mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-05 07:13:08 +00:00
Merge pull request #374 from mir-protocol/arity4
Low-degree interpolation gate and log-arity of 4 in recursive benchmark + 2^12 shrinking recursion with 100 security bits
This commit is contained in:
commit
1fed718a70
@ -160,12 +160,32 @@ impl<F: OEF<D>, const D: usize> PolynomialCoeffsAlgebra<F, D> {
|
||||
.fold(ExtensionAlgebra::ZERO, |acc, &c| acc * x + c)
|
||||
}
|
||||
|
||||
/// Evaluate the polynomial at a point given its powers. The first power is the point itself, not 1.
|
||||
pub fn eval_with_powers(&self, powers: &[ExtensionAlgebra<F, D>]) -> ExtensionAlgebra<F, D> {
|
||||
debug_assert_eq!(self.coeffs.len(), powers.len() + 1);
|
||||
let acc = self.coeffs[0];
|
||||
self.coeffs[1..]
|
||||
.iter()
|
||||
.zip(powers)
|
||||
.fold(acc, |acc, (&x, &c)| acc + c * x)
|
||||
}
|
||||
|
||||
pub fn eval_base(&self, x: F) -> ExtensionAlgebra<F, D> {
|
||||
self.coeffs
|
||||
.iter()
|
||||
.rev()
|
||||
.fold(ExtensionAlgebra::ZERO, |acc, &c| acc.scalar_mul(x) + c)
|
||||
}
|
||||
|
||||
/// Evaluate the polynomial at a point given its powers. The first power is the point itself, not 1.
|
||||
pub fn eval_base_with_powers(&self, powers: &[F]) -> ExtensionAlgebra<F, D> {
|
||||
debug_assert_eq!(self.coeffs.len(), powers.len() + 1);
|
||||
let acc = self.coeffs[0];
|
||||
self.coeffs[1..]
|
||||
.iter()
|
||||
.zip(powers)
|
||||
.fold(acc, |acc, (&x, &c)| acc + x.scalar_mul(c))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
||||
@ -3,8 +3,10 @@ use crate::field::extension_field::Extendable;
|
||||
use crate::field::field_types::{Field, RichField};
|
||||
use crate::fri::proof::{FriInitialTreeProofTarget, FriProofTarget, FriQueryRoundTarget};
|
||||
use crate::fri::FriConfig;
|
||||
use crate::gadgets::interpolation::InterpolationGate;
|
||||
use crate::gates::gate::Gate;
|
||||
use crate::gates::interpolation::InterpolationGate;
|
||||
use crate::gates::interpolation::HighDegreeInterpolationGate;
|
||||
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
|
||||
use crate::gates::random_access::RandomAccessGate;
|
||||
use crate::hash::hash_types::MerkleCapTarget;
|
||||
use crate::iop::challenger::RecursiveChallenger;
|
||||
@ -27,6 +29,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
arity_bits: usize,
|
||||
evals: &[ExtensionTarget<D>],
|
||||
beta: ExtensionTarget<D>,
|
||||
common_data: &CommonCircuitData<F, D>,
|
||||
) -> ExtensionTarget<D> {
|
||||
let arity = 1 << arity_bits;
|
||||
debug_assert_eq!(evals.len(), arity);
|
||||
@ -43,25 +46,50 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
let coset_start = self.mul(start, x);
|
||||
|
||||
// The answer is gotten by interpolating {(x*g^i, P(x*g^i))} and evaluating at beta.
|
||||
self.interpolate_coset(arity_bits, coset_start, &evals, beta)
|
||||
// `HighDegreeInterpolationGate` has degree `arity`, so we use the low-degree gate if
|
||||
// the arity is too large.
|
||||
if arity > common_data.quotient_degree_factor {
|
||||
self.interpolate_coset::<LowDegreeInterpolationGate<F, D>>(
|
||||
arity_bits,
|
||||
coset_start,
|
||||
&evals,
|
||||
beta,
|
||||
)
|
||||
} else {
|
||||
self.interpolate_coset::<HighDegreeInterpolationGate<F, D>>(
|
||||
arity_bits,
|
||||
coset_start,
|
||||
&evals,
|
||||
beta,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
/// Make sure we have enough wires and routed wires to do the FRI checks efficiently. This check
|
||||
/// isn't required -- without it we'd get errors elsewhere in the stack -- but just gives more
|
||||
/// helpful errors.
|
||||
fn check_recursion_config(&self, max_fri_arity_bits: usize) {
|
||||
fn check_recursion_config(
|
||||
&self,
|
||||
max_fri_arity_bits: usize,
|
||||
common_data: &CommonCircuitData<F, D>,
|
||||
) {
|
||||
let random_access = RandomAccessGate::<F, D>::new_from_config(
|
||||
&self.config,
|
||||
max_fri_arity_bits.max(self.config.cap_height),
|
||||
);
|
||||
let interpolation_gate = InterpolationGate::<F, D>::new(max_fri_arity_bits);
|
||||
let (interpolation_wires, interpolation_routed_wires) =
|
||||
if 1 << max_fri_arity_bits > common_data.quotient_degree_factor {
|
||||
let gate = LowDegreeInterpolationGate::<F, D>::new(max_fri_arity_bits);
|
||||
(gate.num_wires(), gate.num_routed_wires())
|
||||
} else {
|
||||
let gate = HighDegreeInterpolationGate::<F, D>::new(max_fri_arity_bits);
|
||||
(gate.num_wires(), gate.num_routed_wires())
|
||||
};
|
||||
|
||||
let min_wires = random_access
|
||||
.num_wires()
|
||||
.max(interpolation_gate.num_wires());
|
||||
let min_wires = random_access.num_wires().max(interpolation_wires);
|
||||
let min_routed_wires = random_access
|
||||
.num_routed_wires()
|
||||
.max(interpolation_gate.num_routed_wires());
|
||||
.max(interpolation_routed_wires);
|
||||
|
||||
assert!(
|
||||
self.config.num_wires >= min_wires,
|
||||
@ -108,7 +136,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
let config = &common_data.config;
|
||||
|
||||
if let Some(max_arity_bits) = common_data.fri_params.max_arity_bits() {
|
||||
self.check_recursion_config(max_arity_bits);
|
||||
self.check_recursion_config(max_arity_bits, common_data);
|
||||
}
|
||||
|
||||
debug_assert_eq!(
|
||||
@ -379,6 +407,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
arity_bits,
|
||||
evals,
|
||||
betas[i],
|
||||
&common_data
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
@ -1,23 +1,93 @@
|
||||
use std::ops::Range;
|
||||
|
||||
use crate::field::extension_field::target::ExtensionTarget;
|
||||
use crate::field::extension_field::Extendable;
|
||||
use crate::field::field_types::RichField;
|
||||
use crate::gates::interpolation::InterpolationGate;
|
||||
use crate::gates::gate::Gate;
|
||||
use crate::iop::target::Target;
|
||||
use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
|
||||
/// Trait for gates which interpolate a polynomial, whose points are a (base field) coset of the multiplicative subgroup
|
||||
/// with the given size, and whose values are extension field elements, given by input wires.
