Merge pull request #127 from mir-protocol/reducing_gate

Add `ReducingGate` to compute reductions by `alpha` of base field elements
This commit is contained in:
wborgeaud 2021-07-25 18:14:40 +02:00 committed by GitHub
commit 1e5a503a14
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 400 additions and 14 deletions

View File

@ -21,7 +21,7 @@ fn main() -> Result<()> {
fn bench_prove<F: Field + Extendable<D>, const D: usize>() -> Result<()> {
let config = CircuitConfig {
num_wires: 134,
num_wires: 126,
num_routed_wires: 33,
security_bits: 128,
rate_bits: 3,

View File

@ -57,7 +57,7 @@ impl CircuitConfig {
pub(crate) fn large_config() -> Self {
Self {
num_wires: 126,
num_routed_wires: 34,
num_routed_wires: 33,
security_bits: 128,
rate_bits: 3,
num_challenges: 3,

View File

@ -115,6 +115,13 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
arr[0] = t;
ExtensionTarget(arr)
}
pub fn convert_to_ext_algebra(&mut self, et: ExtensionTarget<D>) -> ExtensionAlgebraTarget<D> {
let zero = self.zero_extension();
let mut arr = [zero; D];
arr[0] = et;
ExtensionAlgebraTarget(arr)
}
}
/// Flatten the slice by sending every extension target to its D-sized canonical representation.

View File

@ -11,7 +11,7 @@ use crate::proof::{
FriInitialTreeProofTarget, FriProofTarget, FriQueryRoundTarget, HashTarget, OpeningSetTarget,
};
use crate::target::Target;
use crate::util::scaling::ReducingFactorTarget;
use crate::util::reducing::ReducingFactorTarget;
use crate::util::{log2_strict, reverse_index_bits_in_place};
impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
@ -198,9 +198,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
&proof.unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS, config.zero_knowledge)
[common_data.partial_products_range()],
)
.map(|&e| self.convert_to_ext(e))
.copied()
.collect::<Vec<_>>();
let single_composition_eval = alpha.reduce(&single_evals, self);
let single_composition_eval = alpha.reduce_base(&single_evals, self);
let single_numerator =
self.sub_extension(single_composition_eval, precomputed_reduced_evals.single);
let single_denominator = self.sub_extension(subgroup_x, zeta);
@ -213,9 +213,9 @@ impl<F: Extendable<D>, const D: usize> CircuitBuilder<F, D> {
.unsalted_evals(PlonkPolynomials::ZS_PARTIAL_PRODUCTS, config.zero_knowledge)
.iter()
.take(common_data.zs_range().end)
.map(|&e| self.convert_to_ext(e))
.copied()
.collect::<Vec<_>>();
let zs_composition_eval = alpha.reduce(&zs_evals, self);
let zs_composition_eval = alpha.reduce_base(&zs_evals, self);
let g = self.constant_extension(F::Extension::primitive_root_of_unity(degree_log));
let zeta_right = self.mul_extension(g, zeta);

View File

@ -10,7 +10,7 @@ use crate::merkle_proofs::verify_merkle_proof;
use crate::plonk_challenger::Challenger;
use crate::plonk_common::PlonkPolynomials;
use crate::proof::{FriInitialTreeProof, FriProof, FriQueryRound, Hash, OpeningSet};
use crate::util::scaling::ReducingFactor;
use crate::util::reducing::ReducingFactor;
use crate::util::{log2_strict, reverse_bits, reverse_index_bits_in_place};
/// Computes P'(x^arity) from {P(x*g^i)}_(i=0..arity), where g is a `arity`-th root of unity

View File

@ -11,6 +11,7 @@ pub mod insertion;
pub mod interpolation;
pub(crate) mod noop;
pub(crate) mod public_input;
pub mod reducing;
#[cfg(test)]
mod gate_testing;

