Merge branch 'main' into expmod_precompile

This commit is contained in:
Nicholas Ward 2023-04-28 11:39:39 -07:00
commit 031fe6ed90
35 changed files with 824 additions and 227 deletions

View File

@ -76,14 +76,15 @@ pub(crate) fn combined_kernel() -> Kernel {
include_str!("asm/curve/wnaf.asm"),
include_str!("asm/exp.asm"),
include_str!("asm/halt.asm"),
include_str!("asm/hash/blake2b/addresses.asm"),
include_str!("asm/hash/blake2b/compression.asm"),
include_str!("asm/hash/blake2b/g_functions.asm"),
include_str!("asm/hash/blake2b/hash.asm"),
include_str!("asm/hash/blake2b/iv.asm"),
include_str!("asm/hash/blake2b/main.asm"),
include_str!("asm/hash/blake2b/ops.asm"),
include_str!("asm/hash/blake2b/permutations.asm"),
include_str!("asm/hash/blake2/addresses.asm"),
include_str!("asm/hash/blake2/blake2_f.asm"),
// include_str!("asm/hash/blake2/blake2b.asm"),
// include_str!("asm/hash/blake2/compression.asm"),
include_str!("asm/hash/blake2/g_functions.asm"),
include_str!("asm/hash/blake2/hash.asm"),
include_str!("asm/hash/blake2/iv.asm"),
include_str!("asm/hash/blake2/ops.asm"),
include_str!("asm/hash/blake2/permutations.asm"),
include_str!("asm/hash/ripemd/box.asm"),
include_str!("asm/hash/ripemd/compression.asm"),
include_str!("asm/hash/ripemd/constants.asm"),

View File

@ -54,49 +54,55 @@ insert_accessed_addresses_found:
%macro insert_accessed_storage_keys
%stack (addr, key) -> (addr, key, %%after)
%stack (addr, key, value) -> (addr, key, value, %%after)
%jump(insert_accessed_storage_keys)
%%after:
// stack: cold_access
%endmacro
/// Inserts the storage key into the access list if it is not already present.
/// Return 1 if the storage key was inserted, 0 if it was already present.
/// Inserts the storage key and value into the access list if it is not already present.
/// `value` should be the current storage value at the slot `(addr, key)`.
/// Return `1, original_value` if the storage key was inserted, `0, original_value` if it was already present.
global insert_accessed_storage_keys:
// stack: addr, key, retdest
// stack: addr, key, value, retdest
%mload_global_metadata(@GLOBAL_METADATA_ACCESSED_STORAGE_KEYS_LEN)
// stack: len, addr, key, retdest
// stack: len, addr, key, value, retdest
PUSH 0
insert_accessed_storage_keys_loop:
%stack (i, len, addr, key, retdest) -> (i, len, i, len, addr, key, retdest)
%stack (i, len, addr, key, value, retdest) -> (i, len, i, len, addr, key, value, retdest)
EQ %jumpi(insert_storage_key)
// stack: i, len, addr, key, retdest
// stack: i, len, addr, key, value, retdest
DUP1 %increment %mload_kernel(@SEGMENT_ACCESSED_STORAGE_KEYS)
// stack: loaded_key, i, len, addr, key, retdest
// stack: loaded_key, i, len, addr, key, value, retdest
DUP2 %mload_kernel(@SEGMENT_ACCESSED_STORAGE_KEYS)
// stack: loaded_addr, loaded_key, i, len, addr, key, retdest
// stack: loaded_addr, loaded_key, i, len, addr, key, value, retdest
DUP5 EQ
// stack: loaded_addr==addr, loaded_key, i, len, addr, key, retdest
// stack: loaded_addr==addr, loaded_key, i, len, addr, key, value, retdest
SWAP1 DUP6 EQ
// stack: loaded_key==key, loaded_addr==addr, i, len, addr, key, retdest
// stack: loaded_key==key, loaded_addr==addr, i, len, addr, key, value, retdest
MUL // AND
%jumpi(insert_accessed_storage_keys_found)
// stack: i, len, addr, key, retdest
%add_const(2)
// stack: i, len, addr, key, value, retdest
%add_const(3)
%jump(insert_accessed_storage_keys_loop)
insert_storage_key:
// stack: i, len, addr, key, retdest
// stack: i, len, addr, key, value, retdest
DUP1 %increment
%stack (i_plus_1, i, len, addr, key, retdest) -> (i, addr, i_plus_1, key, i_plus_1, retdest)
DUP1 %increment
%stack (i_plus_2, i_plus_1, i, len, addr, key, value) -> (i, addr, i_plus_1, key, i_plus_2, value, i_plus_2, value)
%mstore_kernel(@SEGMENT_ACCESSED_STORAGE_KEYS) // Store new address at the end of the array.
%mstore_kernel(@SEGMENT_ACCESSED_STORAGE_KEYS) // Store new key after that
// stack: i_plus_1, retdest
%mstore_kernel(@SEGMENT_ACCESSED_STORAGE_KEYS) // Store new value after that
// stack: i_plus_2, value, retdest
%increment
%mstore_global_metadata(@GLOBAL_METADATA_ACCESSED_STORAGE_KEYS_LEN) // Store new length in front of the array.
PUSH 1 // Return 1 to indicate that the storage key was inserted.
SWAP1 JUMP
%mstore_global_metadata(@GLOBAL_METADATA_ACCESSED_STORAGE_KEYS_LEN) // Store new length.
%stack (value, retdest) -> (retdest, 1, value) // Return 1 to indicate that the storage key was inserted.
JUMP
insert_accessed_storage_keys_found:
%stack (i, len, addr, key, retdest) -> (retdest, 0) // Return 0 to indicate that the storage key was already present.
// stack: i, len, addr, key, value, retdest
%add_const(2)
%mload_kernel(@SEGMENT_ACCESSED_STORAGE_KEYS)
%stack (original_value, len, addr, key, value, retdest) -> (retdest, 0, original_value) // Return 0 to indicate that the storage key was already present.
JUMP