|
||||
/// Outputs the evaluation of the interpolant at a given (extension field) evaluation point.
|
||||
pub(crate) trait InterpolationGate<F: RichField + Extendable<D>, const D: usize>:
|
||||
Gate<F, D> + Copy
|
||||
{
|
||||
fn new(subgroup_bits: usize) -> Self;
|
||||
|
||||
fn num_points(&self) -> usize;
|
||||
|
||||
/// Wire index of the coset shift.
|
||||
fn wire_shift(&self) -> usize {
|
||||
0
|
||||
}
|
||||
|
||||
fn start_values(&self) -> usize {
|
||||
1
|
||||
}
|
||||
|
||||
/// Wire indices of the `i`th interpolant value.
|
||||
fn wires_value(&self, i: usize) -> Range<usize> {
|
||||
debug_assert!(i < self.num_points());
|
||||
let start = self.start_values() + i * D;
|
||||
start..start + D
|
||||
}
|
||||
|
||||
fn start_evaluation_point(&self) -> usize {
|
||||
self.start_values() + self.num_points() * D
|
||||
}
|
||||
|
||||
/// Wire indices of the point to evaluate the interpolant at.
|
||||
fn wires_evaluation_point(&self) -> Range<usize> {
|
||||
let start = self.start_evaluation_point();
|
||||
start..start + D
|
||||
}
|
||||
|
||||
fn start_evaluation_value(&self) -> usize {
|
||||
self.start_evaluation_point() + D
|
||||
}
|
||||
|
||||
/// Wire indices of the interpolated value.
|
||||
fn wires_evaluation_value(&self) -> Range<usize> {
|
||||
let start = self.start_evaluation_value();
|
||||
start..start + D
|
||||
}
|
||||
|
||||
fn start_coeffs(&self) -> usize {
|
||||
self.start_evaluation_value() + D
|
||||
}
|
||||
|
||||
/// The number of routed wires required in the typical usage of this gate, where the points to
|
||||
/// interpolate, the evaluation point, and the corresponding value are all routed.
|
||||
fn num_routed_wires(&self) -> usize {
|
||||
self.start_coeffs()
|
||||
}
|
||||
|
||||
/// Wire indices of the interpolant's `i`th coefficient.
|
||||
fn wires_coeff(&self, i: usize) -> Range<usize> {
|
||||
debug_assert!(i < self.num_points());
|
||||
let start = self.start_coeffs() + i * D;
|
||||
start..start + D
|
||||
}
|
||||
|
||||
fn end_coeffs(&self) -> usize {
|
||||
self.start_coeffs() + D * self.num_points()
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
/// Interpolates a polynomial, whose points are a coset of the multiplicative subgroup with the
|
||||
/// given size, and whose values are given. Returns the evaluation of the interpolant at
|
||||
/// `evaluation_point`.
|
||||
pub fn interpolate_coset(
|
||||
pub(crate) fn interpolate_coset<G: InterpolationGate<F, D>>(
|
||||
&mut self,
|
||||
subgroup_bits: usize,
|
||||
coset_shift: Target,
|
||||
values: &[ExtensionTarget<D>],
|
||||
evaluation_point: ExtensionTarget<D>,
|
||||
) -> ExtensionTarget<D> {
|
||||
let gate = InterpolationGate::new(subgroup_bits);
|
||||
let gate_index = self.add_gate(gate.clone(), vec![]);
|
||||
let gate = G::new(subgroup_bits);
|
||||
let gate_index = self.add_gate(gate, vec![]);
|
||||
self.connect(coset_shift, Target::wire(gate_index, gate.wire_shift()));
|
||||
for (i, &v) in values.iter().enumerate() {
|
||||
self.connect_extension(
|
||||
@ -38,11 +108,13 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
|
||||
mod tests {
|
||||
use anyhow::Result;
|
||||
|
||||
use crate::field::extension_field::quartic::QuarticExtension;
|
||||
use crate::field::extension_field::quadratic::QuadraticExtension;
|
||||
use crate::field::extension_field::FieldExtension;
|
||||
use crate::field::field_types::Field;
|
||||
use crate::field::goldilocks_field::GoldilocksField;
|
||||
use crate::field::interpolation::interpolant;
|
||||
use crate::gates::interpolation::HighDegreeInterpolationGate;
|
||||
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
|
||||
use crate::iop::witness::PartialWitness;
|
||||
use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
use crate::plonk::circuit_data::CircuitConfig;
|
||||
@ -51,10 +123,11 @@ mod tests {
|
||||
#[test]
|
||||
fn test_interpolate() -> Result<()> {
|
||||
type F = GoldilocksField;
|
||||
type FF = QuarticExtension<GoldilocksField>;
|
||||
const D: usize = 2;
|
||||
type FF = QuadraticExtension<GoldilocksField>;
|
||||
let config = CircuitConfig::standard_recursion_config();
|
||||
let pw = PartialWitness::new();
|
||||
let mut builder = CircuitBuilder::<F, 4>::new(config);
|
||||
let mut builder = CircuitBuilder::<F, D>::new(config);
|
||||
|
||||
let subgroup_bits = 2;
|
||||
let len = 1 << subgroup_bits;
|
||||
@ -66,7 +139,7 @@ mod tests {
|
||||
let homogeneous_points = points
|
||||
.iter()
|
||||
.zip(values.iter())
|
||||
.map(|(&a, &b)| (<FF as FieldExtension<4>>::from_basefield(a), b))
|
||||
.map(|(&a, &b)| (<FF as FieldExtension<D>>::from_basefield(a), b))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let true_interpolant = interpolant(&homogeneous_points);
|
||||
@ -83,9 +156,21 @@ mod tests {
|
||||
|
||||
let zt = builder.constant_extension(z);
|
||||
|
||||
let eval = builder.interpolate_coset(subgroup_bits, coset_shift_target, &value_targets, zt);
|
||||
let eval_hd = builder.interpolate_coset::<HighDegreeInterpolationGate<F, D>>(
|
||||
subgroup_bits,
|
||||
coset_shift_target,
|
||||
&value_targets,
|
||||
zt,
|
||||
);
|
||||
let eval_ld = builder.interpolate_coset::<LowDegreeInterpolationGate<F, D>>(
|
||||
subgroup_bits,
|
||||
coset_shift_target,
|
||||
&value_targets,
|
||||
zt,
|
||||
);
|
||||
let true_eval_target = builder.constant_extension(true_eval);
|
||||
builder.connect_extension(eval, true_eval_target);
|
||||
builder.connect_extension(eval_hd, true_eval_target);
|
||||
builder.connect_extension(eval_ld, true_eval_target);
|
||||
|
||||
let data = builder.build();
|
||||
let proof = data.prove(pw)?;
|
||||
|
||||
@ -64,4 +64,21 @@ impl<const D: usize> PolynomialCoeffsExtAlgebraTarget<D> {
|
||||
}
|
||||
acc
|
||||
}
|
||||
|
||||
/// Evaluate the polynomial at a point given its powers. The first power is the point itself, not 1.