228
src/gates/reducing.rs Normal file
View File

@ -0,0 +1,228 @@
use std::ops::Range;
use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::extension_field::FieldExtension;
use crate::gates::gate::Gate;
use crate::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
use crate::witness::PartialWitness;
/// Computes `sum alpha^i c_i` for a vector `c_i` of `num_coeffs` elements of the base field.
#[derive(Debug, Clone)]
pub struct ReducingGate<const D: usize> {
pub num_coeffs: usize,
}
impl<const D: usize> ReducingGate<D> {
pub fn new(num_coeffs: usize) -> Self {
Self { num_coeffs }
}
pub fn max_coeffs_len(num_wires: usize, num_routed_wires: usize) -> usize {
(num_routed_wires - 3 * D).min((num_wires - 3 * D) / (D + 1))
}
pub fn wires_output() -> Range<usize> {
0..D
}
pub fn wires_alpha() -> Range<usize> {
D..2 * D
}
pub fn wires_old_acc() -> Range<usize> {
2 * D..3 * D
}
const START_COEFFS: usize = 3 * D;
pub fn wires_coeffs(&self) -> Range<usize> {
Self::START_COEFFS..Self::START_COEFFS + self.num_coeffs
}
fn start_accs(&self) -> usize {
Self::START_COEFFS + self.num_coeffs
}
fn wires_accs(&self, i: usize) -> Range<usize> {
if i == self.num_coeffs - 1 {
// The last accumulator is the output.
return Self::wires_output();
}
self.start_accs() + D * i..self.start_accs() + D * (i + 1)
}
}
impl<F: Extendable<D>, const D: usize> Gate<F, D> for ReducingGate<D> {
fn id(&self) -> String {
format!("{:?}", self)
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let output = vars.get_local_ext_algebra(Self::wires_output());
let alpha = vars.get_local_ext_algebra(Self::wires_alpha());
let old_acc = vars.get_local_ext_algebra(Self::wires_old_acc());
let coeffs = self
.wires_coeffs()
.map(|i| vars.local_wires[i])
.collect::<Vec<_>>();
let accs = (0..self.num_coeffs)
.map(|i| vars.get_local_ext_algebra(self.wires_accs(i)))
.collect::<Vec<_>>();
let mut constraints = Vec::new();
let mut acc = old_acc;
for i in 0..self.num_coeffs {
constraints.push(acc * alpha + coeffs[i].into() - accs[i]);
acc = accs[i];
}
constraints
.into_iter()
.flat_map(|alg| alg.to_basefield_array())
.collect()
}
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
let output = vars.get_local_ext(Self::wires_output());
let alpha = vars.get_local_ext(Self::wires_alpha());
let old_acc = vars.get_local_ext(Self::wires_old_acc());
let coeffs = self
.wires_coeffs()
.map(|i| vars.local_wires[i])
.collect::<Vec<_>>();
let accs = (0..self.num_coeffs)
.map(|i| vars.get_local_ext(self.wires_accs(i)))
.collect::<Vec<_>>();
let mut constraints = Vec::new();
let mut acc = old_acc;
for i in 0..self.num_coeffs {
constraints.push(acc * alpha + coeffs[i].into() - accs[i]);
acc = accs[i];
}
constraints
.into_iter()
.flat_map(|alg| alg.to_basefield_array())
.collect()
}
fn eval_unfiltered_recursively(
&self,
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let output = vars.get_local_ext_algebra(Self::wires_output());