View File

@ -1,3 +1,136 @@
global precompile_blake2_f:
// TODO
PANIC
// stack: retdest, new_ctx, (old stack)
POP
// stack: new_ctx, (old stack)
DUP1
SET_CONTEXT
// stack: (empty)
PUSH 0x100000000 // = 2^32 (is_kernel = true)
// stack: kexit_info
PUSH blake2_f_contd
// stack: blake2_f_contd, kexit_info
// Load inputs from calldata memory into stack.
%calldatasize
// stack: calldatasize, blake2_f_contd, kexit_info
DUP1
// stack: calldatasize, calldatasize, blake2_f_contd, kexit_info
%eq_const(213) ISZERO %jumpi(fault_exception)
// stack: calldatasize, blake2_f_contd, kexit_info
%decrement
// stack: flag_addr=212, blake2_f_contd, kexit_info
DUP1
// stack: flag_addr, flag_addr, blake2_f_contd, kexit_info
PUSH @SEGMENT_CALLDATA
GET_CONTEXT
// stack: ctx, @SEGMENT_CALLDATA, flag_addr, flag_addr, blake2_f_contd, kexit_info
MLOAD_GENERAL
// stack: flag, flag_addr, blake2_f_contd, kexit_info
DUP1
// stack: flag, flag, flag_addr, blake2_f_contd, kexit_info
%gt_const(1) %jumpi(fault_exception) // Check flag < 2 (flag = 0 or flag = 1)
// stack: flag, flag_addr, blake2_f_contd, kexit_info
SWAP1
// stack: flag_addr, flag, blake2_f_contd, kexit_info
%sub_const(8)
// stack: t1_addr=flag_addr-8, flag, blake2_f_contd, kexit_info
%stack (t1_addr) -> (@SEGMENT_CALLDATA, t1_addr, 8, t1_addr)
// stack: @SEGMENT_CALLDATA, t1_addr, 8, t1_addr, flag, blake2_f_contd, kexit_info
GET_CONTEXT
// stack: ctx, @SEGMENT_CALLDATA, t1_addr, 8, t1_addr, flag, blake2_f_contd, kexit_info
%mload_packing
// stack: t_1, t1_addr, flag, blake2_f_contd, kexit_info
SWAP1
// stack: t1_addr, t_1, flag, blake2_f_contd, kexit_info
%sub_const(8)
// stack: t0_addr=t1_addr-8, t_1, flag, blake2_f_contd, kexit_info
%stack (t0_addr) -> (@SEGMENT_CALLDATA, t0_addr, 8, t0_addr)
// stack: @SEGMENT_CALLDATA, t0_addr, 8, t0_addr, t_1, flag, blake2_f_contd, kexit_info
GET_CONTEXT
// stack: ctx, @SEGMENT_CALLDATA, t0_addr, 8, t0_addr, t_1, flag, blake2_f_contd, kexit_info
%mload_packing
// stack: t_0, t0_addr, t_1, flag, blake2_f_contd, kexit_info
SWAP1
// stack: t0_addr, t_0, t_1, flag, blake2_f_contd, kexit_info
%sub_const(128) // 16 * 8
// stack: m0_addr=t0_addr-128, t_0, t_1, flag, blake2_f_contd, kexit_info
%rep 16
// stack: 68 + 8 * i, m_(i-1), ..., m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
PUSH 8
// stack: 8, 68 + 8 * i, m_(i-1), ..., m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
DUP2
// stack: 68 + 8 * i, 8, 68 + 8 * i, m_(i-1), ..., m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
PUSH @SEGMENT_CALLDATA
// stack: @SEGMENT_CALLDATA, 68 + 8 * i, 8, 68 + 8 * i, m_(i-1), ..., m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
GET_CONTEXT
// stack: ctx, @SEGMENT_CALLDATA, 68 + 8 * i, 8, 68 + 8 * i, m_(i-1), ..., m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
%mload_packing
// stack: m_i, 68 + 8 * i, m_(i-1), ..., m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
SWAP1
// stack: 68 + 8 * i, m_i, m_(i-1), ..., m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
%add_const(8)
%endrep
// stack: 68 + 8 * 16 = 196, m_15, ..., m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
%sub_const(192) // 16 * 8 (m values) + 8 * 8 (h values)
// stack: h0_addr, m_15, ..., m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
%rep 8
// stack: 4 + 8 * i, h_(i-1), ..., h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
PUSH 8
// stack: 8, 4 + 8 * i, h_(i-1), ..., h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
DUP2
// stack: 4 + 8 * i, 8, 4 + 8 * i, h_(i-1), ..., h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
PUSH @SEGMENT_CALLDATA
// stack: @SEGMENT_CALLDATA, 4 + 8 * i, 8, 4 + 8 * i, h_(i-1), ..., h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
GET_CONTEXT
// stack: ctx, @SEGMENT_CALLDATA, 4 + 8 * i, 8, 4 + 8 * i, h_(i-1), ..., h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
%mload_packing
// stack: h_i, 4 + 8 * i, h_(i-1), ..., h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
SWAP1
// stack: 4 + 8 * i, h_i, h_(i-1), ..., h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
%add_const(8)
%endrep
// stack: 4 + 8 * 8 = 68, h_7, ..., h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
POP
%stack () -> (@SEGMENT_CALLDATA, 0, 4)
GET_CONTEXT
// stack: ctx, @SEGMENT_CALLDATA, 0, 4, h_7..h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
%mload_packing
// stack: rounds, h_7..h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
DUP1
// stack: rounds, rounds, h_7..h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
%charge_gas
// stack: rounds, h_7..h_0, m_15..m_0, t_0, t_1, flag, blake2_f_contd, kexit_info
%jump(blake2_f)
blake2_f_contd:
// stack: h_0', h_1', h_2', h_3', h_4', h_5', h_6', h_7', kexit_info
// Store the result hash to the parent's return data using `mstore_unpacking`.
%mstore_parent_context_metadata(@CTX_METADATA_RETURNDATA_SIZE, 32)
PUSH 0
// stack: addr_0=0, h_0', h_1', h_2', h_3', h_4', h_5', h_6', h_7', kexit_info
%mload_context_metadata(@CTX_METADATA_PARENT_CONTEXT)
// stack: parent_ctx, addr_0=0, h_0', h_1', h_2', h_3', h_4', h_5', h_6', h_7', kexit_info
%rep 8
// stack: parent_ctx, addr_i, h_i', ..., h_7', kexit_info
%stack (ctx, addr, h_i) -> (ctx, @SEGMENT_RETURNDATA, addr, h_i, 4, addr, ctx)
// stack: parent_ctx, @SEGMENT_RETURNDATA, addr_i, h_i', 4, addr_i, parent_ctx, h_(i+1)', ..., h_7', kexit_info
%mstore_unpacking
// stack: addr_i, parent_ctx, h_(i+1)', ..., h_7', kexit_info
%add_const(4)
// stack: addr_(i+1), parent_ctx, h_(i+1)', ..., h_7', kexit_info
SWAP1
// stack: parent_ctx, addr_(i+1), h_(i+1)', ..., h_7', kexit_info
%endrep
// stack: kexit_info
%jump(pop_and_return_success)

View File

@ -35,9 +35,7 @@ global pop_and_return_success:
// stack: retdest
%mload_txn_field(@TXN_FIELD_TO)
// stack: addr, retdest
DUP1 %ge_const(@ECREC) DUP2 %le_const(@BLAKE2_F)
// stack: addr<=9, addr>=1, addr, retdest
MUL // Cheaper than AND
DUP1 %is_precompile
%jumpi(handle_precompiles_from_eoa)
// stack: addr, retdest
POP

View File

@ -23,6 +23,7 @@ global precompile_sha256:
// Copy the call data to the kernel general segment (sha2 expects it there) and call sha2.
%calldatasize
GET_CONTEXT
// stack: ctx, size
// The next block of code is equivalent to the following %stack macro call
// (unfortunately the macro call takes too long to expand dynamically).

View File

@ -28,11 +28,24 @@
// stack: to == 0
%endmacro
%macro is_precompile
// stack: addr
DUP1 %ge_const(@ECREC) SWAP1 %le_const(@BLAKE2_F)
// stack: addr>=1, addr<=9
MUL // Cheaper than AND
%endmacro
// Returns 1 if the account is non-existent, 0 otherwise.
%macro is_non_existent
// stack: addr
%mpt_read_state_trie
ISZERO
DUP1
// stack: addr, addr
%mpt_read_state_trie ISZERO
SWAP1
// stack: addr, zero_state_trie
%is_precompile ISZERO
// stack: not_precompile, zero_state_trie
MUL // Cheaper than AND
%endmacro
// Returns 1 if the account is empty, 0 otherwise.
@ -65,5 +78,5 @@
// stack: addr
DUP1 %is_non_existent
SWAP1 %is_empty
ADD // OR
OR
%endmacro

View File

@ -1,5 +1,5 @@
// Address where the working version of the hash value is stored.
%macro blake2b_hash_value_addr
%macro blake2_hash_value_addr
PUSH 0
// stack: 0
%mload_kernel_general
@ -10,14 +10,14 @@
%endmacro
// Address where the working version of the compression internal state is stored.
%macro blake2b_internal_state_addr
%blake2b_hash_value_addr
%macro blake2_internal_state_addr
%blake2_hash_value_addr
%add_const(8)
%endmacro
// Address where the current message block is stored.
%macro blake2b_message_addr
%blake2b_internal_state_addr
%macro blake2_message_addr
%blake2_internal_state_addr
%add_const(16)
%endmacro

