
|
||||
|
||||
/// Returns the evaluation of the polynomial on the coset `shift*H`.
|
||||
pub fn coset_fft_with_options(
|
||||
&self,
|
||||
shift: F,
|
||||
zero_factor: Option<usize>,
|
||||
root_table: Option<&FftRootTable<F>>,
|
||||
) -> PolynomialValues<F> {
|
||||
let modified_poly: Self = shift
|
||||
.powers()
|
||||
.zip(&self.coeffs)
|
||||
.map(|(r, &c)| r * c)
|
||||
.collect::<Vec<_>>()
|
||||
.into();
|
||||
modified_poly.fft_with_options(zero_factor, root_table)
|
||||
}
|
||||
|
||||
pub fn to_extension<const D: usize>(&self) -> PolynomialCoeffs<F::Extension>
|
||||
where
|
||||
F: Extendable<D>,
|
||||
{
|
||||
PolynomialCoeffs::new(self.coeffs.iter().map(|&c| c.into()).collect())
|
||||
}
|
||||
|
||||
pub fn mul_extension<const D: usize>(&self, rhs: F::Extension) -> PolynomialCoeffs<F::Extension>
|
||||
where
|
||||
F: Extendable<D>,
|
||||
{
|
||||
PolynomialCoeffs::new(self.coeffs.iter().map(|&c| rhs.scalar_mul(c)).collect())
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> PartialEq for PolynomialCoeffs<F> {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
let max_terms = self.coeffs.len().max(other.coeffs.len());
|
||||
for i in 0..max_terms {
|
||||
let self_i = self.coeffs.get(i).cloned().unwrap_or(F::ZERO);
|
||||
let other_i = other.coeffs.get(i).cloned().unwrap_or(F::ZERO);
|
||||
if self_i != other_i {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> Eq for PolynomialCoeffs<F> {}
|
||||
|
||||
impl<F: Field> From<Vec<F>> for PolynomialCoeffs<F> {
|
||||
fn from(coeffs: Vec<F>) -> Self {
|
||||
Self::new(coeffs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> Add for &PolynomialCoeffs<F> {
|
||||
type Output = PolynomialCoeffs<F>;
|
||||
|
||||
fn add(self, rhs: Self) -> Self::Output {
|
||||
let len = max(self.len(), rhs.len());
|
||||
let a = self.padded(len).coeffs;
|
||||
let b = rhs.padded(len).coeffs;
|
||||
let coeffs = a.into_iter().zip(b).map(|(x, y)| x + y).collect();
|
||||
PolynomialCoeffs::new(coeffs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> Sum for PolynomialCoeffs<F> {
|
||||
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
||||
iter.fold(Self::empty(), |acc, p| &acc + &p)
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> Sub for &PolynomialCoeffs<F> {
|
||||
type Output = PolynomialCoeffs<F>;
|
||||
|
||||
fn sub(self, rhs: Self) -> Self::Output {
|
||||
let len = max(self.len(), rhs.len());
|
||||
let mut coeffs = self.padded(len).coeffs;
|
||||
for (i, &c) in rhs.coeffs.iter().enumerate() {
|
||||
coeffs[i] -= c;
|
||||
}
|
||||
PolynomialCoeffs::new(coeffs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> AddAssign for PolynomialCoeffs<F> {
|
||||
fn add_assign(&mut self, rhs: Self) {
|
||||
let len = max(self.len(), rhs.len());
|
||||
self.coeffs.resize(len, F::ZERO);
|
||||
for (l, r) in self.coeffs.iter_mut().zip(rhs.coeffs) {
|
||||
*l += r;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> AddAssign<&Self> for PolynomialCoeffs<F> {
|
||||
fn add_assign(&mut self, rhs: &Self) {
|
||||
let len = max(self.len(), rhs.len());
|
||||
self.coeffs.resize(len, F::ZERO);
|
||||
for (l, &r) in self.coeffs.iter_mut().zip(&rhs.coeffs) {
|
||||
*l += r;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> SubAssign for PolynomialCoeffs<F> {
|
||||
fn sub_assign(&mut self, rhs: Self) {
|
||||
let len = max(self.len(), rhs.len());
|
||||
self.coeffs.resize(len, F::ZERO);
|
||||
for (l, r) in self.coeffs.iter_mut().zip(rhs.coeffs) {
|
||||
*l -= r;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> SubAssign<&Self> for PolynomialCoeffs<F> {
|
||||
fn sub_assign(&mut self, rhs: &Self) {