let alpha = vars.get_local_ext_algebra(Self::wires_alpha());
let old_acc = vars.get_local_ext_algebra(Self::wires_old_acc());
let coeffs = self
.wires_coeffs()
.map(|i| vars.local_wires[i])
.collect::<Vec<_>>();
let accs = (0..self.num_coeffs)
.map(|i| vars.get_local_ext_algebra(self.wires_accs(i)))
.collect::<Vec<_>>();
let mut constraints = Vec::new();
let mut acc = old_acc;
for i in 0..self.num_coeffs {
let mut tmp = builder.mul_ext_algebra(acc, alpha);
let coeff = builder.convert_to_ext_algebra(coeffs[i]);
tmp = builder.add_ext_algebra(tmp, coeff);
tmp = builder.sub_ext_algebra(tmp, accs[i]);
constraints.push(tmp);
acc = accs[i];
}
constraints
.into_iter()
.flat_map(|alg| alg.to_ext_target_array())
.collect()
}
fn generators(
&self,
gate_index: usize,
_local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
vec![Box::new(ReducingGenerator {
gate_index,
gate: self.clone(),
})]
}
fn num_wires(&self) -> usize {
3 * D + self.num_coeffs * (D + 1)
}
fn num_constants(&self) -> usize {
0
}
fn degree(&self) -> usize {
2
}
fn num_constraints(&self) -> usize {
D * (self.num_coeffs + 1)
}
}
struct ReducingGenerator<const D: usize> {
gate_index: usize,
gate: ReducingGate<D>,
}
impl<F: Extendable<D>, const D: usize> SimpleGenerator<F> for ReducingGenerator<D> {
fn dependencies(&self) -> Vec<Target> {
ReducingGate::<D>::wires_alpha()
.chain(ReducingGate::<D>::wires_old_acc())
.chain(self.gate.wires_coeffs())
.map(|i| Target::wire(self.gate_index, i))
.collect()
}
fn run_once(&self, witness: &PartialWitness<F>) -> GeneratedValues<F> {
let extract_extension = |range: Range<usize>| -> F::Extension {
let t = ExtensionTarget::from_range(self.gate_index, range);
witness.get_extension_target(t)
};
let alpha = extract_extension(ReducingGate::<D>::wires_alpha());
let old_acc = extract_extension(ReducingGate::<D>::wires_old_acc());
let coeffs = witness.get_targets(
&self
.gate
.wires_coeffs()
.map(|i| Target::wire(self.gate_index, i))
.collect::<Vec<_>>(),
);
let accs = (0..self.gate.num_coeffs)
.map(|i| ExtensionTarget::from_range(self.gate_index, self.gate.wires_accs(i)))
.collect::<Vec<_>>();
let output =
ExtensionTarget::from_range(self.gate_index, ReducingGate::<D>::wires_output());
let mut result = GeneratedValues::<F>::with_capacity(self.gate.num_coeffs + 1);
let mut acc = old_acc;
for i in 0..self.gate.num_coeffs {
let computed_acc = acc * alpha + coeffs[i].into();
result.set_extension_target(accs[i], computed_acc);
acc = computed_acc;
}
result.set_extension_target(output, acc);
result
}
}
#[cfg(test)]
mod tests {
use crate::field::crandall_field::CrandallField;
use crate::gates::gate_testing::test_low_degree;
use crate::gates::reducing::ReducingGate;
#[test]
fn low_degree() {
type F = CrandallField;
test_low_degree::<CrandallField, _, 4>(ReducingGate::new(22));
}
}