|
||||
pub fn eval_with_powers<F>(
|
||||
&self,
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
powers: &[ExtensionAlgebraTarget<D>],
|
||||
) -> ExtensionAlgebraTarget<D>
|
||||
where
|
||||
F: RichField + Extendable<D>,
|
||||
{
|
||||
debug_assert_eq!(self.0.len(), powers.len() + 1);
|
||||
let acc = self.0[0];
|
||||
self.0[1..]
|
||||
.iter()
|
||||
.zip(powers)
|
||||
.fold(acc, |acc, (&x, &c)| builder.mul_add_ext_algebra(c, x, acc))
|
||||
}
|
||||
}
|
||||
|
||||
@ -225,11 +225,12 @@ mod tests {
|
||||
|
||||
use super::*;
|
||||
use crate::field::goldilocks_field::GoldilocksField;
|
||||
use crate::gadgets::interpolation::InterpolationGate;
|
||||
use crate::gates::arithmetic_extension::ArithmeticExtensionGate;
|
||||
use crate::gates::base_sum::BaseSumGate;
|
||||
use crate::gates::constant::ConstantGate;
|
||||
use crate::gates::gmimc::GMiMCGate;
|
||||
use crate::gates::interpolation::InterpolationGate;
|
||||
use crate::gates::interpolation::HighDegreeInterpolationGate;
|
||||
use crate::gates::noop::NoopGate;
|
||||
|
||||
#[test]
|
||||
@ -244,7 +245,7 @@ mod tests {
|
||||
GateRef::new(ArithmeticExtensionGate { num_ops: 4 }),
|
||||
GateRef::new(BaseSumGate::<4>::new(4)),
|
||||
GateRef::new(GMiMCGate::<F, D, 12>::new()),
|
||||
GateRef::new(InterpolationGate::new(2)),
|
||||
GateRef::new(HighDegreeInterpolationGate::new(2)),
|
||||
];
|
||||
|
||||
let (tree, _, _) = Tree::from_gates(gates.clone());
|
||||
|
||||
@ -6,6 +6,7 @@ use crate::field::extension_field::target::ExtensionTarget;
|
||||
use crate::field::extension_field::{Extendable, FieldExtension};
|
||||
use crate::field::field_types::RichField;
|
||||
use crate::field::interpolation::interpolant;
|
||||
use crate::gadgets::interpolation::InterpolationGate;
|
||||
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
|
||||
use crate::gates::gate::Gate;
|
||||
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
|
||||
@ -16,17 +17,18 @@ use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
|
||||
/// Interpolates a polynomial, whose points are a (base field) coset of the multiplicative subgroup
|
||||
/// with the given size, and whose values are extension field elements, given by input wires.
|
||||
/// Outputs the evaluation of the interpolant at a given (extension field) evaluation point.
|
||||
#[derive(Clone, Debug)]
|
||||
pub(crate) struct InterpolationGate<F: RichField + Extendable<D>, const D: usize> {
|
||||
/// Interpolation gate with constraints of degree at most `1<<subgroup_bits`.
|
||||
/// `eval_unfiltered_recursively` uses less gates than `LowDegreeInterpolationGate`.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub(crate) struct HighDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
|
||||
pub subgroup_bits: usize,
|
||||
_phantom: PhantomData<F>,
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D> {
|
||||
pub fn new(subgroup_bits: usize) -> Self {
|
||||
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
|
||||
for HighDegreeInterpolationGate<F, D>
|
||||
{
|
||||
fn new(subgroup_bits: usize) -> Self {
|
||||
Self {
|
||||
subgroup_bits,
|
||||
_phantom: PhantomData,
|
||||
@ -36,60 +38,9 @@ impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D> {
|
||||
fn num_points(&self) -> usize {
|
||||
1 << self.subgroup_bits
|
||||
}
|
||||
}
|
||||
|
||||
/// Wire index of the coset shift.
|
||||
pub fn wire_shift(&self) -> usize {
|
||||
0
|
||||
}
|
||||
|
||||
fn start_values(&self) -> usize {
|
||||
1
|
||||
}
|
||||
|
||||
/// Wire indices of the `i`th interpolant value.
|
||||
pub fn wires_value(&self, i: usize) -> Range<usize> {
|
||||
debug_assert!(i < self.num_points());
|
||||
let start = self.start_values() + i * D;
|
||||
start..start + D
|
||||
}
|
||||
|
||||
fn start_evaluation_point(&self) -> usize {
|
||||
self.start_values() + self.num_points() * D
|
||||
}
|
||||
|
||||
/// Wire indices of the point to evaluate the interpolant at.