View File

@ -0,0 +1,143 @@
global blake2_f:
// stack: rounds, h0...h7, m0...m15, t0, t1, flag, retdest
// Store the hash values.
%blake2_hash_value_addr
// stack: addr, rounds, h0...h7, m0...m15, t0, t1, flag, retdest
%rep 8
// stack: addr, rounds, h_i, ...
%stack (addr, rounds, h_i) -> (addr, h_i, addr, rounds)
// stack: addr, h_i, addr, rounds, ...
%mstore_kernel_general
%increment
%endrep
// stack: addr, rounds, m0...m15, t0, t1, flag, retdest
POP
// stack: rounds, m0...m15, t0, t1, flag, retdest
// Save the message to the message working space.
%blake2_message_addr
// stack: message_addr, rounds, m0...m15, t0, t1, flag, retdest
%rep 16
// stack: message_addr, rounds, m_i, ...
%stack (message_addr, rounds, m_i) -> (message_addr, m_i, message_addr, rounds)
// stack: message_addr, m_i, message_addr, rounds, ...
%mstore_kernel_general
%increment
%endrep
// stack: message_addr, rounds, t0, t1, flag, retdest
POP
// stack: rounds, t0, t1, flag, retdest
%blake2_hash_value_addr
%add_const(7)
%rep 8
// stack: addr, ...
DUP1
// stack: addr, addr, ...
%mload_kernel_general
// stack: val, addr, ...
SWAP1
// stack: addr, val, ...
%decrement
%endrep
// stack: addr, h_0, ..., h_7, rounds, t0, t1, flag, retdest
POP
// stack: h_0, ..., h_7, rounds, t0, t1, flag, retdest
// Store the initial 16 values of the internal state.
%blake2_internal_state_addr
// stack: start, h_0, ..., h_7, rounds, t0, t1, flag, retdest
// First eight words of the internal state: current hash value h_0, ..., h_7.
%rep 8
SWAP1
DUP2
%mstore_kernel_general
%increment
%endrep
// stack: start + 8, rounds, t0, t1, flag, retdest
// Next four values of the internal state: first four IV values.
PUSH 0
// stack: 0, start + 8, rounds, t0, t1, flag, retdest
%rep 4
// stack: i, loc, ...
DUP1
// stack: i, i, loc, ...
%blake2_iv
// stack: IV_i, i, loc, ...
DUP3
// stack: loc, IV_i, i, loc, ...
%mstore_kernel_general
// stack: i, loc, ...
%increment
SWAP1
%increment
SWAP1
// stack: i + 1, loc + 1,...
%endrep
// stack: 4, start + 12, rounds, t0, t1, flag, retdest
POP
// stack: start + 12, rounds, t0, t1, flag, retdest
SWAP4
// stack: flag, rounds, t0, t1, start + 12, retdest
%mul_const(0xFFFFFFFFFFFFFFFF)
// stack: invert_if_flag, rounds, t0, t1, start + 12, retdest
%stack (inv, r, t0, t1, s) -> (4, s, t0, t1, inv, 0, r)
// stack: 4, start + 12, t0, t1, invert_if_flag, 0, rounds, retdest
// Last four values of the internal state: last four IV values, XOR'd with
// the values (t0, t1, invert_if_flag, 0).
%rep 4
// stack: i, loc, val, next_val,...
DUP1
// stack: i, i, loc, val, next_val,...
%blake2_iv
// stack: IV_i, i, loc, val, next_val,...
DUP4
// stack: val, IV_i, i, loc, val, next_val,...
XOR
// stack: val ^ IV_i, i, loc, val, next_val,...
DUP3
// stack: loc, val ^ IV_i, i, loc, val, next_val,...
%mstore_kernel_general
// stack: i, loc, val, next_val,...
%increment
// stack: i + 1, loc, val, next_val,...
SWAP2
// stack: val, loc, i + 1, next_val,...
POP
// stack: loc, i + 1, next_val,...
%increment
// stack: loc + 1, i + 1, next_val,...
SWAP1
// stack: i + 1, loc + 1, next_val,...
%endrep
// stack: 8, start + 16, rounds, retdest
%pop2
// stack: rounds, retdest
// Run rounds of G functions.
PUSH g_functions_return
// stack: g_functions_return, rounds, retdest
SWAP1
// stack: rounds, g_functions_return, retdest
%blake2_internal_state_addr
// stack: start, rounds, g_functions_return, retdest
PUSH 0
// stack: current_round=0, start, rounds, g_functions_return, retdest
%jump(run_rounds_g_function)
g_functions_return:
// Finalize hash value.
// stack: retdest
PUSH hash_generate_return
// stack: hash_generate_return, retdest
%jump(blake2_generate_all_hash_values)
hash_generate_return:
// stack: h_0', h_1', h_2', h_3', h_4', h_5', h_6', h_7', retdest
%stack (h: 8, retdest) -> (retdest, h)
// stack: retdest, h_0', h_1', h_2', h_3', h_4', h_5', h_6', h_7'
JUMP

View File

@ -11,4 +11,4 @@ global blake2b:
%add_const(1)
%mstore_kernel_general
// stack: retdest
%jump(blake2b_compression)
%jump(blake2_compression)

View File

@ -1,15 +1,15 @@
global blake2b_compression:
global blake2_compression:
// stack: retdest
PUSH 0
// stack: cur_block = 0, retdest
PUSH compression_loop
// stack: compression_loop, cur_block, retdest
%jump(blake2b_initial_hash_value)
%jump(blake2_initial_hash_value)
compression_loop:
// stack: h_0, ..., h_7, cur_block, retdest
// Store the hash values.
%blake2b_hash_value_addr
%blake2_hash_value_addr
// stack: addr, h_0, ..., h_7, cur_block, retdest
%rep 8
SWAP1
@ -63,7 +63,7 @@ compression_loop:
// stack: cur_block_start_byte, t, cur_block, is_last_block, retdest
// Copy the message from the input space to the message working space.
%blake2b_message_addr
%blake2_message_addr
// stack: message_addr, cur_block_start_byte, t, cur_block, is_last_block, retdest
%rep 16
// stack: cur_message_addr, cur_block_byte, ...
@ -93,7 +93,7 @@ compression_loop:
// stack: is_last_block, t, cur_block, retdest
%mul_const(0xFFFFFFFFFFFFFFFF)
// stack: invert_if_last_block, t, cur_block, retdest
%blake2b_hash_value_addr
%blake2_hash_value_addr
%add_const(7)
%rep 8
// stack: addr, ...
@ -110,7 +110,7 @@ compression_loop:
// stack: h_0, ..., h_7, invert_if_last_block, t, cur_block, retdest
// Store the initial 16 values of the internal state.
%blake2b_internal_state_addr
%blake2_internal_state_addr
// stack: start, h_0, ..., h_7, invert_if_last_block, t, cur_block, retdest
// First eight words of the internal state: current hash value h_0, ..., h_7.
@ -129,7 +129,7 @@ compression_loop:
// stack: i, loc, ...
DUP1
// stack: i, i, loc, ...
%blake2b_iv
%blake2_iv
// stack: IV_i, i, loc, ...
DUP3
// stack: loc, IV_i, i, loc, ...
@ -159,7 +159,7 @@ compression_loop:
// stack: i, loc, val, next_val,...
DUP1
// stack: i, i, loc, val, next_val,...
%blake2b_iv
%blake2_iv
// stack: IV_i, i, loc, val, next_val,...
DUP4
// stack: val, IV_i, i, loc, val, next_val,...
@ -187,15 +187,18 @@ compression_loop:
// Run 12 rounds of G functions.
PUSH g_functions_return
// stack: g_functions_return, cur_block, retdest
%blake2b_internal_state_addr
// stack: start, g_functions_return, cur_block, retdest
%jump(run_12_rounds_g_function)
PUSH 12
%blake2_internal_state_addr
// stack: start, 12, g_functions_return, cur_block, retdest
PUSH 0
// stack: current_round=0, start, 12, g_functions_return, cur_block, retdest
%jump(run_rounds_g_function)
g_functions_return:
// Finalize hash value.
// stack: cur_block, retdest
PUSH hash_generate_return
// stack: hash_generate_return, cur_block, retdest
%jump(blake2b_generate_all_hash_values)
%jump(blake2_generate_all_hash_values)
hash_generate_return:
// stack: h_0', h_1', h_2', h_3', h_4', h_5', h_6', h_7', cur_block, retdest
DUP9

