u32 division (#517)

* First draft for division.

* `eval_division` work

* Division

* Minor: outdated fixme

* Tests and better column names

* Minor lints

* Remove redundant constraint

* Make division proof more formal

* Minor proof and comments

Co-authored-by: Hamish Ivey-Law <hamish@ivey-law.name>
This commit is contained in:
Jakub Nabaglo 2022-03-23 10:41:36 -07:00 committed by GitHub
parent 2cedd1b02a
commit 06fef55bfb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 317 additions and 9 deletions

View File

@ -0,0 +1,93 @@
Constraints A (implemented in code):
A1. dividend ∈ {0, …, u32::MAX}
A2. divisor ∈ {0, …, u32::MAX}
A3. quotient ∈ {0, …, u32::MAX}
A4. remainder ∈ {0, …, u32::MAX}
A5. divisor_rem_diff_m1 ∈ {0, …, u32::MAX}
A6. divisor * div_inverse = div_div_inverse
A7. (div_div_inverse - 1) * (remainder - quotient - u32::MAX) = 0
A8. divisor * (div_div_inverse - 1) = 0
A9. div_inverse * dividend = quotient + remainder * div_inverse
A10. divisor * (divisor - remainder - 1 - divisor_rem_diff_m1) = 0
Constraints B (intuitive division):
B1. dividend ∈ {0, …, u32::MAX}
B2. divisor ∈ {0, …, u32::MAX}
B3. divisor = 0 => quotient = 0
B4. divisor = 0 => remainder = u32::MAX
B5. divisor ≠ 0 => dividend = quotient * divisor + remainder
B6. divisor ≠ 0 => quotient ∈ {0, …, u32::MAX}
B7. divisor ≠ 0 => remainder ∈ {0, …, divisor - 1}
Assume we meet constraints A for some dividend, divisor, quotient, remainder, divisor_rem_diff_m1, div_inverse, and div_div_inverse. We want to show that constrants B are met.
B1. Trivial by A1.
B2. Trivial by A2.
B3. Assume divisor = 0. Then div_div_inverse = 0 by A6. div_div_inverse - 1 ≠ 0, so remainder - quotient = u32::MAX by A7.
quotient ∈ {0, …, u32::MAX} by A3 and remainder ∈ {0, …, u32::MAX} by A4. Then remainder - quotient ∈ {-quotient, …, u32::MAX - quotient}.
If quotient ≠ 0, then quotient ∈ {1, …, u32::MAX} and remainder - quotient ∈ {-u32::MAX, …, u32::MAX - 1}, which does not include u32::MAX, contradicting A7.
B4. Assume divisor = 0. Then div_div_inverse = 0 by A6. div_div_inverse - 1 ≠ 0, so remainder - quotient = u32::MAX by A7.
quotient ∈ {0, …, u32::MAX} by A3 and remainder ∈ {0, …, u32::MAX} by A4. Then remainder - quotient ∈ {remainder - u32::MAX, …, remainder}.
If remainder ≠ u32::MAX, then remainder ∈ {0, …, u32::MAX - 1} and remainder - quotient ∈ {-u32::MAX, …, u32::MAX - 1} which does not include u32::MAX, contradicting A7.
B5. Assume divisor ≠ 0. By A8, div_div_inverse = 1. By A6, div_inverse = divisor^-1. Multiplying both sides of A9 by divisor, dividend = quotient * divisor + remainder.
B6. Follows from A3.
B7. remainder ∈ {0, …, u32::MAX} by A4. Assume divisor ≠ 0. Then divisor_rem_diff_m1 = divisor - remainder - 1 by A10. divisor ∈ {1, …, u32::MAX} by A2. If remainder ∈ {divisor, …, u32::MAX}, then divisor - remainder - 1 ∈ {-u32::MAX, …, u32::MAX - divisor} ⊆ {-u32::MAX, …, u32::MAX - 1}, contradicting A5. Hence, remainder ∈ {0, …, divisor - 1}.
Assume we meet constraints B for some dividend, divisor, quotient, and remainder. We want to show
that there exist divisor_rem_diff_m1, div_inverse, div_div_inverse, such that constrants A are met.
If divisor = 0, set divisor_rem_diff_m1 = 0, div_inverse = 0, div_div_inverse = 0.
Otherwise, set divisor_rem_diff_m1 = divisor - remainder - 1, div_inverse = divisor^-1, div_div_inverse = 1.
A1. Trivial by B1.
A2. Trivial by B2.
The remainder is by cases:
(divisor = 0)
A3. Follows from B3.
A4. Follows from B4.
A5. Follows from our choice of divisor_rem_diff_m1 = 0.
A6. Follows from our choice of div_div_inverse = 0.
A7. quotient = 0 by B3. remainder = u32::MAX by B4. Then remainder - quotient = u32::MAX.
A8. Trivial since divisor = 0.
A9. By our choice, div_inverse = 0. quotient = 0 by B3.
A10. Trivial since divisor = 0.
(divisor ≠ 0)
A3. Follows from B6.
A4. By B7, remainder ∈ {0, …, divisor - 1}, and by B2, divisor ∈ {0, …, u32::MAX}, implying that remainder ∈ {0, …, u32::MAX - 1}.
A5. We've set divisor_rem_diff_m1 = divisor - remainder - 1. remainder ∈ {0, …, divisor - 1}, so divisor - remainder ∈ {1, …, divisor} and divisor - remainder - 1 = divisor_rem_diff_m1 ∈ {0, …, divisor - 1}. From B2, divisor ∈ {0, …, u32::MAX}, so divisor_rem_diff_m1 ∈ {0, …, u32::MAX - 1} as desired.
A6. div_inverse = divisor^-1 by choice, so divisor * div_inverse = 1. div_div_inverse = 1 by choice.
A7. div_div_inverse = 1 by choice, so div_div_inverse - 1 = 0.
A8. div_div_inverse = 1 by choice, so div_div_inverse - 1 = 0.
A9. From B5, dividend = quotient * divisor + remainder. Since divisor ≠ 0, div_inverse = divisor^-1 by choice. Multiplying both sides by div_inverse, dividend * div_inverse = quotient * divisor * div_inverse + remainder * div_inverse = quotient + remainder * div_inverse.
A10. By our choice of divisor_rem_diff_m1 = divisor - remainder - 1.