|
||||
let len = max(self.len(), rhs.len());
|
||||
self.coeffs.resize(len, F::ZERO);
|
||||
for (l, &r) in self.coeffs.iter_mut().zip(&rhs.coeffs) {
|
||||
*l -= r;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> Mul<F> for &PolynomialCoeffs<F> {
|
||||
type Output = PolynomialCoeffs<F>;
|
||||
|
||||
fn mul(self, rhs: F) -> Self::Output {
|
||||
let coeffs = self.coeffs.iter().map(|&x| rhs * x).collect();
|
||||
PolynomialCoeffs::new(coeffs)
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> MulAssign<F> for PolynomialCoeffs<F> {
|
||||
fn mul_assign(&mut self, rhs: F) {
|
||||
self.coeffs.iter_mut().for_each(|x| *x *= rhs);
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: Field> Mul for &PolynomialCoeffs<F> {
|
||||
type Output = PolynomialCoeffs<F>;
|
||||
|
||||
#[allow(clippy::suspicious_arithmetic_impl)]
|
||||
fn mul(self, rhs: Self) -> Self::Output {
|
||||
let new_len = (self.len() + rhs.len()).next_power_of_two();
|
||||
let a = self.padded(new_len);
|
||||
let b = rhs.padded(new_len);
|
||||
let a_evals = a.fft();
|
||||
let b_evals = b.fft();
|
||||
|
||||
let mul_evals: Vec<F> = a_evals
|
||||
.values
|
||||
.into_iter()
|
||||
.zip(b_evals.values)
|
||||
.map(|(pa, pb)| pa * pb)
|
||||
.collect();
|
||||
ifft(&mul_evals.into())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::time::Instant;
|
||||
|
||||
use rand::{thread_rng, Rng};
|
||||
|
||||
use super::*;
|
||||
use crate::field::goldilocks_field::GoldilocksField;
|
||||
|
||||
#[test]
|
||||
fn test_trimmed() {
|
||||
type F = GoldilocksField;
|
||||
|
||||
assert_eq!(
|
||||
PolynomialCoeffs::<F> { coeffs: vec![] }.trimmed(),
|
||||
PolynomialCoeffs::<F> { coeffs: vec![] }
|
||||
);
|
||||
assert_eq!(
|
||||
PolynomialCoeffs::<F> {
|
||||
coeffs: vec![F::ZERO]
|
||||
}
|
||||
.trimmed(),
|
||||
PolynomialCoeffs::<F> { coeffs: vec![] }
|
||||
);
|
||||
assert_eq!(
|
||||
PolynomialCoeffs::<F> {
|
||||
coeffs: vec![F::ONE, F::TWO, F::ZERO, F::ZERO]
|
||||
}
|
||||
.trimmed(),
|
||||
PolynomialCoeffs::<F> {
|
||||
coeffs: vec![F::ONE, F::TWO]
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_coset_fft() {
|
||||
type F = GoldilocksField;
|
||||
|
||||
let k = 8;
|
||||
let n = 1 << k;
|
||||
let poly = PolynomialCoeffs::new(F::rand_vec(n));
|
||||
let shift = F::rand();
|
||||
let coset_evals = poly.coset_fft(shift).values;
|
||||
|
||||
let generator = F::primitive_root_of_unity(k);
|
||||
let naive_coset_evals = F::cyclic_subgroup_coset_known_order(generator, shift, n)
|
||||
.into_iter()
|
||||
.map(|x| poly.eval(x))
|
||||
.collect::<Vec<_>>();
|
||||
assert_eq!(coset_evals, naive_coset_evals);
|
||||
|
||||
let ifft_coeffs = PolynomialValues::new(coset_evals).coset_ifft(shift);
|
||||
assert_eq!(poly, ifft_coeffs);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_coset_ifft() {
|
||||
type F = GoldilocksField;
|
||||
|
||||
let k = 8;
|
||||
let n = 1 << k;
|
||||
let evals = PolynomialValues::new(F::rand_vec(n));
|
||||
let shift = F::rand();
|
||||
let coeffs = evals.coset_ifft(shift);
|
||||
|
||||
let generator = F::primitive_root_of_unity(k);
|
||||
let naive_coset_evals = F::cyclic_subgroup_coset_known_order(generator, shift, n)
|
||||
.into_iter()
|
||||
.map(|x| coeffs.eval(x))
|
||||
.collect::<Vec<_>>();
|
||||
assert_eq!(evals, naive_coset_evals.into());
|
||||
|
||||
let fft_evals = coeffs.coset_fft(shift);
|
||||
assert_eq!(evals, fft_evals);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_polynomial_multiplication() {
|
||||
type F = GoldilocksField;
|
||||
let mut rng = thread_rng();
|
||||
