mirror of
https://github.com/logos-storage/plonky2.git
synced 2026-01-03 06:13:07 +00:00
Barycentric formula
This commit is contained in:
parent
035d15bc3d
commit
06bb902f23
@ -3,7 +3,7 @@ use crate::field::field::Field;
|
||||
use crate::polynomial::polynomial::{PolynomialCoeffs, PolynomialValues};
|
||||
use crate::util::log2_ceil;
|
||||
|
||||
/// Computes the interpolant of an arbitrary list of (point, value) pairs.
|
||||
/// Computes the unique degree < n interpolant of an arbitrary list of n (point, value) pairs.
|
||||
///
|
||||
/// Note that the implementation assumes that `F` is two-adic, in particular that
|
||||
/// `2^{F::TWO_ADICITY} >= points.len()`. This leads to a simple FFT-based implementation.
|
||||
@ -14,9 +14,10 @@ pub(crate) fn interpolant<F: Field>(points: &[(F, F)]) -> PolynomialCoeffs<F> {
|
||||
|
||||
let g = F::primitive_root_of_unity(n_log);
|
||||
let subgroup = F::cyclic_subgroup_known_order(g, n_padded);
|
||||
let barycentric_weights = barycentric_weights(points);
|
||||
let subgroup_evals = subgroup
|
||||
.into_iter()
|
||||
.map(|x| interpolate(points, x))
|
||||
.map(|x| interpolate(points, x, &barycentric_weights))
|
||||
.collect();
|
||||
|
||||
let mut coeffs = ifft(PolynomialValues {
|
||||
@ -28,35 +29,39 @@ pub(crate) fn interpolant<F: Field>(points: &[(F, F)]) -> PolynomialCoeffs<F> {
|
||||
|
||||
/// Interpolate the polynomial defined by an arbitrary set of (point, value) pairs at the given
|
||||
/// point `x`.
|
||||
fn interpolate<F: Field>(points: &[(F, F)], x: F) -> F {
|
||||
(0..points.len())
|
||||
.map(|i| {
|
||||
let y_i = points[i].1;
|
||||
let l_i_x = eval_basis(points, i, x);
|
||||
y_i * l_i_x
|
||||
})
|
||||
.sum()
|
||||
}
|
||||
|
||||
/// Evaluate the `i`th Lagrange basis, i.e. the one that vanishes except on the `i`th point.
|
||||
fn eval_basis<F: Field>(points: &[(F, F)], i: usize, x: F) -> F {
|
||||
let n = points.len();
|
||||
let x_i = points[i].0;
|
||||
let mut numerator = F::ONE;
|
||||
let mut denominator_parts = Vec::with_capacity(n - 1);
|
||||
|
||||
for j in 0..n {
|
||||
if i != j {
|
||||
let x_j = points[j].0;
|
||||
numerator *= x - x_j;
|
||||
denominator_parts.push(x_i - x_j);
|
||||
fn interpolate<F: Field>(points: &[(F, F)], x: F, barycentric_weights: &[F]) -> F {
|
||||
// If x is in the list of points, the Lagrange formula would divide by zero.
|
||||
for &(x_i, y_i) in points {
|
||||
if x_i == x {
|
||||
return y_i;
|
||||
}
|
||||
}
|
||||
|
||||
let denominator_inv = F::batch_multiplicative_inverse(&denominator_parts)
|
||||
.into_iter()
|
||||
.product();
|
||||
numerator * denominator_inv
|
||||
let l_x: F = points.iter().map(|&(x_i, y_i)| x - x_i).product();
|
||||
|
||||
let sum = (0..points.len())
|
||||
.map(|i| {
|
||||
let x_i = points[i].0;
|
||||
let y_i = points[i].1;
|
||||
let w_i = barycentric_weights[i];
|
||||
w_i / (x - x_i) * y_i
|
||||
})
|
||||
.sum();
|
||||
|
||||
l_x * sum
|
||||
}
|
||||
|
||||
fn barycentric_weights<F: Field>(points: &[(F, F)]) -> Vec<F> {
|
||||
let n = points.len();
|
||||
(0..n)
|
||||
.map(|i| {
|
||||
(0..n)
|
||||
.filter(|&j| j != i)
|
||||
.map(|j| points[i].0 - points[j].0)
|
||||
.product::<F>()
|
||||
.inverse()
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@ -80,6 +85,22 @@ mod tests {
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn interpolant_random_roots_of_unity() {
|
||||
type F = CrandallField;
|
||||
|
||||
for deg_log in 0..4 {
|
||||
let deg = 1 << deg_log;
|
||||
let g = F::primitive_root_of_unity(deg_log);
|
||||
let domain = F::cyclic_subgroup_known_order(g, deg);
|
||||
let coeffs = (0..deg).map(|_| F::rand()).collect();
|
||||
let coeffs = PolynomialCoeffs { coeffs };
|
||||
|
||||
let points = eval_naive(&coeffs, &domain);
|
||||
assert_eq!(interpolant(&points), coeffs);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn interpolant_random_overspecified() {
|
||||
type F = CrandallField;
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user