View File

@ -9,23 +9,215 @@ use starky::constraint_consumer::{ConstraintConsumer, RecursiveConstraintConsume
use crate::registers::alu::*;
use crate::registers::NUM_COLUMNS;
/// Division instruction of a u32 divisor N into a u32 dividend D,
/// with u32 quotient Q and u32 remainder R. If D is not zero, then
/// the values will satisfy N = Q*D + R with 0 <= R < D. If D is
/// zero, then the remainder is set to the special value u32::MAX =
/// 2^32 - 1 (which is not a valid remainder for any nonzero D) and
/// the quotient is set to zero. In particular, no overflow is
/// possible.
pub(crate) fn generate_division<F: PrimeField64>(values: &mut [F; NUM_COLUMNS]) {
// TODO
let dividend = values[COL_DIV_INPUT_DIVIDEND].to_canonical_u64() as u32;
let divisor = values[COL_DIV_INPUT_DIVISOR].to_canonical_u64() as u32;
// `COL_DIV_INVDIVISOR` is `divisor^-1` if `divisor != 0` and `0` otherwise.
// `COL_DIV_NONZERO_DIVISOR` is `1` if `divisor != 0` and `0` otherwise.
// `COL_DIV_RANGE_CHECKED_TMP` is set to `divisor - rem - 1` if `divisor != 0` and `0`
// otherwise. This is used to ensure that `rem < divisor` when `divisor != 0`.
if divisor == 0 {
// Outputs
values[COL_DIV_OUTPUT_QUOT_0] = F::ZERO;
values[COL_DIV_OUTPUT_QUOT_1] = F::ZERO;
values[COL_DIV_OUTPUT_REM_0] = F::from_canonical_u16(u16::MAX);
values[COL_DIV_OUTPUT_REM_1] = F::from_canonical_u16(u16::MAX);
// Temporaries
values[COL_DIV_RANGE_CHECKED_TMP_0] = F::ZERO;
values[COL_DIV_RANGE_CHECKED_TMP_1] = F::ZERO;
values[COL_DIV_INVDIVISOR] = F::ZERO;
values[COL_DIV_NONZERO_DIVISOR] = F::ZERO;
} else {
let quo = dividend / divisor;
let rem = dividend % divisor;
let div_rem_diff_m1 = divisor - rem - 1;
// Outputs
values[COL_DIV_OUTPUT_QUOT_0] = F::from_canonical_u16(quo as u16);
values[COL_DIV_OUTPUT_QUOT_1] = F::from_canonical_u16((quo >> 16) as u16);
values[COL_DIV_OUTPUT_REM_0] = F::from_canonical_u16(rem as u16);
values[COL_DIV_OUTPUT_REM_1] = F::from_canonical_u16((rem >> 16) as u16);
// Temporaries
values[COL_DIV_RANGE_CHECKED_TMP_0] = F::from_canonical_u16(div_rem_diff_m1 as u16);
values[COL_DIV_RANGE_CHECKED_TMP_1] = F::from_canonical_u16((div_rem_diff_m1 >> 16) as u16);
values[COL_DIV_INVDIVISOR] = F::from_canonical_u32(divisor).inverse();
values[COL_DIV_NONZERO_DIVISOR] = F::ONE;
}
}
pub(crate) fn eval_division<F: Field, P: PackedField<Scalar = F>>(
local_values: &[P; NUM_COLUMNS],
lv: &[P; NUM_COLUMNS],
yield_constr: &mut ConstraintConsumer<P>,
) {
let is_div = local_values[IS_DIV];
// TODO
let base = F::from_canonical_u64(1 << 16);
let u32_max = P::from(F::from_canonical_u32(u32::MAX));
// Filter
let is_div = lv[IS_DIV];
// Inputs
let dividend = lv[COL_DIV_INPUT_DIVIDEND];
let divisor = lv[COL_DIV_INPUT_DIVISOR];
// Outputs
let quotient = lv[COL_DIV_OUTPUT_QUOT_0] + lv[COL_DIV_OUTPUT_QUOT_1] * base;
let remainder = lv[COL_DIV_OUTPUT_REM_0] + lv[COL_DIV_OUTPUT_REM_1] * base;
// Temporaries
let divinv = lv[COL_DIV_INVDIVISOR];
let div_divinv = lv[COL_DIV_NONZERO_DIVISOR];
let div_rem_diff_m1 = lv[COL_DIV_RANGE_CHECKED_TMP_0] + lv[COL_DIV_RANGE_CHECKED_TMP_1] * base;
// Constraints
yield_constr.constraint(is_div * (divisor * divinv - div_divinv));
yield_constr.constraint(is_div * (div_divinv - F::ONE) * (remainder - quotient - u32_max));
yield_constr.constraint(is_div * divisor * (div_divinv - F::ONE));
yield_constr.constraint(is_div * (quotient + remainder * divinv - divinv * dividend));
yield_constr.constraint(is_div * divisor * (divisor - remainder - F::ONE - div_rem_diff_m1));
}
pub(crate) fn eval_division_recursively<F: RichField + Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
local_values: &[ExtensionTarget<D>; NUM_COLUMNS],
lv: &[ExtensionTarget<D>; NUM_COLUMNS],
yield_constr: &mut RecursiveConstraintConsumer<F, D>,