|
||||
pub fn wires_evaluation_point(&self) -> Range<usize> {
|
||||
let start = self.start_evaluation_point();
|
||||
start..start + D
|
||||
}
|
||||
|
||||
fn start_evaluation_value(&self) -> usize {
|
||||
self.start_evaluation_point() + D
|
||||
}
|
||||
|
||||
/// Wire indices of the interpolated value.
|
||||
pub fn wires_evaluation_value(&self) -> Range<usize> {
|
||||
let start = self.start_evaluation_value();
|
||||
start..start + D
|
||||
}
|
||||
|
||||
fn start_coeffs(&self) -> usize {
|
||||
self.start_evaluation_value() + D
|
||||
}
|
||||
|
||||
/// The number of routed wires required in the typical usage of this gate, where the points to
|
||||
/// interpolate, the evaluation point, and the corresponding value are all routed.
|
||||
pub(crate) fn num_routed_wires(&self) -> usize {
|
||||
self.start_coeffs()
|
||||
}
|
||||
|
||||
/// Wire indices of the interpolant's `i`th coefficient.
|
||||
pub fn wires_coeff(&self, i: usize) -> Range<usize> {
|
||||
debug_assert!(i < self.num_points());
|
||||
let start = self.start_coeffs() + i * D;
|
||||
start..start + D
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> HighDegreeInterpolationGate<F, D> {
|
||||
/// End of wire indices, exclusive.
|
||||
fn end(&self) -> usize {
|
||||
self.start_coeffs() + self.num_points() * D
|
||||
@ -128,7 +79,9 @@ impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for InterpolationGate<F, D> {
|
||||
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D>
|
||||
for HighDegreeInterpolationGate<F, D>
|
||||
{
|
||||
fn id(&self) -> String {
|
||||
format!("{:?}<D={}>", self, D)
|
||||
}
|
||||
@ -221,7 +174,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for InterpolationG
|
||||
) -> Vec<Box<dyn WitnessGenerator<F>>> {
|
||||
let gen = InterpolationGenerator::<F, D> {
|
||||
gate_index,
|
||||
gate: self.clone(),
|
||||
gate: *self,
|
||||
_phantom: PhantomData,
|
||||
};
|
||||
vec![Box::new(gen.adapter())]
|
||||
@ -251,7 +204,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for InterpolationG
|
||||
#[derive(Debug)]
|
||||
struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
|
||||
gate_index: usize,
|
||||
gate: InterpolationGate<F, D>,
|
||||
gate: HighDegreeInterpolationGate<F, D>,
|
||||
_phantom: PhantomData<F>,
|
||||
}
|
||||
|
||||
@ -324,16 +277,17 @@ mod tests {
|
||||
use crate::field::extension_field::quartic::QuarticExtension;
|
||||
use crate::field::field_types::Field;
|
||||
use crate::field::goldilocks_field::GoldilocksField;
|
||||
use crate::gadgets::interpolation::InterpolationGate;
|
||||
use crate::gates::gate::Gate;
|
||||
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
|
||||
use crate::gates::interpolation::InterpolationGate;
|
||||
use crate::gates::interpolation::HighDegreeInterpolationGate;
|
||||
use crate::hash::hash_types::HashOut;
|
||||
use crate::plonk::vars::EvaluationVars;
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
|
||||
#[test]
|
||||
fn wire_indices() {
|
||||
let gate = InterpolationGate::<GoldilocksField, 4> {
|
||||
let gate = HighDegreeInterpolationGate::<GoldilocksField, 4> {
|
||||
subgroup_bits: 1,
|
||||
_phantom: PhantomData,
|
||||
};
|
||||
@ -352,12 +306,12 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn low_degree() {
|
||||
test_low_degree::<GoldilocksField, _, 4>(InterpolationGate::new(2));
|
||||
test_low_degree::<GoldilocksField, _, 4>(HighDegreeInterpolationGate::new(2));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn eval_fns() -> Result<()> {
|
||||
test_eval_fns::<GoldilocksField, _, 4>(InterpolationGate::new(2))
|
||||
test_eval_fns::<GoldilocksField, _, 4>(HighDegreeInterpolationGate::new(2))
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -368,7 +322,7 @@ mod tests {
|
||||
|
||||
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
|
||||
fn get_wires(
|
||||
gate: &InterpolationGate<F, D>,
|
||||
gate: &HighDegreeInterpolationGate<F, D>,
|
||||
shift: F,
|
||||
coeffs: PolynomialCoeffs<FF>,
|
||||
eval_point: FF,
|
||||
@ -390,7 +344,7 @@ mod tests {
|
||||
let shift = F::rand();
|
||||
let coeffs = PolynomialCoeffs::new(vec![FF::rand(), FF::rand()]);
|
||||
let eval_point = FF::rand();
|
||||
let gate = InterpolationGate::<F, D>::new(1);
|
||||
let gate = HighDegreeInterpolationGate::<F, D>::new(1);
|
||||
let vars = EvaluationVars {
|
||||
local_constants: &[],
|
||||
local_wires: &get_wires(&gate, shift, coeffs, eval_point),
|
||||
|
||||
459
src/gates/low_degree_interpolation.rs
Normal file
459
src/gates/low_degree_interpolation.rs
Normal file
@ -0,0 +1,459 @@
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::Range;
|
||||
|
||||
use crate::field::extension_field::algebra::PolynomialCoeffsAlgebra;
|
||||
use crate::field::extension_field::target::ExtensionTarget;
|
||||
use crate::field::extension_field::{Extendable, FieldExtension};
|
||||
use crate::field::field_types::{Field, RichField};
|
||||
use crate::field::interpolation::interpolant;
|
||||
use crate::gadgets::interpolation::InterpolationGate;
|
||||
use crate::gadgets::polynomial::PolynomialCoeffsExtAlgebraTarget;
|
||||
use crate::gates::gate::Gate;
|
||||
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
|
||||
use crate::iop::target::Target;
|
||||
use crate::iop::wire::Wire;
|
||||
use crate::iop::witness::{PartitionWitness, Witness};
|
||||
use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
|
||||
/// Interpolation gate with constraints of degree 2.