View File

@ -1,4 +1,4 @@
%macro blake2b_g_function
%macro blake2_g_function
// Function to mix two input words, x and y, into the four words indexed by a, b, c, d (which
// are in the range 0..16) in the internal state.
// The internal state is stored in memory starting at the address start.
@ -104,23 +104,23 @@
%mstore_kernel_general
%endmacro
%macro call_blake2b_g_function(a, b, c, d, x_idx, y_idx)
%macro call_blake2_g_function(a, b, c, d, x_idx, y_idx)
// stack: round, start
PUSH $y_idx
DUP2
// stack: round, y_idx, round, start
%blake2b_permutation
%blake2_permutation
// stack: s[y_idx], round, start
%blake2b_message_addr
%blake2_message_addr
ADD
%mload_kernel_general
// stack: m[s[y_idx]], round, start
PUSH $x_idx
DUP3
// stack: round, 2, m[s[y_idx]], round, start
%blake2b_permutation
%blake2_permutation
// stack: s[x_idx], m[s[y_idx]], round, start
%blake2b_message_addr
%blake2_message_addr
ADD
%mload_kernel_general
// stack: m[s[x_idx]], m[s[y_idx]], round, start
@ -131,48 +131,45 @@
PUSH $b
PUSH $a
// stack: a, b, c, d, m[s[x_idx]], m[s[y_idx]], start, round, start
%blake2b_g_function
%blake2_g_function
// stack: round, start
%endmacro
run_g_function_round:
// stack: round, start, retdest
%call_blake2b_g_function(0, 4, 8, 12, 0, 1)
%call_blake2b_g_function(1, 5, 9, 13, 2, 3)
%call_blake2b_g_function(2, 6, 10, 14, 4, 5)
%call_blake2b_g_function(3, 7, 11, 15, 6, 7)
%call_blake2b_g_function(0, 5, 10, 15, 8, 9)
%call_blake2b_g_function(1, 6, 11, 12, 10, 11)
%call_blake2b_g_function(2, 7, 8, 13, 12, 13)
%call_blake2b_g_function(3, 4, 9, 14, 14, 15)
%call_blake2_g_function(0, 4, 8, 12, 0, 1)
%call_blake2_g_function(1, 5, 9, 13, 2, 3)
%call_blake2_g_function(2, 6, 10, 14, 4, 5)
%call_blake2_g_function(3, 7, 11, 15, 6, 7)
%call_blake2_g_function(0, 5, 10, 15, 8, 9)
%call_blake2_g_function(1, 6, 11, 12, 10, 11)
%call_blake2_g_function(2, 7, 8, 13, 12, 13)
%call_blake2_g_function(3, 4, 9, 14, 14, 15)
%stack (r, s, ret) -> (ret, r, s)
// stack: retdest, round, start
JUMP
global run_12_rounds_g_function:
// stack: start, retdest
PUSH 0
// stack: round=0, start, retdest
run_next_round_g_function:
// stack: round, start, retdest
PUSH run_next_round_g_function_return
// stack: run_next_round_g_function_return, round, start, retdest
SWAP2
// stack: start, round, run_next_round_g_function_return, retdest
SWAP1
// stack: round, start, run_next_round_g_function_return, retdest
global run_rounds_g_function:
// stack: current_round, start, rounds, retdest
DUP3
// stack: rounds, current_round, start, rounds, retdest
DUP2
// stack: current_round, rounds, current_round, start, rounds, retdest
EQ
%jumpi(run_rounds_g_function_end)
// stack: current_round, start, rounds, retdest
PUSH run_rounds_g_function_return
// stack: run_rounds_g_function_return, current_round, start, rounds, retdest
%stack (ret, r, s) -> (r, s, ret)
// stack: current_round, start, run_rounds_g_function_return, rounds, retdest
%jump(run_g_function_round)
run_next_round_g_function_return:
// stack: round, start, retdest
run_rounds_g_function_return:
// stack: round, start, rounds, retdest
%increment
// stack: round+1, start, retdest
DUP1
// stack: round+1, round+1, start, retdest
%lt_const(12)
// stack: round+1 < 12, round+1, start, retdest
%jumpi(run_next_round_g_function)
// stack: round+1, start, retdest
%pop2
// stack: round + 1, start, rounds, retdest
%jump(run_rounds_g_function)
run_rounds_g_function_end:
// stack: current_round, start, rounds, retdest
%pop3
// stack: retdest
JUMP

View File

@ -1,18 +1,19 @@
blake2b_generate_new_hash_value:
// Generate a new hash value from the previous hash value and two elements of the internal state.
blake2_generate_new_hash_value:
// stack: i, retdest
%blake2b_hash_value_addr
%blake2_hash_value_addr
// stack: addr, i, retdest
DUP2
ADD
%mload_kernel_general
// stack: h_i, i, retdest
%blake2b_internal_state_addr
%blake2_internal_state_addr
// stack: addr, h_i, i, retdest
DUP3
ADD
%mload_kernel_general
// stack: v_i, h_i, i, retdest
%blake2b_internal_state_addr
%blake2_internal_state_addr
// stack: addr, v_i, h_i, i, retdest
SWAP1
// stack: v_i, addr, h_i, i, retdest
@ -28,26 +29,26 @@ blake2b_generate_new_hash_value:
SWAP1
JUMP
global blake2b_generate_all_hash_values:
global blake2_generate_all_hash_values:
// stack: retdest
PUSH 8
// stack: i=8, retdest
blake2b_generate_hash_loop:
blake2_generate_hash_loop:
// stack: i, h_i', ..., h_7', retdest
%decrement
// stack: i-1, h_i', ..., h_7', retdest
PUSH blake2b_generate_hash_return
// stack: blake2b_generate_hash_return, i-1, h_i', ..., h_7', retdest
PUSH blake2_generate_hash_return
// stack: blake2_generate_hash_return, i-1, h_i', ..., h_7', retdest
DUP2
// stack: i-1, blake2b_generate_hash_return, i-1, h_i', ..., h_7', retdest
%jump(blake2b_generate_new_hash_value)
blake2b_generate_hash_return:
// stack: i-1, blake2_generate_hash_return, i-1, h_i', ..., h_7', retdest
%jump(blake2_generate_new_hash_value)
blake2_generate_hash_return:
// stack: h_(i-1)', i-1, h_i', ..., h_7', retdest
SWAP1
// stack: i-1, h_(i-1)', h_i', ..., h_7', retdest
DUP1
// stack: i-1, i-1, h_(i-1)', ..., h_7', retdest
%jumpi(blake2b_generate_hash_loop)
%jumpi(blake2_generate_hash_loop)
// stack: i-1=0, h_0', ..., h_7', retdest
%stack (i, h: 8, ret) -> (ret, h)
// stack: retdest, h_0'...h_7'

View File

@ -1,4 +1,4 @@
global blake2b_iv_const:
global blake2_iv_const:
// IV constants (big-endian)
// IV_0
@ -33,19 +33,19 @@ global blake2b_iv_const:
BYTES 91, 224, 205, 25
BYTES 19, 126, 33, 121
global blake2b_iv:
global blake2_iv:
// stack: i, retdest
PUSH blake2b_iv_const
// stack: blake2b_iv_const, i, retdest
PUSH blake2_iv_const
// stack: blake2_iv_const, i, retdest
SWAP1
// stack: i, blake2b_iv_const, retdest
// stack: i, blake2_iv_const, retdest
%mul_const(8)
ADD
// stack: blake2b_iv_const + 2 * i, retdest
// stack: blake2_iv_const + 2 * i, retdest
DUP1
// stack: blake2b_iv_const + 2 * i, blake2b_iv_const + 2 * i, retdest
// stack: blake2_iv_const + 2 * i, blake2_iv_const + 2 * i, retdest
%add_const(4)
// stack: blake2b_iv_const + 2 * i + 1, blake2b_iv_const + 2 * i, retdest
// stack: blake2_iv_const + 2 * i + 1, blake2_iv_const + 2 * i, retdest
%mload_kernel_code_u32
SWAP1
%mload_kernel_code_u32
@ -57,33 +57,33 @@ global blake2b_iv:
SWAP1
JUMP
%macro blake2b_iv
%macro blake2_iv
%stack (i) -> (i, %%after)
%jump(blake2b_iv)
%jump(blake2_iv)
%%after:
%endmacro
// Load the initial hash value (the IV, but with params XOR'd into the first word).
global blake2b_initial_hash_value:
global blake2_initial_hash_value:
// stack: retdest
PUSH 8
// stack: i=8, retdest
blake2b_initial_hash_loop:
blake2_initial_hash_loop:
// stack: i, IV_i, ..., IV_7, retdest
%decrement
// stack: i-1, IV_i, ..., IV_7, retdest
PUSH blake2b_initial_hash_return
// stack: blake2b_initial_hash_return, i-1, IV_i, ..., IV_7, retdest
PUSH blake2_initial_hash_return
// stack: blake2_initial_hash_return, i-1, IV_i, ..., IV_7, retdest
DUP2
// stack: i-1, blake2b_initial_hash_return, i-1, IV_i, ..., IV_7, retdest
%jump(blake2b_iv)
blake2b_initial_hash_return:
// stack: i-1, blake2_initial_hash_return, i-1, IV_i, ..., IV_7, retdest
%jump(blake2_iv)
blake2_initial_hash_return:
// stack: IV_(i-1), i-1, IV_i, ..., IV_7, retdest
SWAP1
// stack: i-1, IV_(i-1), IV_i, ..., IV_7, retdest
DUP1
// stack: i-1, i-1, IV_(i-1), ..., IV_7, retdest
%jumpi(blake2b_initial_hash_loop)
%jumpi(blake2_initial_hash_loop)
// stack: i-1=0, IV_0, ..., IV_7, retdest
POP
// stack: IV_0, ..., IV_7, retdest