View File

@ -393,7 +393,7 @@ mod tests {
}
let config = CircuitConfig {
num_wires: 12 + 12 + 3 + 101,
num_wires: 12 + 12 + 1 + 101,
num_routed_wires: 27,
..CircuitConfig::default()
};

View File

@ -15,7 +15,7 @@ use crate::plonk_common::PlonkPolynomials;
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
use crate::proof::{FriProof, FriProofTarget, Hash, HashTarget, OpeningSet, OpeningSetTarget};
use crate::timed;
use crate::util::scaling::ReducingFactor;
use crate::util::reducing::ReducingFactor;
use crate::util::{log2_ceil, log2_strict, reverse_bits, reverse_index_bits_in_place, transpose};
/// Two (~64 bit) field elements gives ~128 bit security.

View File

@ -4,7 +4,7 @@ use crate::context;
use crate::field::extension_field::Extendable;
use crate::plonk_challenger::RecursiveChallenger;
use crate::proof::{HashTarget, ProofWithPublicInputsTarget};
use crate::util::scaling::ReducingFactorTarget;
use crate::util::reducing::ReducingFactorTarget;
use crate::vanishing_poly::eval_vanishing_poly_recursively;
use crate::vars::EvaluationTargets;
@ -381,7 +381,7 @@ mod tests {
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
let _two = builder.two();
let _two = builder.hash_n_to_hash(vec![_two], true).elements[0];
for _ in 0..5000 {
for _ in 0..10000 {
let _two = builder.mul(_two, _two);
}
let data = builder.build();
@ -411,4 +411,76 @@ mod tests {
verify(recursive_proof, &data.verifier_only, &data.common)
}
#[test]
#[ignore]
fn test_recursive_recursive_verifier() -> Result<()> {
env_logger::init();
type F = CrandallField;
const D: usize = 4;
let config = CircuitConfig {
num_wires: 126,
num_routed_wires: 33,
security_bits: 128,
rate_bits: 3,
num_challenges: 3,
zero_knowledge: false,
fri_config: FriConfig {
proof_of_work_bits: 1,
reduction_arity_bits: vec![2, 2, 2, 2, 2, 2],
num_query_rounds: 40,
},
};
let (proof_with_pis, vd, cd) = {
let (proof_with_pis, vd, cd) = {
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
let _two = builder.two();
let _two = builder.hash_n_to_hash(vec![_two], true).elements[0];
for _ in 0..10000 {
let _two = builder.mul(_two, _two);
}
let data = builder.build();
(
data.prove(PartialWitness::new())?,
data.verifier_only,
data.common,
)
};
verify(proof_with_pis.clone(), &vd, &cd)?;
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
let mut pw = PartialWitness::new();
let pt = proof_to_proof_target(&proof_with_pis, &mut builder);
set_proof_target(&proof_with_pis, &pt, &mut pw);
let inner_data = VerifierCircuitTarget {
constants_sigmas_root: builder.add_virtual_hash(),
};
pw.set_hash_target(inner_data.constants_sigmas_root, vd.constants_sigmas_root);
builder.add_recursive_verifier(pt, &config, &inner_data, &cd);
let data = builder.build();
let recursive_proof = data.prove(pw)?;
(recursive_proof, data.verifier_only, data.common)
};
verify(proof_with_pis.clone(), &vd, &cd)?;
let mut builder = CircuitBuilder::<F, D>::new(config.clone());
let mut pw = PartialWitness::new();
let pt = proof_to_proof_target(&proof_with_pis, &mut builder);
set_proof_target(&proof_with_pis, &pt, &mut pw);
let inner_data = VerifierCircuitTarget {
constants_sigmas_root: builder.add_virtual_hash(),
};
pw.set_hash_target(inner_data.constants_sigmas_root, vd.constants_sigmas_root);
builder.add_recursive_verifier(pt, &config, &inner_data, &cd);
builder.print_gate_counts(0);
let data = builder.build();
let recursive_proof = data.prove(pw)?;
verify(recursive_proof, &data.verifier_only, &data.common)
}
}

View File

@ -1,6 +1,6 @@
pub mod marking;
pub mod partial_products;
pub mod scaling;
pub mod reducing;
pub(crate) mod timing;
use crate::field::field::Field;