|
||||
/// `eval_unfiltered_recursively` uses more gates than `HighDegreeInterpolationGate`.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub(crate) struct LowDegreeInterpolationGate<F: RichField + Extendable<D>, const D: usize> {
|
||||
pub subgroup_bits: usize,
|
||||
_phantom: PhantomData<F>,
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> InterpolationGate<F, D>
|
||||
for LowDegreeInterpolationGate<F, D>
|
||||
{
|
||||
fn new(subgroup_bits: usize) -> Self {
|
||||
Self {
|
||||
subgroup_bits,
|
||||
_phantom: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
fn num_points(&self) -> usize {
|
||||
1 << self.subgroup_bits
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> LowDegreeInterpolationGate<F, D> {
|
||||
/// `powers_shift(i)` is the wire index of `wire_shift^i`.
|
||||
pub fn powers_shift(&self, i: usize) -> usize {
|
||||
debug_assert!(0 < i && i < self.num_points());
|
||||
if i == 1 {
|
||||
return self.wire_shift();
|
||||
}
|
||||
self.end_coeffs() + i - 2
|
||||
}
|
||||
|
||||
/// `powers_evalutation_point(i)` is the wire index of `evalutation_point^i`.
|
||||
pub fn powers_evaluation_point(&self, i: usize) -> Range<usize> {
|
||||
debug_assert!(0 < i && i < self.num_points());
|
||||
if i == 1 {
|
||||
return self.wires_evaluation_point();
|
||||
}
|
||||
let start = self.end_coeffs() + self.num_points() - 2 + (i - 2) * D;
|
||||
start..start + D
|
||||
}
|
||||
|
||||
/// End of wire indices, exclusive.
|
||||
fn end(&self) -> usize {
|
||||
self.powers_evaluation_point(self.num_points() - 1).end
|
||||
}
|
||||
|
||||
/// The domain of the points we're interpolating.
|
||||
fn coset(&self, shift: F) -> impl Iterator<Item = F> {
|
||||
let g = F::primitive_root_of_unity(self.subgroup_bits);
|
||||
let size = 1 << self.subgroup_bits;
|
||||
// Speed matters here, so we avoid `cyclic_subgroup_coset_known_order` which allocates.
|
||||
g.powers().take(size).map(move |x| x * shift)
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for LowDegreeInterpolationGate<F, D> {
|
||||
fn id(&self) -> String {
|
||||
format!("{:?}<D={}>", self, D)
|
||||
}
|
||||
|
||||
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
|
||||
let mut constraints = Vec::with_capacity(self.num_constraints());
|
||||
|
||||
let coeffs = (0..self.num_points())
|
||||
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let mut powers_shift = (1..self.num_points())
|
||||
.map(|i| vars.local_wires[self.powers_shift(i)])
|
||||
.collect::<Vec<_>>();
|
||||
let shift = powers_shift[0];
|
||||
for i in 1..self.num_points() - 1 {
|
||||
constraints.push(powers_shift[i - 1] * shift - powers_shift[i]);
|
||||
}
|
||||
powers_shift.insert(0, F::Extension::ONE);
|
||||
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
|
||||
// Then, `altered(w^i) = original(shift*w^i)`.
|
||||
let altered_coeffs = coeffs
|
||||
.iter()
|
||||
.zip(powers_shift)
|
||||
.map(|(&c, p)| c.scalar_mul(p))
|
||||
.collect::<Vec<_>>();
|
||||
let interpolant = PolynomialCoeffsAlgebra::new(coeffs);
|
||||
let altered_interpolant = PolynomialCoeffsAlgebra::new(altered_coeffs);
|
||||
|
||||
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
|
||||
.into_iter()
|
||||
.enumerate()
|
||||
{
|
||||
let value = vars.get_local_ext_algebra(self.wires_value(i));
|
||||
let computed_value = altered_interpolant.eval_base(point);
|
||||
constraints.extend(&(value - computed_value).to_basefield_array());
|
||||
}
|
||||
|
||||
let evaluation_point_powers = (1..self.num_points())
|
||||
.map(|i| vars.get_local_ext_algebra(self.powers_evaluation_point(i)))
|
||||
.collect::<Vec<_>>();
|
||||
let evaluation_point = evaluation_point_powers[0];
|
||||
for i in 1..self.num_points() - 1 {
|
||||
constraints.extend(
|
||||
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
|
||||
.to_basefield_array(),
|
||||
);
|
||||
}
|
||||
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
|
||||
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
|
||||
constraints.extend(&(evaluation_value - computed_evaluation_value).to_basefield_array());
|
||||
|
||||
constraints
|
||||
}
|
||||
|
||||
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
|
||||
let mut constraints = Vec::with_capacity(self.num_constraints());
|
||||
|
||||
let coeffs = (0..self.num_points())
|
||||
.map(|i| vars.get_local_ext(self.wires_coeff(i)))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let mut powers_shift = (1..self.num_points())
|
||||
.map(|i| vars.local_wires[self.powers_shift(i)])
|
||||
.collect::<Vec<_>>();
|
||||
let shift = powers_shift[0];
|
||||
for i in 1..self.num_points() - 1 {
|
||||
constraints.push(powers_shift[i - 1] * shift - powers_shift[i]);
|
||||
}
|
||||
powers_shift.insert(0, F::ONE);
|
||||
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
|
||||
// Then, `altered(w^i) = original(shift*w^i)`.