) {
let is_div = local_values[IS_DIV];
// TODO
let base = builder.constant_extension(F::Extension::from_canonical_u64(1 << 16));
let u32_max = builder.constant_extension(F::Extension::from_canonical_u32(u32::MAX));
let one = builder.constant_extension(F::Extension::ONE);
// Filter
let is_div = lv[IS_DIV];
// Inputs
let dividend = lv[COL_DIV_INPUT_DIVIDEND];
let divisor = lv[COL_DIV_INPUT_DIVISOR];
// Outputs
let quotient =
builder.mul_add_extension(lv[COL_DIV_OUTPUT_QUOT_1], base, lv[COL_DIV_OUTPUT_QUOT_0]);
let remainder =
builder.mul_add_extension(lv[COL_DIV_OUTPUT_REM_1], base, lv[COL_DIV_OUTPUT_REM_0]);
// Temporaries
let divinv = lv[COL_DIV_INVDIVISOR];
let div_divinv = lv[COL_DIV_NONZERO_DIVISOR];
let div_rem_diff_m1 = builder.mul_add_extension(
lv[COL_DIV_RANGE_CHECKED_TMP_1],
base,
lv[COL_DIV_RANGE_CHECKED_TMP_0],
);
// Constraints
let constr6 = builder.mul_sub_extension(divisor, divinv, div_divinv);
let constr7 = {
let t = builder.sub_extension(div_divinv, one);
let u = builder.sub_extension(remainder, quotient);
let v = builder.sub_extension(u, u32_max);
builder.mul_extension(t, v)
};
let constr8 = {
let t = builder.sub_extension(div_divinv, one);
builder.mul_extension(divisor, t)
};
let constr9 = {
let t = builder.sub_extension(remainder, dividend);
builder.mul_add_extension(t, divinv, quotient)
};
let constr10 = {
let t = builder.sub_extension(divisor, remainder);
let u = builder.add_extension(one, div_rem_diff_m1);
let v = builder.sub_extension(t, u);
builder.mul_extension(divisor, v)
};
let constr6 = builder.mul_extension(is_div, constr6);
let constr7 = builder.mul_extension(is_div, constr7);
let constr8 = builder.mul_extension(is_div, constr8);
let constr9 = builder.mul_extension(is_div, constr9);
let constr10 = builder.mul_extension(is_div, constr10);
yield_constr.constraint(builder, constr6);
yield_constr.constraint(builder, constr7);
yield_constr.constraint(builder, constr8);
yield_constr.constraint(builder, constr9);
yield_constr.constraint(builder, constr10);
}
#[cfg(test)]
mod tests {
use plonky2::field::field_types::Field;
use plonky2::field::goldilocks_field::GoldilocksField;
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use starky::constraint_consumer::ConstraintConsumer;
use super::*;
use crate::registers::NUM_COLUMNS;
#[test]
fn generate_eval_consistency_not_div() {
const D: usize = 1;
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut values = [F::default(); NUM_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// if `IS_DIV == 0`, then the constraints should be met even if all values are garbage.
values[IS_DIV] = F::ZERO;
let mut constrant_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_division(&values, &mut constrant_consumer);
for &acc in &constrant_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
#[test]
fn generate_eval_consistency_div() {
const D: usize = 1;
type F = GoldilocksField;
let mut rng = ChaCha8Rng::seed_from_u64(0x6feb51b7ec230f25);
let mut values = [F::default(); NUM_COLUMNS].map(|_| F::rand_from_rng(&mut rng));
// set `IS_DIV == 1` and ensure all constraints are satisfied.
values[IS_DIV] = F::ONE;
// set `DIVIDEND` and `DIVISOR` to `u32`s
values[COL_DIV_INPUT_DIVIDEND] = F::from_canonical_u32(rng.gen::<u32>());
values[COL_DIV_INPUT_DIVISOR] = F::from_canonical_u32(rng.gen::<u32>());
generate_division(&mut values);
let mut constrant_consumer = ConstraintConsumer::new(
vec![GoldilocksField(2), GoldilocksField(3), GoldilocksField(5)],
GoldilocksField::ONE,
GoldilocksField::ONE,
GoldilocksField::ONE,
);
eval_division(&values, &mut constrant_consumer);
for &acc in &constrant_consumer.constraint_accs {
assert_eq!(acc, GoldilocksField::ZERO);
}
}
// TODO: test eval_division_recursively.
}