View File

@ -58,7 +58,7 @@ global permutation_9_constants:
BYTES 15, 11, 9, 14
BYTES 3, 12, 13, 0
global blake2b_permutation:
global blake2_permutation:
// stack: i, round, retdest
PUSH permutation_0_constants
// stack: permutation_0_constants, i, round, retdest
@ -74,12 +74,12 @@ global blake2b_permutation:
SWAP1
JUMP
%macro blake2b_permutation
%macro blake2_permutation
// stack: round, i
PUSH %%after
// stack: %%after, round, i
SWAP2
// stack: i, round, %%after
%jump(blake2b_permutation)
%jump(blake2_permutation)
%%after:
%endmacro

View File

@ -93,4 +93,4 @@ mstore_unpacking_finish:
%stack (addr: 3, value, len) -> (addr, value, len, %%after)
%jump(mstore_unpacking)
%%after:
%endmacro
%endmacro

View File

@ -1,3 +1,34 @@
%macro sload_current
%stack (slot) -> (slot, %%after)
%jump(sload_current)
%%after:
%endmacro
global sload_current:
%stack (slot) -> (slot, after_storage_read)
%slot_to_storage_key
// stack: storage_key, after_storage_read
PUSH 64 // storage_key has 64 nibbles
%current_storage_trie
// stack: storage_root_ptr, 64, storage_key, after_storage_read
%jump(mpt_read)
global after_storage_read:
// stack: value_ptr, retdest
DUP1 %jumpi(storage_key_exists)
// Storage key not found. Return default value_ptr = 0,
// which derefs to 0 since @SEGMENT_TRIE_DATA[0] = 0.
%stack (value_ptr, retdest) -> (retdest, 0)
JUMP
global storage_key_exists:
// stack: value_ptr, retdest
%mload_trie_data
// stack: value, retdest
SWAP1
JUMP
// Read a word from the current account's storage trie.
//
// Pre stack: kexit_info, slot
@ -6,38 +37,20 @@
global sys_sload:
// stack: kexit_info, slot
SWAP1
// stack: slot, kexit_info
DUP1 %address
// stack: addr, slot, slot, kexit_info
%insert_accessed_storage_keys PUSH @GAS_COLDSLOAD_MINUS_WARMACCESS
MUL
PUSH @GAS_WARMACCESS
ADD
%stack (gas, slot, kexit_info) -> (gas, kexit_info, slot)
DUP1
// stack: slot, slot, kexit_info
%sload_current
%stack (value, slot, kexit_info) -> (slot, value, kexit_info, value)
%address
// stack: addr, slot, value, kexit_info, value
%insert_accessed_storage_keys
// stack: cold_access, old_value, kexit_info, value
SWAP1 POP
// stack: cold_access, kexit_info, value
%mul_const(@GAS_COLDSLOAD_MINUS_WARMACCESS)
%add_const(@GAS_WARMACCESS)
%charge_gas
// stack: kexit_info, slot
SWAP1
%stack (slot) -> (slot, after_storage_read)
%slot_to_storage_key
// stack: storage_key, after_storage_read, kexit_info
PUSH 64 // storage_key has 64 nibbles
%current_storage_trie
// stack: storage_root_ptr, 64, storage_key, after_storage_read, kexit_info
%jump(mpt_read)
after_storage_read:
// stack: value_ptr, kexit_info
DUP1 %jumpi(storage_key_exists)
// Storage key not found. Return default value_ptr = 0,
// which derefs to 0 since @SEGMENT_TRIE_DATA[0] = 0.
%stack (value_ptr, kexit_info) -> (kexit_info, 0)
// stack: kexit_info, value
EXIT_KERNEL
storage_key_exists:
// stack: value_ptr, kexit_info
%mload_trie_data
// stack: value, kexit_info
SWAP1
EXIT_KERNEL

View File

@ -6,14 +6,42 @@
global sys_sstore:
%check_static
%stack (kexit_info, slot, value) -> (slot, kexit_info, slot, value)
%address %insert_accessed_storage_keys POP // TODO: Use return value in gas calculation.
// TODO: Assuming a cold zero -> nonzero write for now.
PUSH @GAS_COLDSLOAD
PUSH @GAS_SSET
ADD
%sload_current
%address
%stack (addr, current_value, kexit_info, slot, value) -> (addr, slot, current_value, current_value, kexit_info, slot, value)
%insert_accessed_storage_keys
// stack: cold_access, original_value, current_value, kexit_info, slot, value
%mul_const(@GAS_COLDSLOAD)
// Check for warm access.
%stack (gas, original_value, current_value, kexit_info, slot, value) ->
(value, current_value, current_value, original_value, gas, original_value, current_value, kexit_info, slot, value)
EQ SWAP2 EQ ISZERO
// stack: current_value==original_value, value==current_value, gas, original_value, current_value, kexit_info, slot, value)
ADD // OR
%jumpi(sstore_warm)
// Check for sset (set a zero storage slot to a non-zero value).
// stack: gas, original_value, current_value, kexit_info, slot, value
DUP2 ISZERO %mul_const(@GAS_SSET) ADD
// Check for sreset (set a non-zero storage slot to a non-zero value).
// stack: gas, original_value, current_value, kexit_info, slot, value
DUP2 ISZERO ISZERO %mul_const(@GAS_SRESET) ADD
%jump(sstore_charge_gas)
sstore_warm:
// stack: gas, original_value, current_value, kexit_info, slot, value)
%add_const(@GAS_WARMACCESS)
sstore_charge_gas:
%stack (gas, original_value, current_value, kexit_info, slot, value) -> (gas, kexit_info, current_value, slot, value)
%charge_gas
%stack (kexit_info, slot, value) -> (slot, value, kexit_info)
// Check if `value` is equal to `current_value`, and if so exit the kernel early.
%stack (kexit_info, current_value, slot, value) -> (value, current_value, slot, value, kexit_info)
EQ %jumpi(sstore_noop)
// TODO: If value = 0, delete the key instead of inserting 0.
// stack: slot, value, kexit_info
@ -57,3 +85,8 @@ after_storage_insert:
after_state_insert:
// stack: kexit_info
EXIT_KERNEL
sstore_noop:
// stack: slot, value, kexit_info
%pop2
EXIT_KERNEL

View File

@ -229,7 +229,7 @@ const PRECOMPILES_GAS: [(&str, u16); 13] = [
("BN_MUL_GAS", 6_000),
("SNARKV_STATIC_GAS", 45_000),
("SNARKV_DYNAMIC_GAS", 34_000),
("BLAKE2_F_DYNAMIC_GAS", 1),
("BLAKE2_F__GAS", 1),
];
const CODE_SIZE_LIMIT: [(&str, u64); 3] = [