|
||||
let altered_coeffs = coeffs
|
||||
.iter()
|
||||
.zip(powers_shift)
|
||||
.map(|(&c, p)| c.scalar_mul(p))
|
||||
.collect::<Vec<_>>();
|
||||
let interpolant = PolynomialCoeffs::new(coeffs);
|
||||
let altered_interpolant = PolynomialCoeffs::new(altered_coeffs);
|
||||
|
||||
for (i, point) in F::two_adic_subgroup(self.subgroup_bits)
|
||||
.into_iter()
|
||||
.enumerate()
|
||||
{
|
||||
let value = vars.get_local_ext(self.wires_value(i));
|
||||
let computed_value = altered_interpolant.eval_base(point);
|
||||
constraints.extend(&(value - computed_value).to_basefield_array());
|
||||
}
|
||||
|
||||
let evaluation_point_powers = (1..self.num_points())
|
||||
.map(|i| vars.get_local_ext(self.powers_evaluation_point(i)))
|
||||
.collect::<Vec<_>>();
|
||||
let evaluation_point = evaluation_point_powers[0];
|
||||
for i in 1..self.num_points() - 1 {
|
||||
constraints.extend(
|
||||
(evaluation_point_powers[i - 1] * evaluation_point - evaluation_point_powers[i])
|
||||
.to_basefield_array(),
|
||||
);
|
||||
}
|
||||
let evaluation_value = vars.get_local_ext(self.wires_evaluation_value());
|
||||
let computed_evaluation_value = interpolant.eval_with_powers(&evaluation_point_powers);
|
||||
constraints.extend(&(evaluation_value - computed_evaluation_value).to_basefield_array());
|
||||
|
||||
constraints
|
||||
}
|
||||
|
||||
fn eval_unfiltered_recursively(
|
||||
&self,
|
||||
builder: &mut CircuitBuilder<F, D>,
|
||||
vars: EvaluationTargets<D>,
|
||||
) -> Vec<ExtensionTarget<D>> {
|
||||
let mut constraints = Vec::with_capacity(self.num_constraints());
|
||||
|
||||
let coeffs = (0..self.num_points())
|
||||
.map(|i| vars.get_local_ext_algebra(self.wires_coeff(i)))
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let mut powers_shift = (1..self.num_points())
|
||||
.map(|i| vars.local_wires[self.powers_shift(i)])
|
||||
.collect::<Vec<_>>();
|
||||
let shift = powers_shift[0];
|
||||
for i in 1..self.num_points() - 1 {
|
||||
constraints.push(builder.mul_sub_extension(
|
||||
powers_shift[i - 1],
|
||||
shift,
|
||||
powers_shift[i],
|
||||
));
|
||||
}
|
||||
powers_shift.insert(0, builder.one_extension());
|
||||
// `altered_coeffs[i] = c_i * shift^i`, where `c_i` is the original coefficient.
|
||||
// Then, `altered(w^i) = original(shift*w^i)`.
|
||||
let altered_coeffs = coeffs
|
||||
.iter()
|
||||
.zip(powers_shift)
|
||||
.map(|(&c, p)| builder.scalar_mul_ext_algebra(p, c))
|
||||
.collect::<Vec<_>>();
|
||||
let interpolant = PolynomialCoeffsExtAlgebraTarget(coeffs);
|
||||
let altered_interpolant = PolynomialCoeffsExtAlgebraTarget(altered_coeffs);
|
||||
|
||||
for (i, point) in F::Extension::two_adic_subgroup(self.subgroup_bits)
|
||||
.into_iter()
|
||||
.enumerate()
|
||||
{
|
||||
let value = vars.get_local_ext_algebra(self.wires_value(i));
|
||||
let point = builder.constant_extension(point);
|
||||
let computed_value = altered_interpolant.eval_scalar(builder, point);
|
||||
constraints.extend(
|
||||
&builder
|
||||
.sub_ext_algebra(value, computed_value)
|
||||
.to_ext_target_array(),
|
||||
);
|
||||
}
|
||||
|
||||
let evaluation_point_powers = (1..self.num_points())
|
||||
.map(|i| vars.get_local_ext_algebra(self.powers_evaluation_point(i)))
|
||||
.collect::<Vec<_>>();
|
||||
let evaluation_point = evaluation_point_powers[0];
|
||||
for i in 1..self.num_points() - 1 {
|
||||
let neg_one_ext = builder.neg_one_extension();
|
||||
let neg_new_power =
|
||||
builder.scalar_mul_ext_algebra(neg_one_ext, evaluation_point_powers[i]);
|
||||
let constraint = builder.mul_add_ext_algebra(
|
||||
evaluation_point,
|
||||
evaluation_point_powers[i - 1],
|
||||
neg_new_power,
|
||||
);
|
||||
constraints.extend(constraint.to_ext_target_array());
|
||||
}
|
||||
let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
|
||||
let computed_evaluation_value =
|
||||
interpolant.eval_with_powers(builder, &evaluation_point_powers);
|
||||
// let evaluation_point = vars.get_local_ext_algebra(self.wires_evaluation_point());
|
||||
// let evaluation_value = vars.get_local_ext_algebra(self.wires_evaluation_value());
|
||||
// let computed_evaluation_value = interpolant.eval(builder, evaluation_point);
|
||||
constraints.extend(
|
||||
&builder
|
||||
.sub_ext_algebra(evaluation_value, computed_evaluation_value)
|
||||
.to_ext_target_array(),
|
||||
);
|
||||
|
||||
constraints
|
||||
}
|
||||
|
||||
fn generators(
|
||||
&self,
|
||||
gate_index: usize,
|
||||
_local_constants: &[F],
|
||||
) -> Vec<Box<dyn WitnessGenerator<F>>> {
|
||||
let gen = InterpolationGenerator::<F, D> {
|
||||
gate_index,
|
||||
gate: *self,
|
||||
_phantom: PhantomData,
|
||||
};
|
||||
vec![Box::new(gen.adapter())]
|
||||
}
|
||||
|
||||
fn num_wires(&self) -> usize {
|
||||
self.end()
|
||||
}
|
||||
|
||||
fn num_constants(&self) -> usize {
|
||||
0
|
||||
}
|
||||
|
||||
fn degree(&self) -> usize {
|
||||
2
|
||||
}
|
||||
|
||||
fn num_constraints(&self) -> usize {
|
||||
// `num_points * D` constraints to check for consistency between the coefficients and the
|
||||
// point-value pairs, plus `D` constraints for the evaluation value, plus `(D+1)*(num_points-2)`
|
||||
// to check power constraints for evaluation point and shift.