View File

@ -7,7 +7,9 @@ use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, Frobenius};
use crate::field::field::Field;
use crate::gates::arithmetic::ArithmeticExtensionGate;
use crate::gates::reducing::ReducingGate;
use crate::polynomial::polynomial::PolynomialCoeffs;
use crate::target::Target;
/// When verifying the composition polynomial in FRI we have to compute sums of the form
/// `(sum_0^k a^i * x_i)/d_0 + (sum_k^r a^i * y_i)/d_1`
@ -90,6 +92,50 @@ impl<const D: usize> ReducingFactorTarget<D> {
Self { base, count: 0 }
}
/// Reduces a length `n` vector of `Target`s using `n/21` `ReducingGate`s (with 33 routed wires and 126 wires).
pub fn reduce_base<F>(
&mut self,
terms: &[Target],
builder: &mut CircuitBuilder<F, D>,
) -> ExtensionTarget<D>
where
F: Extendable<D>,
{
let max_coeffs_len = ReducingGate::<D>::max_coeffs_len(
builder.config.num_wires,
builder.config.num_routed_wires,
);
self.count += terms.len() as u64;
let zero = builder.zero();
let zero_ext = builder.zero_extension();
let mut acc = zero_ext;
let mut reversed_terms = terms.to_vec();
while reversed_terms.len() % max_coeffs_len != 0 {
reversed_terms.push(zero);
}
reversed_terms.reverse();
for chunk in reversed_terms.chunks_exact(max_coeffs_len) {
let gate = ReducingGate::new(max_coeffs_len);
let gate_index = builder.add_gate(gate.clone(), Vec::new());
builder.route_extension(
self.base,
ExtensionTarget::from_range(gate_index, ReducingGate::<D>::wires_alpha()),
);
builder.route_extension(
acc,
ExtensionTarget::from_range(gate_index, ReducingGate::<D>::wires_old_acc()),
);
for (&t, c) in chunk.iter().zip(gate.wires_coeffs()) {
builder.route(t, Target::wire(gate_index, c));
}
acc = ExtensionTarget::from_range(gate_index, ReducingGate::<D>::wires_output());
}
acc
}
/// Reduces a length `n` vector of `ExtensionTarget`s using `n/2` `ArithmeticExtensionGate`s.
/// It does this by batching two steps of Horner's method in each gate.
/// Here's an example with `n=4, alpha=2, D=1`:
@ -182,6 +228,33 @@ mod tests {
use crate::verifier::verify;
use crate::witness::PartialWitness;
fn test_reduce_gadget_base(n: usize) -> Result<()> {
type F = CrandallField;
type FF = QuarticCrandallField;
const D: usize = 4;
let config = CircuitConfig::large_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
let alpha = FF::rand();
let vs = F::rand_vec(n);
let manual_reduce = ReducingFactor::new(alpha).reduce(vs.iter().map(|&v| FF::from(v)));
let manual_reduce = builder.constant_extension(manual_reduce);
let mut alpha_t = ReducingFactorTarget::new(builder.constant_extension(alpha));
let vs_t = vs.iter().map(|&v| builder.constant(v)).collect::<Vec<_>>();
let circuit_reduce = alpha_t.reduce_base(&vs_t, &mut builder);
builder.assert_equal_extension(manual_reduce, circuit_reduce);
let data = builder.build();
let proof = data.prove(PartialWitness::new())?;
verify(proof, &data.verifier_only, &data.common)
}
fn test_reduce_gadget(n: usize) -> Result<()> {
type F = CrandallField;
type FF = QuarticCrandallField;
@ -221,4 +294,9 @@ mod tests {
fn test_reduce_gadget_odd() -> Result<()> {
test_reduce_gadget(11)
}
#[test]
fn test_reduce_gadget_base_100() -> Result<()> {
test_reduce_gadget_base(100)
}
}

View File

@ -9,7 +9,7 @@ use crate::plonk_common;
use crate::plonk_common::{eval_l_1_recursively, ZeroPolyOnCoset};
use crate::target::Target;
use crate::util::partial_products::{check_partial_products, check_partial_products_recursively};
use crate::util::scaling::ReducingFactorTarget;
use crate::util::reducing::ReducingFactorTarget;
use crate::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// Evaluate the vanishing polynomial at `x`. In this context, the vanishing polynomial is a random