[DRAFT] Interpolation gate

Over quartic field extension (for now). This would be used in our FRI recursive verifier later, for the consistency check.

To summarize the wires,
- `n` inputs for the `n` points to interpolate (don't need `4n` since they'll be in the subgroup of the base field)
- `4n` inputs for the `n` (extension field) values to interpolate
- `4` inputs for the point to evaluate the interpolant at (beta, which will be drawn from the extension field right?)
- `4` outputs for the interpolated value
- `4n` internal wires for the interpolant's coefficients

This definitely isn't the most optimal approach, e.g. we could route in a single "base" point and derive its neighboring points, but just wanted to keep it simple for now.
This commit is contained in:
Daniel Lubarov 2021-05-17 09:06:17 -07:00
parent 965c4e4da5
commit 0c91739b3b
2 changed files with 170 additions and 0 deletions

View File

@ -0,0 +1,169 @@
use std::marker::PhantomData;
use crate::circuit_builder::CircuitBuilder;
use crate::field::extension_field::quartic::QuarticFieldExtension;
use crate::gates::gate::{Gate, GateRef};
use crate::generator::{SimpleGenerator, WitnessGenerator};
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars};
use crate::witness::PartialWitness;
/// The size of the field extension, in terms of number of base elements per extension element.
const EXT_SIZE: usize = 4;
/// Evaluates the interpolant of some given elements from a quartic field extension.
///
/// In particular, this gate takes as inputs `num_points` points, `num_points` values, and the point
/// to evaluate the interpolant at. It computes the interpolant and outputs its evaluation at the
/// given point.
#[derive(Debug)]
pub(crate) struct QuarticInterpolationGate<QFE: QuarticFieldExtension> {
num_points: usize,
_phantom: PhantomData<QFE>,
}
impl<QFE: QuarticFieldExtension> QuarticInterpolationGate<QFE> {
pub fn new(num_points: usize) -> GateRef<QFE::BaseField> {
let gate = Self {
num_points,
_phantom: PhantomData,
};
GateRef::new(gate)
}
fn start_points(&self) -> usize {
0
}
/// Wire indices of the `i`th interpolant point.
pub fn wire_point(&self, i: usize) -> usize {
debug_assert!(i < self.num_points);
self.start_points() + i
}
fn start_values(&self) -> usize {
self.start_points() + self.num_points
}
/// Wire indices of the `i`th interpolant value.
pub fn wires_value(&self, i: usize) -> Vec<usize> {
debug_assert!(i < self.num_points);
(0..EXT_SIZE)
.map(|j| self.start_values() + i * EXT_SIZE + j)
.collect()
}
fn start_interpolated_point(&self) -> usize {
self.start_values() + self.num_points * EXT_SIZE
}
/// Wire indices of the point to evaluate the interpolant at.
pub fn wires_interpolated_point(&self) -> Vec<usize> {
(0..EXT_SIZE).map(|j| self.start_interpolated_point() + j).collect()
}
fn start_interpolated_value(&self) -> usize {
self.start_interpolated_point() + EXT_SIZE
}
/// Wire indices of the interpolated value.
pub fn wires_interpolated_value(&self) -> Vec<usize> {
(0..EXT_SIZE)
.map(|j| self.start_interpolated_value() + j)
.collect()
}
fn start_coeffs(&self) -> usize {
self.start_interpolated_value() + EXT_SIZE
}
/// Wire indices of the interpolant's `i`th coefficient.
pub fn wires_coeff(&self, i: usize) -> Vec<usize> {
debug_assert!(i < self.num_points);
(0..EXT_SIZE)
.map(|j| self.start_coeffs() + i * EXT_SIZE + j)
.collect()
}
}
impl<QFE: QuarticFieldExtension> Gate<QFE::BaseField> for QuarticInterpolationGate<QFE> {
fn id(&self) -> String {
let qfe_name = std::any::type_name::<QFE>();
format!("{} {:?}", qfe_name, self)
}
fn eval_unfiltered(&self, vars: EvaluationVars<QFE::BaseField>) -> Vec<QFE::BaseField> {
todo!()
}
fn eval_unfiltered_recursively(
&self,
builder: &mut CircuitBuilder<QFE::BaseField>,
vars: EvaluationTargets,
) -> Vec<Target> {
todo!()
}
fn generators(
&self,
gate_index: usize,
local_constants: &[QFE::BaseField],
) -> Vec<Box<dyn WitnessGenerator<QFE::BaseField>>> {
todo!()
}
fn num_wires(&self) -> usize {
todo!()
}
fn num_constants(&self) -> usize {
todo!()
}
fn degree(&self) -> usize {
todo!()
}
fn num_constraints(&self) -> usize {
todo!()
}
}
struct QuarticInterpolationGenerator<QFE: QuarticFieldExtension> {
_phantom: PhantomData<QFE>,
}
impl<QFE: QuarticFieldExtension> SimpleGenerator<QFE::BaseField>
for QuarticInterpolationGenerator<QFE>
{
fn dependencies(&self) -> Vec<Target> {
todo!()
}
fn run_once(&self, witness: &PartialWitness<QFE::BaseField>) -> PartialWitness<QFE::BaseField> {
todo!()
}
}
#[cfg(test)]
mod tests {
use std::marker::PhantomData;
use crate::gates::interpolation_quartic::QuarticInterpolationGate;
use crate::field::extension_field::quartic::QuarticCrandallField;
#[test]
fn wire_indices() {
let gate = QuarticInterpolationGate::<QuarticCrandallField> { num_points: 2, _phantom: PhantomData };
// The exact indices aren't really important, but we want to make sure we don't have any
// overlaps or gaps.
assert_eq!(gate.wire_point(0), 0);
assert_eq!(gate.wire_point(1), 1);
assert_eq!(gate.wires_value(0), vec![2, 3, 4, 5]);
assert_eq!(gate.wires_value(1), vec![6, 7, 8, 9]);
assert_eq!(gate.wires_interpolated_point(), vec![10, 11, 12, 13]);
assert_eq!(gate.wires_interpolated_value(), vec![14, 15, 16, 17]);
assert_eq!(gate.wires_coeff(0), vec![18, 19, 20, 21]);
assert_eq!(gate.wires_coeff(1), vec![22, 23, 24, 25]);
}
}

View File

@ -4,4 +4,5 @@ pub(crate) mod fri_consistency_gate;
pub(crate) mod gate;
pub mod gmimc;
pub(crate) mod gmimc_eval;
mod interpolation_quartic;
pub(crate) mod noop;