|
||||
self.num_points() * D + D + (D + 1) * (self.num_points() - 2)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct InterpolationGenerator<F: RichField + Extendable<D>, const D: usize> {
|
||||
gate_index: usize,
|
||||
gate: LowDegreeInterpolationGate<F, D>,
|
||||
_phantom: PhantomData<F>,
|
||||
}
|
||||
|
||||
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
|
||||
for InterpolationGenerator<F, D>
|
||||
{
|
||||
fn dependencies(&self) -> Vec<Target> {
|
||||
let local_target = |input| {
|
||||
Target::Wire(Wire {
|
||||
gate: self.gate_index,
|
||||
input,
|
||||
})
|
||||
};
|
||||
|
||||
let local_targets = |inputs: Range<usize>| inputs.map(local_target);
|
||||
|
||||
let num_points = self.gate.num_points();
|
||||
let mut deps = Vec::with_capacity(1 + D + num_points * D);
|
||||
|
||||
deps.push(local_target(self.gate.wire_shift()));
|
||||
deps.extend(local_targets(self.gate.wires_evaluation_point()));
|
||||
for i in 0..num_points {
|
||||
deps.extend(local_targets(self.gate.wires_value(i)));
|
||||
}
|
||||
deps
|
||||
}
|
||||
|
||||
fn run_once(&self, witness: &PartitionWitness<F>, out_buffer: &mut GeneratedValues<F>) {
|
||||
let local_wire = |input| Wire {
|
||||
gate: self.gate_index,
|
||||
input,
|
||||
};
|
||||
|
||||
let get_local_wire = |input| witness.get_wire(local_wire(input));
|
||||
|
||||
let get_local_ext = |wire_range: Range<usize>| {
|
||||
debug_assert_eq!(wire_range.len(), D);
|
||||
let values = wire_range.map(get_local_wire).collect::<Vec<_>>();
|
||||
let arr = values.try_into().unwrap();
|
||||
F::Extension::from_basefield_array(arr)
|
||||
};
|
||||
|
||||
let wire_shift = get_local_wire(self.gate.wire_shift());
|
||||
|
||||
for (i, power) in wire_shift
|
||||
.powers()
|
||||
.take(self.gate.num_points())
|
||||
.enumerate()
|
||||
.skip(2)
|
||||
{
|
||||
out_buffer.set_wire(local_wire(self.gate.powers_shift(i)), power);
|
||||
}
|
||||
|
||||
// Compute the interpolant.
|
||||
let points = self.gate.coset(wire_shift);
|
||||
let points = points
|
||||
.into_iter()
|
||||
.enumerate()
|
||||
.map(|(i, point)| (point.into(), get_local_ext(self.gate.wires_value(i))))
|
||||
.collect::<Vec<_>>();
|
||||
let interpolant = interpolant(&points);
|
||||
|
||||
for (i, &coeff) in interpolant.coeffs.iter().enumerate() {
|
||||
let wires = self.gate.wires_coeff(i).map(local_wire);
|
||||
out_buffer.set_ext_wires(wires, coeff);
|
||||
}
|
||||
|
||||
let evaluation_point = get_local_ext(self.gate.wires_evaluation_point());
|
||||
for (i, power) in evaluation_point
|
||||
.powers()
|
||||
.take(self.gate.num_points())
|
||||
.enumerate()
|
||||
.skip(2)
|
||||
{
|
||||
out_buffer.set_extension_target(
|
||||
ExtensionTarget::from_range(self.gate_index, self.gate.powers_evaluation_point(i)),
|
||||
power,
|
||||
);
|
||||
}
|
||||
let evaluation_value = interpolant.eval(evaluation_point);
|
||||
let evaluation_value_wires = self.gate.wires_evaluation_value().map(local_wire);
|
||||
out_buffer.set_ext_wires(evaluation_value_wires, evaluation_value);
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use anyhow::Result;
|
||||
|
||||
use crate::field::extension_field::quadratic::QuadraticExtension;
|
||||
use crate::field::field_types::Field;
|
||||
use crate::field::goldilocks_field::GoldilocksField;
|
||||
use crate::gadgets::interpolation::InterpolationGate;
|
||||
use crate::gates::gate::Gate;
|
||||
use crate::gates::gate_testing::{test_eval_fns, test_low_degree};
|
||||
use crate::gates::low_degree_interpolation::LowDegreeInterpolationGate;
|
||||
use crate::hash::hash_types::HashOut;
|
||||
use crate::plonk::vars::EvaluationVars;
|
||||
use crate::polynomial::polynomial::PolynomialCoeffs;
|
||||
|
||||
#[test]
|
||||
fn low_degree() {
|
||||
test_low_degree::<GoldilocksField, _, 4>(LowDegreeInterpolationGate::new(4));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn eval_fns() -> Result<()> {
|
||||
test_eval_fns::<GoldilocksField, _, 4>(LowDegreeInterpolationGate::new(4))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_gate_constraint() {
|
||||
type F = GoldilocksField;
|
||||
type FF = QuadraticExtension<GoldilocksField>;
|
||||
const D: usize = 2;
|
||||
|
||||
/// Returns the local wires for an interpolation gate for given coeffs, points and eval point.
|
||||
fn get_wires(
|
||||
gate: &LowDegreeInterpolationGate<F, D>,
|
||||
shift: F,
|
||||
coeffs: PolynomialCoeffs<FF>,
|
||||
eval_point: FF,
|
||||
) -> Vec<FF> {
|
||||
let points = gate.coset(shift);
|
||||
let mut v = vec![shift];
|
||||
for x in points {
|
||||
v.extend(coeffs.eval(x.into()).0);
|
||||
}
|
||||
v.extend(eval_point.0);
|
||||
v.extend(coeffs.eval(eval_point).0);
|
||||
for i in 0..coeffs.len() {
|
||||
v.extend(coeffs.coeffs[i].0);
|
||||
}
|
||||
v.extend(shift.powers().skip(2).take(gate.num_points() - 2));
|
||||
v.extend(
|
||||
eval_point
|
||||
.powers()
|
||||
.skip(2)
|
||||
.take(gate.num_points() - 2)
|
||||
.flat_map(|ff| ff.0),
|
||||
);
|
||||
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
|
||||
}
|
||||
|
||||
// Get a working row for LowDegreeInterpolationGate.