let (a_deg, b_deg) = (rng.gen_range(1..10_000), rng.gen_range(1..10_000));
|
||||
let a = PolynomialCoeffs::new(F::rand_vec(a_deg));
|
||||
let b = PolynomialCoeffs::new(F::rand_vec(b_deg));
|
||||
let m1 = &a * &b;
|
||||
let m2 = &a * &b;
|
||||
for _ in 0..1000 {
|
||||
let x = F::rand();
|
||||
assert_eq!(m1.eval(x), a.eval(x) * b.eval(x));
|
||||
assert_eq!(m2.eval(x), a.eval(x) * b.eval(x));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_inv_mod_xn() {
|
||||
type F = GoldilocksField;
|
||||
let mut rng = thread_rng();
|
||||
let a_deg = rng.gen_range(1..1_000);
|
||||
let n = rng.gen_range(1..1_000);
|
||||
let a = PolynomialCoeffs::new(F::rand_vec(a_deg));
|
||||
let b = a.inv_mod_xn(n);
|
||||
let mut m = &a * &b;
|
||||
m.coeffs.drain(n..);
|
||||
m.trim();
|
||||
assert_eq!(
|
||||
m,
|
||||
PolynomialCoeffs::new(vec![F::ONE]),
|
||||
"a: {:#?}, b:{:#?}, n:{:#?}, m:{:#?}",
|
||||
a,
|
||||
b,
|
||||
n,
|
||||
m
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_polynomial_long_division() {
|
||||
type F = GoldilocksField;
|
||||
let mut rng = thread_rng();
|
||||
let (a_deg, b_deg) = (rng.gen_range(1..10_000), rng.gen_range(1..10_000));
|
||||
let a = PolynomialCoeffs::new(F::rand_vec(a_deg));
|
||||
let b = PolynomialCoeffs::new(F::rand_vec(b_deg));
|
||||
let (q, r) = a.div_rem_long_division(&b);
|
||||
for _ in 0..1000 {
|
||||
let x = F::rand();
|
||||
assert_eq!(a.eval(x), b.eval(x) * q.eval(x) + r.eval(x));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_polynomial_division() {
|
||||
type F = GoldilocksField;
|
||||
let mut rng = thread_rng();
|
||||
let (a_deg, b_deg) = (rng.gen_range(1..10_000), rng.gen_range(1..10_000));
|
||||
let a = PolynomialCoeffs::new(F::rand_vec(a_deg));
|
||||
let b = PolynomialCoeffs::new(F::rand_vec(b_deg));
|
||||
let (q, r) = a.div_rem(&b);
|
||||
for _ in 0..1000 {
|
||||
let x = F::rand();
|
||||
assert_eq!(a.eval(x), b.eval(x) * q.eval(x) + r.eval(x));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_polynomial_division_by_constant() {
|
||||
type F = GoldilocksField;
|
||||
let mut rng = thread_rng();
|
||||
let a_deg = rng.gen_range(1..10_000);
|
||||
let a = PolynomialCoeffs::new(F::rand_vec(a_deg));
|
||||
let b = PolynomialCoeffs::from(vec![F::rand()]);
|
||||
let (q, r) = a.div_rem(&b);
|
||||
for _ in 0..1000 {
|
||||
let x = F::rand();
|
||||
assert_eq!(a.eval(x), b.eval(x) * q.eval(x) + r.eval(x));
|
||||
}
|
||||
}
|
||||
|
||||
// Test to see which polynomial division method is faster for divisions of the type
|
||||
// `(X^n - 1)/(X - a)
|
||||
#[test]
|
||||
fn test_division_linear() {
|
||||
type F = GoldilocksField;
|
||||
let mut rng = thread_rng();
|
||||
let l = 14;
|
||||
let n = 1 << l;
|
||||
let g = F::primitive_root_of_unity(l);
|
||||
let xn_minus_one = {
|
||||
let mut xn_min_one_vec = vec![F::ZERO; n + 1];
|
||||
xn_min_one_vec[n] = F::ONE;
|
||||
xn_min_one_vec[0] = F::NEG_ONE;
|
||||
PolynomialCoeffs::new(xn_min_one_vec)
|
||||
};
|
||||
|
||||
let a = g.exp_u64(rng.gen_range(0..(n as u64)));
|
||||
let denom = PolynomialCoeffs::new(vec![-a, F::ONE]);
|
||||
let now = Instant::now();
|
||||
xn_minus_one.div_rem(&denom);
|
||||
println!("Division time: {:?}", now.elapsed());
|
||||
let now = Instant::now();
|
||||
xn_minus_one.div_rem_long_division(&denom);
|
||||
println!("Division time: {:?}", now.elapsed());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn eq() {
|
||||
type F = GoldilocksField;
|
||||
assert_eq!(
|
||||
PolynomialCoeffs::<F>::new(vec![]),
|
||||
PolynomialCoeffs::new(vec![])
|
||||
);
|
||||
assert_eq!(
|
||||
PolynomialCoeffs::<F>::new(vec![F::ZERO]),
|
||||