View File

@ -0,0 +1,132 @@
use anyhow::Result;
use crate::cpu::kernel::interpreter::{
run_interpreter_with_memory, InterpreterMemoryInitialization,
};
use crate::memory::segments::Segment::KernelGeneral;
fn reverse_bytes_u64(input: u64) -> u64 {
let mut result = 0;
for i in 0..8 {
result |= ((input >> (i * 8)) & 0xff) << ((7 - i) * 8);
}
result
}
fn convert_input(input: &str) -> Result<(u32, [u64; 8], [u64; 16], u64, u64, bool)> {
let rounds = u32::from_str_radix(&input[..8], 16).unwrap();
let mut h = [0u64; 8];
for i in 0..8 {
h[i] = reverse_bytes_u64(
u64::from_str_radix(&input[8 + i * 16..8 + (i + 1) * 16], 16).unwrap(),
);
}
let mut m = [0u64; 16];
for i in 0..16 {
m[i] = reverse_bytes_u64(
u64::from_str_radix(&input[136 + i * 16..136 + (i + 1) * 16], 16).unwrap(),
);
}
let t_0 = reverse_bytes_u64(u64::from_str_radix(&input[392..408], 16).unwrap());
let t_1 = reverse_bytes_u64(u64::from_str_radix(&input[408..424], 16).unwrap());
let flag = u8::from_str_radix(&input[424..426], 16).unwrap() != 0;
Ok((rounds, h, m, t_0, t_1, flag))
}
fn convert_output(output: [u64; 8]) -> String {
output
.iter()
.map(|&x| format!("{:016x}", reverse_bytes_u64(x)))
.collect::<Vec<_>>()
.join("")
}
fn run_blake2_f(
rounds: u32,
h: [u64; 8],
m: [u64; 16],
t_0: u64,
t_1: u64,
flag: bool,
) -> Result<[u64; 8]> {
let mut stack = vec![];
stack.push(rounds.into());
stack.append(&mut h.iter().map(|&x| x.into()).collect());
stack.append(&mut m.iter().map(|&x| x.into()).collect());
stack.push(t_0.into());
stack.push(t_1.into());
stack.push(u8::from(flag).into());
stack.push(0xDEADBEEFu32.into());
let interpreter_setup = InterpreterMemoryInitialization {
label: "blake2_f".to_string(),
stack,
segment: KernelGeneral,
memory: vec![],
};
let result = run_interpreter_with_memory(interpreter_setup).unwrap();
let mut hash = result.stack().to_vec();
hash.reverse();
Ok(hash
.iter()
.map(|&x| x.as_u64())
.collect::<Vec<_>>()
.try_into()
.unwrap())
}
// Test data from EIP-152.
fn test_blake2_f_eip(input: &str, output: &str) -> Result<()> {
let (rounds, h, m, t_0, t_1, flag) = convert_input(input).unwrap();
let result = run_blake2_f(rounds, h, m, t_0, t_1, flag).unwrap();
assert_eq!(convert_output(result), output);
Ok(())
}
#[test]
fn test_blake2_f_4() -> Result<()> {
test_blake2_f_eip(
"0000000048c9bdf267e6096a3ba7ca8485ae67bb2bf894fe72f36e3cf1361d5f3af54fa5d182e6ad7f520e511f6c3e2b8c68059b6bbd41fbabd9831f79217e1319cde05b61626300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000300000000000000000000000000000001",
"08c9bcf367e6096a3ba7ca8485ae67bb2bf894fe72f36e3cf1361d5f3af54fa5d282e6ad7f520e511f6c3e2b8c68059b9442be0454267ce079217e1319cde05b",
)
}
#[test]
fn test_blake2_f_5() -> Result<()> {
test_blake2_f_eip(
"0000000c48c9bdf267e6096a3ba7ca8485ae67bb2bf894fe72f36e3cf1361d5f3af54fa5d182e6ad7f520e511f6c3e2b8c68059b6bbd41fbabd9831f79217e1319cde05b61626300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000300000000000000000000000000000001",
"ba80a53f981c4d0d6a2797b69f12f6e94c212f14685ac4b74b12bb6fdbffa2d17d87c5392aab792dc252d5de4533cc9518d38aa8dbf1925ab92386edd4009923",
)
}
#[test]
fn test_blake2_f_6() -> Result<()> {
test_blake2_f_eip(
"0000000c48c9bdf267e6096a3ba7ca8485ae67bb2bf894fe72f36e3cf1361d5f3af54fa5d182e6ad7f520e511f6c3e2b8c68059b6bbd41fbabd9831f79217e1319cde05b61626300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000300000000000000000000000000000000",
"75ab69d3190a562c51aef8d88f1c2775876944407270c42c9844252c26d2875298743e7f6d5ea2f2d3e8d226039cd31b4e426ac4f2d3d666a610c2116fde4735",
)
}
#[test]
fn test_blake2_f_7() -> Result<()> {
test_blake2_f_eip(
"0000000148c9bdf267e6096a3ba7ca8485ae67bb2bf894fe72f36e3cf1361d5f3af54fa5d182e6ad7f520e511f6c3e2b8c68059b6bbd41fbabd9831f79217e1319cde05b61626300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000300000000000000000000000000000001",
"b63a380cb2897d521994a85234ee2c181b5f844d2c624c002677e9703449d2fba551b3a8333bcdf5f2f7e08993d53923de3d64fcc68c034e717b9293fed7a421",
)
}
#[ignore]
#[test]
fn test_blake2_f_8() -> Result<()> {
test_blake2_f_eip(
"ffffffff48c9bdf267e6096a3ba7ca8485ae67bb2bf894fe72f36e3cf1361d5f3af54fa5d182e6ad7f520e511f6c3e2b8c68059b6bbd41fbabd9831f79217e1319cde05b61626300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000300000000000000000000000000000001",
"fc59093aafa9ab43daae0e914c57635c5402d8e3d2130eb9b3cc181de7f0ecf9b22bf99a7815ce16419e200e01846e6b5df8cc7703041bbceb571de6631d2615",
)
}

View File

@ -99,12 +99,12 @@ fn test_insert_accessed_storage_keys() -> Result<()> {
let mut rng = thread_rng();
let n = rng.gen_range(1..10);
let storage_keys = (0..n)
.map(|_| (rng.gen::<Address>(), U256(rng.gen())))
.map(|_| (rng.gen::<Address>(), U256(rng.gen()), U256(rng.gen())))
.collect::<HashSet<_>>()
.into_iter()
.collect::<Vec<(Address, U256)>>();
.collect::<Vec<(Address, U256, U256)>>();
let storage_key_in_list = storage_keys[rng.gen_range(0..n)];
let storage_key_not_in_list = (rng.gen::<Address>(), U256(rng.gen()));
let storage_key_not_in_list = (rng.gen::<Address>(), U256(rng.gen()), U256(rng.gen()));
assert!(
!storage_keys.contains(&storage_key_not_in_list),
"Cosmic luck or bad RNG?"
@ -113,6 +113,7 @@ fn test_insert_accessed_storage_keys() -> Result<()> {
// Test for storage key already in list.
let initial_stack = vec![
retaddr,
storage_key_in_list.2,
storage_key_in_list.1,
U256::from(storage_key_in_list.0 .0.as_slice()),
];
@ -122,30 +123,35 @@ fn test_insert_accessed_storage_keys() -> Result<()> {
interpreter
.generation_state
.memory
.set(MemoryAddress::new(0, AccessedStorageKeys, 2 * i), addr);
.set(MemoryAddress::new(0, AccessedStorageKeys, 3 * i), addr);
interpreter.generation_state.memory.set(
MemoryAddress::new(0, AccessedStorageKeys, 2 * i + 1),
MemoryAddress::new(0, AccessedStorageKeys, 3 * i + 1),
storage_keys[i].1,
);
interpreter.generation_state.memory.set(
MemoryAddress::new(0, AccessedStorageKeys, 3 * i + 2),
storage_keys[i].2,
);
}
interpreter.generation_state.memory.set(
MemoryAddress::new(0, GlobalMetadata, AccessedStorageKeysLen as usize),
U256::from(2 * n),
U256::from(3 * n),
);
interpreter.run()?;
assert_eq!(interpreter.stack(), &[U256::zero()]);
assert_eq!(interpreter.stack(), &[storage_key_in_list.2, U256::zero()]);
assert_eq!(
interpreter.generation_state.memory.get(MemoryAddress::new(
0,
GlobalMetadata,
AccessedStorageKeysLen as usize
)),
U256::from(2 * n)
U256::from(3 * n)
);
// Test for storage key not in list.
let initial_stack = vec![
retaddr,
storage_key_not_in_list.2,
storage_key_not_in_list.1,
U256::from(storage_key_not_in_list.0 .0.as_slice()),
];
@ -155,41 +161,56 @@ fn test_insert_accessed_storage_keys() -> Result<()> {
interpreter
.generation_state
.memory
.set(MemoryAddress::new(0, AccessedStorageKeys, 2 * i), addr);
.set(MemoryAddress::new(0, AccessedStorageKeys, 3 * i), addr);
interpreter.generation_state.memory.set(
MemoryAddress::new(0, AccessedStorageKeys, 2 * i + 1),
MemoryAddress::new(0, AccessedStorageKeys, 3 * i + 1),
storage_keys[i].1,
);
interpreter.generation_state.memory.set(
MemoryAddress::new(0, AccessedStorageKeys, 3 * i + 2),
storage_keys[i].2,
);
}
interpreter.generation_state.memory.set(
MemoryAddress::new(0, GlobalMetadata, AccessedStorageKeysLen as usize),
U256::from(2 * n),
U256::from(3 * n),
);
interpreter.run()?;
assert_eq!(interpreter.stack(), &[U256::one()]);
assert_eq!(
interpreter.stack(),
&[storage_key_not_in_list.2, U256::one()]
);
assert_eq!(
interpreter.generation_state.memory.get(MemoryAddress::new(
0,
GlobalMetadata,
AccessedStorageKeysLen as usize
)),
U256::from(2 * (n + 1))
U256::from(3 * (n + 1))
);
assert_eq!(
interpreter
.generation_state
.memory
.get(MemoryAddress::new(0, AccessedStorageKeys, 2 * n,)),
.get(MemoryAddress::new(0, AccessedStorageKeys, 3 * n,)),
U256::from(storage_key_not_in_list.0 .0.as_slice())
);
assert_eq!(
interpreter.generation_state.memory.get(MemoryAddress::new(
0,
AccessedStorageKeys,
2 * n + 1,
3 * n + 1,
)),
storage_key_not_in_list.1
);
assert_eq!(
interpreter.generation_state.memory.get(MemoryAddress::new(
0,
AccessedStorageKeys,
3 * n + 2,
)),
storage_key_not_in_list.2
);
Ok(())
}