|
||||
let subgroup_bits = 4;
|
||||
let shift = F::rand();
|
||||
let coeffs = PolynomialCoeffs::new(FF::rand_vec(1 << subgroup_bits));
|
||||
let eval_point = FF::rand();
|
||||
let gate = LowDegreeInterpolationGate::<F, D>::new(subgroup_bits);
|
||||
let vars = EvaluationVars {
|
||||
local_constants: &[],
|
||||
local_wires: &get_wires(&gate, shift, coeffs, eval_point),
|
||||
public_inputs_hash: &HashOut::rand(),
|
||||
};
|
||||
|
||||
assert!(
|
||||
gate.eval_unfiltered(vars).iter().all(|x| x.is_zero()),
|
||||
"Gate constraints are not satisfied."
|
||||
);
|
||||
}
|
||||
}
|
||||
@ -14,6 +14,7 @@ pub mod gate_tree;
|
||||
pub mod gmimc;
|
||||
pub mod insertion;
|
||||
pub mod interpolation;
|
||||
pub mod low_degree_interpolation;
|
||||
pub mod multiplication_extension;
|
||||
pub mod noop;
|
||||
pub mod poseidon;
|
||||
|
||||
@ -63,16 +63,29 @@ impl CircuitConfig {
|
||||
num_routed_wires: 80,
|
||||
constant_gate_size: 5,
|
||||
use_base_arithmetic_gate: true,
|
||||
security_bits: 93,
|
||||
security_bits: 100,
|
||||
rate_bits: 3,
|
||||
num_challenges: 2,
|
||||
zero_knowledge: false,
|
||||
cap_height: 4,
|
||||
fri_config: FriConfig {
|
||||
proof_of_work_bits: 16,
|
||||
reduction_strategy: FriReductionStrategy::ConstantArityBits(4, 5),
|
||||
num_query_rounds: 28,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
pub fn size_optimized_recursion_config() -> Self {
|
||||
Self {
|
||||
security_bits: 93,
|
||||
cap_height: 3,
|
||||
fri_config: FriConfig {
|
||||
proof_of_work_bits: 15,
|
||||
reduction_strategy: FriReductionStrategy::ConstantArityBits(3, 5),
|
||||
num_query_rounds: 26,
|
||||
..CircuitConfig::standard_recursion_config().fri_config
|
||||
},
|
||||
..CircuitConfig::standard_recursion_config()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -310,6 +310,7 @@ mod tests {
|
||||
use crate::field::field_types::Field;
|
||||
use crate::field::goldilocks_field::GoldilocksField;
|
||||
use crate::fri::reduction_strategies::FriReductionStrategy;
|
||||
use crate::gates::noop::NoopGate;
|
||||
use crate::iop::witness::PartialWitness;
|
||||
use crate::plonk::circuit_builder::CircuitBuilder;
|
||||
use crate::plonk::circuit_data::CircuitConfig;
|
||||
@ -336,6 +337,9 @@ mod tests {
|
||||
let zt = builder.constant(z);
|
||||
let comp_zt = builder.mul(xt, yt);
|
||||
builder.connect(zt, comp_zt);
|
||||
for _ in 0..100 {
|
||||
builder.add_gate(NoopGate, vec![]);
|
||||
}
|
||||
let data = builder.build();
|
||||
let proof = data.prove(pw)?;
|
||||
verify(proof.clone(), &data.verifier_only, &data.common)?;
|
||||
|
||||
@ -408,7 +408,7 @@ mod tests {
|
||||
type F = GoldilocksField;
|
||||
const D: usize = 2;
|
||||
|
||||
let standard_config = CircuitConfig::standard_recursion_config();
|
||||
let standard_config = CircuitConfig::size_optimized_recursion_config();
|
||||
|
||||
// An initial dummy proof.
|
||||
let (proof, vd, cd) = dummy_proof::<F, D>(&standard_config, 4_000)?;
|
||||
@ -456,7 +456,7 @@ mod tests {
|
||||
num_routed_wires: 25,
|
||||
fri_config: FriConfig {
|
||||
proof_of_work_bits: 21,
|
||||
reduction_strategy: FriReductionStrategy::MinSize(None),
|
||||
reduction_strategy: FriReductionStrategy::MinSize(Some(3)),
|
||||
num_query_rounds: 9,
|
||||
},
|
||||
..high_rate_config
|
||||
|
||||
@ -120,6 +120,16 @@ impl<F: Field> PolynomialCoeffs<F> {
|
||||
.fold(F::ZERO, |acc, &c| acc * x + c)
|
||||
}
|
||||
|
||||
/// Evaluate the polynomial at a point given its powers. The first power is the point itself, not 1.
|
||||
pub fn eval_with_powers(&self, powers: &[F]) -> F {
|
||||
debug_assert_eq!(self.coeffs.len(), powers.len() + 1);
|
||||
let acc = self.coeffs[0];
|
||||
self.coeffs[1..]
|
||||
.iter()
|
||||
.zip(powers)
|
||||
.fold(acc, |acc, (&x, &c)| acc + c * x)
|
||||
}
|
||||
|
||||
pub fn eval_base<const D: usize>(&self, x: F::BaseField) -> F
|
||||
where
|
||||
F: FieldExtension<D>,
|
||||
@ -130,6 +140,19 @@ impl<F: Field> PolynomialCoeffs<F> {
|
||||
.fold(F::ZERO, |acc, &c| acc.scalar_mul(x) + c)
|
||||
}
|
||||
|
||||
/// Evaluate the polynomial at a point given its powers. The first power is the point itself, not 1.
|
||||
pub fn eval_base_with_powers<const D: usize>(&self, powers: &[F::BaseField]) -> F
|
||||
where
|
||||
F: FieldExtension<D>,
|
||||
{
|
||||
debug_assert_eq!(self.coeffs.len(), powers.len() + 1);
|
||||
let acc = self.coeffs[0];
|
||||
self.coeffs[1..]
|
||||
.iter()
|
||||
.zip(powers)
|
||||
.fold(acc, |acc, (&x, &c)| acc + x.scalar_mul(c))
|
||||
}
|
||||
|
||||
pub fn lde_multiple(polys: Vec<&Self>, rate_bits: usize) -> Vec<Self> {
|
||||
polys.into_iter().map(|p| p.lde(rate_bits)).collect()
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user