PolynomialCoeffs::new(vec![F::ZERO])
|
||||
);
|
||||
assert_eq!(
|
||||
PolynomialCoeffs::<F>::new(vec![]),
|
||||
PolynomialCoeffs::new(vec![F::ZERO])
|
||||
);
|
||||
assert_eq!(
|
||||
PolynomialCoeffs::<F>::new(vec![F::ZERO]),
|
||||
PolynomialCoeffs::new(vec![])
|
||||
);
|
||||
assert_eq!(
|
||||
PolynomialCoeffs::<F>::new(vec![F::ZERO]),
|
||||
PolynomialCoeffs::new(vec![F::ZERO, F::ZERO])
|
||||
);
|
||||
assert_eq!(
|
||||
PolynomialCoeffs::<F>::new(vec![F::ONE]),
|
||||
PolynomialCoeffs::new(vec![F::ONE, F::ZERO])
|
||||
);
|
||||
assert_ne!(
|
||||
PolynomialCoeffs::<F>::new(vec![]),
|
||||
PolynomialCoeffs::new(vec![F::ONE])
|
||||
);
|
||||
assert_ne!(
|
||||
PolynomialCoeffs::<F>::new(vec![F::ZERO]),
|
||||
PolynomialCoeffs::new(vec![F::ZERO, F::ONE])
|
||||
);
|
||||
assert_ne!(
|
||||
PolynomialCoeffs::<F>::new(vec![F::ZERO]),
|
||||
PolynomialCoeffs::new(vec![F::ONE, F::ZERO])
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
@ -441,7 +441,7 @@ mod tests {
|
||||
assert_eq!(coset_evals, naive_coset_evals);
|
||||
|
||||
let ifft_coeffs = PolynomialValues::new(coset_evals).coset_ifft(shift);
|
||||
assert_eq!(poly, ifft_coeffs.into());
|
||||
assert_eq!(poly, ifft_coeffs);
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
use core::hint::unreachable_unchecked;
|
||||
|
||||
use crate::field::field_types::Field;
|
||||
use crate::polynomial::polynomial::PolynomialValues;
|
||||
use crate::polynomial::PolynomialValues;
|
||||
|
||||
pub(crate) mod bimap;
|
||||
pub(crate) mod context_tree;
|
||||
|
||||
@ -13,7 +13,7 @@ pub(crate) fn quotient_chunk_products<F: Field>(
|
||||
max_degree: usize,
|
||||
) -> Vec<F> {
|
||||
debug_assert!(max_degree > 1);
|
||||
assert!(quotient_values.len() > 0);
|
||||
assert!(!quotient_values.is_empty());
|
||||
let chunk_size = max_degree;
|
||||
quotient_values
|
||||
.chunks(chunk_size)
|
||||
@ -24,7 +24,7 @@ pub(crate) fn quotient_chunk_products<F: Field>(
|
||||
/// Compute partial products of the original vector `v` such that all products consist of `max_degree`
|
||||
/// or less elements. This is done until we've computed the product `P` of all elements in the vector.
|
||||
pub(crate) fn partial_products_and_z_gx<F: Field>(z_x: F, quotient_chunk_products: &[F]) -> Vec<F> {
|
||||
assert!(quotient_chunk_products.len() > 0);
|
||||
assert!(!quotient_chunk_products.is_empty());
|
||||
let mut res = Vec::new();
|
||||
let mut acc = z_x;
|
||||
for "ient_chunk_product in quotient_chunk_products {
|
||||
|
||||
@ -8,7 +8,7 @@ use crate::gates::reducing::ReducingGate;
|
||||
use crate::gates::reducing_extension::ReducingExtensionGate;
|
||||
use crate::iop::target::Target;
|
||||
use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
use crate::polynomial::PolynomialCoeffs;
|
||||
|
||||
/// When verifying the composition polynomial in FRI we have to compute sums of the form
|
||||
/// `(sum_0^k a^i * x_i)/d_0 + (sum_k^r a^i * y_i)/d_1`
|
||||
|
||||
@ -15,7 +15,7 @@ use crate::plonk::circuit_data::CommonCircuitData;
|
||||
use crate::plonk::proof::{
|
||||
CompressedProof, CompressedProofWithPublicInputs, OpeningSet, Proof, ProofWithPublicInputs,
|
||||
};
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
use crate::polynomial::PolynomialCoeffs;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Buffer(Cursor<Vec<u8>>);
|
||||
|
||||
@ -92,7 +92,7 @@ impl TimingTree {
|
||||
|
||||
fn duration(&self) -> Duration {
|
||||
self.exit_time
|
||||
.unwrap_or(Instant::now())
|
||||
.unwrap_or_else(Instant::now)
|
||||
.duration_since(self.enter_time)
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user