View File

@ -1,6 +1,6 @@
use anyhow::Result;
use blake2::Blake2b512;
use ethereum_types::{U256, U512};
// use blake2::Blake2b512;
use ethereum_types::U256;
use rand::{thread_rng, Rng};
use ripemd::{Digest, Ripemd160};
use sha2::Sha256;
@ -10,13 +10,6 @@ use crate::cpu::kernel::interpreter::{
};
use crate::memory::segments::Segment::KernelGeneral;
/// Standard Blake2b implementation.
fn blake2b(input: Vec<u8>) -> U512 {
let mut hasher = Blake2b512::new();
hasher.update(input);
U512::from(&hasher.finalize()[..])
}
/// Standard RipeMD implementation.
fn ripemd(input: Vec<u8>) -> U256 {
let mut hasher = Ripemd160::new();
@ -58,10 +51,6 @@ fn make_interpreter_setup(
}
}
fn combine_u256s(hi: U256, lo: U256) -> U512 {
U512::from(lo) + (U512::from(hi) << 256)
}
fn prepare_test<T>(
hash_fn_label: &str,
hash_input_virt: (usize, usize),
@ -99,28 +88,6 @@ fn test_hash_256(
Ok(())
}
fn test_hash_512(
hash_fn_label: &str,
hash_input_virt: (usize, usize),
standard_implementation: &dyn Fn(Vec<u8>) -> U512,
) -> Result<()> {
let (expected, result_stack) =
prepare_test(hash_fn_label, hash_input_virt, standard_implementation).unwrap();
// Extract the final output.
let actual = combine_u256s(result_stack[0], result_stack[1]);
// Check that the result is correct.
assert_eq!(expected, actual);
Ok(())
}
#[test]
fn test_blake2b() -> Result<()> {
test_hash_512("blake2b", (0, 2), &blake2b)
}
#[test]
fn test_ripemd() -> Result<()> {
test_hash_256("ripemd", (200, 200), &ripemd)
@ -130,3 +97,40 @@ fn test_ripemd() -> Result<()> {
fn test_sha2() -> Result<()> {
test_hash_256("sha2", (0, 1), &sha2)
}
// Since the Blake precompile requires only the blake2_f compression function instead of the full blake2b hash,
// the full hash function is not included in the kernel. To include it, blake2/compression.asm and blake2/main.asm
// must be added to the kernel.
// /// Standard Blake2b implementation.
// fn blake2b(input: Vec<u8>) -> U512 {
// let mut hasher = Blake2b512::new();
// hasher.update(input);
// U512::from(&hasher.finalize()[..])
// }
// fn combine_u256s(hi: U256, lo: U256) -> U512 {
// U512::from(lo) + (U512::from(hi) << 256)
// }
// fn test_hash_512(
// hash_fn_label: &str,
// hash_input_virt: (usize, usize),
// standard_implementation: &dyn Fn(Vec<u8>) -> U512,
// ) -> Result<()> {
// let (expected, result_stack) =
// prepare_test(hash_fn_label, hash_input_virt, standard_implementation).unwrap();
// // Extract the final output.
// let actual = combine_u256s(result_stack[0], result_stack[1]);
// // Check that the result is correct.
// assert_eq!(expected, actual);
// Ok(())
// }
// #[test]
// fn test_blake2b() -> Result<()> {
// test_hash_512("blake2b", (0, 2), &blake2b)
// }

View File

@ -1,6 +1,7 @@
mod account_code;
mod balance;
mod bignum;
mod blake2_f;
mod bls381;
mod bn254;
mod core;

View File

@ -31,6 +31,7 @@ plonky2_util = { version = "0.1.0", default-features = false }
rand = { version = "0.8.4", default-features = false }
rand_chacha = { version = "0.3.1", optional = true, default-features = false }
serde = { version = "1.0", default-features = false, features = ["derive"] }
serde_json = "1.0"
static_assertions = { version = "1.1.0", default-features = false }
unroll = { version = "0.1.5", default-features = false }

View File

@ -0,0 +1,79 @@
#![allow(clippy::upper_case_acronyms)]
use std::fs;
use anyhow::Result;
use plonky2::field::types::Field;
use plonky2::iop::witness::{PartialWitness, WitnessWrite};
use plonky2::plonk::circuit_builder::CircuitBuilder;
use plonky2::plonk::circuit_data::CircuitConfig;
use plonky2::plonk::config::{GenericConfig, PoseidonGoldilocksConfig};
/// An example of using Plonky2 to prove a statement of the form
/// "I know the 100th element of the Fibonacci sequence, starting with constants a and b."
/// When a == 0 and b == 1, this is proving knowledge of the 100th (standard) Fibonacci number.
/// This example also serializes the circuit data and proof to JSON files.
fn main() -> Result<()> {
const D: usize = 2;
type C = PoseidonGoldilocksConfig;
type F = <C as GenericConfig<D>>::F;
let config = CircuitConfig::standard_recursion_config();
let mut builder = CircuitBuilder::<F, D>::new(config);
// The arithmetic circuit.
let initial_a = builder.add_virtual_target();
let initial_b = builder.add_virtual_target();
let mut prev_target = initial_a;
let mut cur_target = initial_b;
for _ in 0..99 {
let temp = builder.add(prev_target, cur_target);
prev_target = cur_target;
cur_target = temp;
}
// Public inputs are the two initial values (provided below) and the result (which is generated).
builder.register_public_input(initial_a);
builder.register_public_input(initial_b);
builder.register_public_input(cur_target);
// Provide initial values.
let mut pw = PartialWitness::new();
pw.set_target(initial_a, F::ZERO);
pw.set_target(initial_b, F::ONE);
let data = builder.build::<C>();
let common_circuit_data_serialized = serde_json::to_string(&data.common).unwrap();
fs::write("common_circuit_data.json", common_circuit_data_serialized)
.expect("Unable to write file");
let verifier_only_circuit_data_serialized = serde_json::to_string(&data.verifier_only).unwrap();
fs::write(
"verifier_only_circuit_data.json",
verifier_only_circuit_data_serialized,
)
.expect("Unable to write file");
let proof = data.prove(pw)?;
let proof_serialized = serde_json::to_string(&proof).unwrap();
fs::write("proof_with_public_inputs.json", proof_serialized).expect("Unable to write file");
let proof_challenges = proof
.get_challenges(
proof.get_public_inputs_hash(),
&data.verifier_only.circuit_digest,
&data.common,
)
.unwrap();
let proof_challenges_serialized = serde_json::to_string(&proof_challenges).unwrap();
fs::write("proof_challenges.json", proof_challenges_serialized).expect("Unable to write file");
println!(
"100th Fibonacci number mod |F| (starting with {}, {}) is: {}",
proof.public_inputs[0], proof.public_inputs[1], proof.public_inputs[2]
);
data.verify(proof)
}