View File

@ -66,4 +66,27 @@ pub(crate) const COL_MUL_ADD_OUTPUT_2: usize = super::range_check_16::col_rc_16_
/// The fourth 16-bit chunk of the output, based on little-endian ordering.
pub(crate) const COL_MUL_ADD_OUTPUT_3: usize = super::range_check_16::col_rc_16_input(3);
pub(super) const END: usize = super::START_ALU + NUM_SHARED_COLS;
/// Dividend for division, as an unsigned u32
pub(crate) const COL_DIV_INPUT_DIVIDEND: usize = shared_col(0);
/// Divisor for division, as an unsigned u32
pub(crate) const COL_DIV_INPUT_DIVISOR: usize = shared_col(1);
/// Inverse of divisor, if one exists, and 0 otherwise
pub(crate) const COL_DIV_INVDIVISOR: usize = shared_col(2);
/// 1 if divisor is nonzero and 0 otherwise
pub(crate) const COL_DIV_NONZERO_DIVISOR: usize = shared_col(3);
/// The first 16-bit chunk of the quotient, based on little-endian ordering.
pub(crate) const COL_DIV_OUTPUT_QUOT_0: usize = super::range_check_16::col_rc_16_input(0);
/// The second 16-bit chunk of the quotient, based on little-endian ordering.
pub(crate) const COL_DIV_OUTPUT_QUOT_1: usize = super::range_check_16::col_rc_16_input(1);
/// The first 16-bit chunk of the remainder, based on little-endian ordering.
pub(crate) const COL_DIV_OUTPUT_REM_0: usize = super::range_check_16::col_rc_16_input(2);
/// The second 16-bit chunk of the remainder, based on little-endian ordering.
pub(crate) const COL_DIV_OUTPUT_REM_1: usize = super::range_check_16::col_rc_16_input(3);
/// The first 16-bit chunk of a temporary value (divisor - remainder - 1).
pub(crate) const COL_DIV_RANGE_CHECKED_TMP_0: usize = super::range_check_16::col_rc_16_input(4);
/// The second 16-bit chunk of a temporary value (divisor - remainder - 1).
pub(crate) const COL_DIV_RANGE_CHECKED_TMP_1: usize = super::range_check_16::col_rc_16_input(5);
pub(super) const END: usize = START_SHARED_COLS + NUM_SHARED_COLS;

View File

@ -1,6 +1,6 @@
//! Range check unit which checks that values are in `[0, 2^16)`.
pub(crate) const NUM_RANGE_CHECKS: usize = 5;
pub(super) const NUM_RANGE_CHECKS: usize = 6;
/// The input of the `i`th range check, i.e. the value being range checked.
pub(crate) const fn col_rc_16_input(i: usize) -> usize {