View File

@ -1,5 +1,7 @@
use alloc::vec::Vec;
use serde::Serialize;
use crate::fri::reduction_strategies::FriReductionStrategy;
mod challenges;
@ -13,7 +15,7 @@ mod validate_shape;
pub mod verifier;
pub mod witness_util;
#[derive(Debug, Clone, Eq, PartialEq)]
#[derive(Debug, Clone, Eq, PartialEq, Serialize)]
pub struct FriConfig {
/// `rate = 2^{-rate_bits}`.
pub rate_bits: usize,
@ -56,7 +58,7 @@ impl FriConfig {
/// FRI parameters, including generated parameters which are specific to an instance size, in
/// contrast to `FriConfig` which is user-specified and independent of instance size.
#[derive(Debug, Clone, Eq, PartialEq)]
#[derive(Debug, Clone, Eq, PartialEq, Serialize)]
pub struct FriParams {
/// User-specified FRI configuration.
pub config: FriConfig,

View File

@ -393,6 +393,7 @@ impl<F: RichField + Extendable<D>, HCO: HashConfig, H: Hasher<F, HCO>, const D:
}
}
#[derive(Serialize)]
pub struct FriChallenges<F: RichField + Extendable<D>, const D: usize> {
// Scaling factor to combine polynomials.
pub fri_alpha: F::Extension,

View File

@ -4,9 +4,10 @@ use alloc::vec::Vec;
use std::time::Instant;
use log::debug;
use serde::Serialize;
/// A method for deciding what arity to use at each reduction layer.
#[derive(Debug, Clone, Eq, PartialEq)]
#[derive(Debug, Clone, Eq, PartialEq, Serialize)]
pub enum FriReductionStrategy {
/// Specifies the exact sequence of arities (expressed in bits) to use.
Fixed(Vec<usize>),

View File

@ -2,6 +2,8 @@ use alloc::string::String;
use alloc::vec::Vec;
use alloc::{format, vec};
use serde::{Deserialize, Serialize};
use crate::field::extension::Extendable;
use crate::field::packed::PackedField;
use crate::gates::gate::Gate;
@ -18,7 +20,7 @@ use crate::plonk::vars::{
use crate::util::serialization::{Buffer, IoResult, Read, Write};
/// A gate which takes a single constant parameter and outputs that value.
#[derive(Copy, Clone, Debug)]
#[derive(Copy, Clone, Debug, Serialize, Deserialize)]
pub struct ConstantGate {
pub(crate) num_consts: usize,
}

View File

@ -8,6 +8,7 @@ use core::hash::{Hash, Hasher};
use core::ops::Range;
use hashbrown::HashMap;
use serde::{Serialize, Serializer};
use crate::field::batch_util::batch_multiply_inplace;
use crate::field::extension::{Extendable, FieldExtension};
@ -239,6 +240,12 @@ impl<F: RichField + Extendable<D>, const D: usize> Debug for GateRef<F, D> {
}
}
impl<F: RichField + Extendable<D>, const D: usize> Serialize for GateRef<F, D> {
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
serializer.serialize_str(&self.0.id())
}
}
/// Map between gate parameters and available slots.
/// An available slot is of the form `(row, op)`, meaning the current available slot
/// is at gate index `row` in the `op`-th operation.

View File

@ -2,6 +2,8 @@ use alloc::vec;
use alloc::vec::Vec;
use core::ops::Range;
use serde::Serialize;
use crate::field::extension::Extendable;
use crate::field::polynomial::PolynomialValues;
use crate::gates::gate::{GateInstance, GateRef};
@ -10,7 +12,7 @@ use crate::hash::hash_types::RichField;
/// Placeholder value to indicate that a gate doesn't use a selector polynomial.
pub(crate) const UNUSED_SELECTOR: usize = u32::MAX as usize;
#[derive(Debug, Clone, Eq, PartialEq)]
#[derive(Debug, Clone, Eq, PartialEq, Serialize)]
pub struct SelectorsInfo {
pub(crate) selector_indices: Vec<usize>,
pub(crate) groups: Vec<Range<usize>>,

View File

@ -4,6 +4,7 @@ use alloc::vec::Vec;
use core::ops::{Range, RangeFrom};
use anyhow::Result;
use serde::Serialize;
use crate::field::extension::Extendable;
use crate::field::fft::FftRootTable;
@ -35,7 +36,7 @@ use crate::util::serialization::{
};
use crate::util::timing::TimingTree;
#[derive(Clone, Debug, Eq, PartialEq)]
#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
pub struct CircuitConfig {
pub num_wires: usize,
pub num_routed_wires: usize,
@ -347,7 +348,7 @@ pub struct ProverOnlyCircuitData<
}
/// Circuit data required by the verifier, but not the prover.
#[derive(Debug, Clone, Eq, PartialEq)]
#[derive(Debug, Clone, Eq, PartialEq, Serialize)]
pub struct VerifierOnlyCircuitData<C: GenericConfig<D>, const D: usize> {
/// A commitment to each constant polynomial and each permutation polynomial.
pub constants_sigmas_cap: MerkleCap<C::F, C::HCO, C::Hasher>,
@ -370,7 +371,7 @@ impl<C: GenericConfig<D>, const D: usize> VerifierOnlyCircuitData<C, D> {
}
/// Circuit data required by both the prover and the verifier.
#[derive(Debug, Clone, Eq, PartialEq)]
#[derive(Debug, Clone, Eq, PartialEq, Serialize)]
pub struct CommonCircuitData<F: RichField + Extendable<D>, const D: usize> {
pub config: CircuitConfig,

View File

@ -117,7 +117,7 @@ impl HashConfig for PoseidonHashConfig {
const WIDTH: usize = 12;
}
/// Configuration using Poseidon over the Goldilocks field.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[derive(Debug, Copy, Clone, Eq, PartialEq, Serialize)]
pub struct PoseidonGoldilocksConfig;
impl GenericConfig<2> for PoseidonGoldilocksConfig {
type F = GoldilocksField;

View File

@ -94,7 +94,7 @@ impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize>
}
/// Computes all Fiat-Shamir challenges used in the Plonk proof.
pub(crate) fn get_challenges(
pub fn get_challenges(
&self,
public_inputs_hash: <<C as GenericConfig<D>>::InnerHasher as Hasher<F, C::HCI>>::Hash,
circuit_digest: &<<C as GenericConfig<D>>::Hasher as Hasher<C::F, C::HCO>>::Hash,

View File

@ -102,7 +102,7 @@ impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize>
})
}
pub(crate) fn get_public_inputs_hash(
pub fn get_public_inputs_hash(
&self,
) -> <<C as GenericConfig<D>>::InnerHasher as Hasher<F, C::HCI>>::Hash
where
@ -276,7 +276,8 @@ impl<F: RichField + Extendable<D>, C: GenericConfig<D, F = F>, const D: usize>
}
}
pub(crate) struct ProofChallenges<F: RichField + Extendable<D>, const D: usize> {
#[derive(Serialize)]
pub struct ProofChallenges<F: RichField + Extendable<D>, const D: usize> {
/// Random values used in Plonk's permutation argument.
pub plonk_betas: Vec<F>,