Merge pull request #309 from mir-protocol/use_quadratic_extension

Generalize `RandomAccessGate` to allow using quadratic field extensions
This commit is contained in:
wborgeaud 2021-10-18 22:00:04 +02:00 committed by GitHub
commit 019ccf537b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 290 additions and 220 deletions

View File

@ -59,9 +59,12 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Make sure we have enough wires and routed wires to do the FRI checks efficiently. This check
/// isn't required -- without it we'd get errors elsewhere in the stack -- but just gives more
/// helpful errors.
fn check_config(&self, arity: usize) {
let random_access = RandomAccessGate::<F, D>::new(arity);
let interpolation_gate = InterpolationGate::<F, D>::new(arity);
fn check_config(&self, max_fri_arity: usize) {
let random_access = RandomAccessGate::<F, D>::new_from_config(
&self.config,
max_fri_arity.max(1 << self.config.cap_height),
);
let interpolation_gate = InterpolationGate::<F, D>::new(max_fri_arity);
let min_wires = random_access
.num_wires()
@ -73,14 +76,14 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
assert!(
self.config.num_wires >= min_wires,
"To efficiently perform FRI checks with an arity of {}, at least {} wires are needed. Consider reducing arity.",
arity,
max_fri_arity,
min_wires
);
assert!(
self.config.num_routed_wires >= min_routed_wires,
"To efficiently perform FRI checks with an arity of {}, at least {} routed wires are needed. Consider reducing arity.",
arity,
max_fri_arity,
min_routed_wires
);
}
@ -372,12 +375,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let x_index_within_coset = self.le_sum(x_index_within_coset_bits.iter());
// Check consistency with our old evaluation from the previous round.
self.random_access_padded(
x_index_within_coset,
old_eval,
evals.clone(),
1 << config.cap_height,
);
self.random_access_extension(x_index_within_coset, old_eval, evals.clone());
// Infer P(y) from {P(x)}_{x^arity=y}.
old_eval = with_context!(

View File

@ -6,55 +6,79 @@ use crate::iop::target::Target;
use crate::plonk::circuit_builder::CircuitBuilder;
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Finds the last available random access gate with the given `vec_size` or add one if there aren't any.
/// Returns `(g,i)` such that there is a random access gate with the given `vec_size` at index
/// `g` and the gate's `i`-th random access is available.
fn find_random_access_gate(&mut self, vec_size: usize) -> (usize, usize) {
let (gate, i) = self
.free_random_access
.get(&vec_size)
.copied()
.unwrap_or_else(|| {
let gate = self.add_gate(
RandomAccessGate::new_from_config(&self.config, vec_size),
vec![],
);
(gate, 0)
});
// Update `free_random_access` with new values.
if i < RandomAccessGate::<F, D>::max_num_copies(
self.config.num_routed_wires,
self.config.num_wires,
vec_size,
) - 1
{
self.free_random_access.insert(vec_size, (gate, i + 1));
} else {
self.free_random_access.remove(&vec_size);
}
(gate, i)
}
/// Checks that a `Target` matches a vector at a non-deterministic index.
/// Note: `index` is not range-checked.
pub fn random_access(
/// Note: `access_index` is not range-checked.
pub fn random_access(&mut self, access_index: Target, claimed_element: Target, v: Vec<Target>) {
let vec_size = v.len();
debug_assert!(vec_size > 0);
if vec_size == 1 {
return self.connect(claimed_element, v[0]);
}
let (gate_index, copy) = self.find_random_access_gate(vec_size);
let dummy_gate = RandomAccessGate::<F, D>::new_from_config(&self.config, vec_size);
v.iter().enumerate().for_each(|(i, &val)| {
self.connect(
val,
Target::wire(gate_index, dummy_gate.wire_list_item(i, copy)),
);
});
self.connect(
access_index,
Target::wire(gate_index, dummy_gate.wire_access_index(copy)),
);
self.connect(
claimed_element,
Target::wire(gate_index, dummy_gate.wire_claimed_element(copy)),
);
}
/// Checks that an `ExtensionTarget` matches a vector at a non-deterministic index.
/// Note: `access_index` is not range-checked.
pub fn random_access_extension(
&mut self,
access_index: Target,
claimed_element: ExtensionTarget<D>,
v: Vec<ExtensionTarget<D>>,
) {
debug_assert!(!v.is_empty());
if v.len() == 1 {
return self.connect_extension(claimed_element, v[0]);
}
let gate = RandomAccessGate::new(v.len());
let gate_index = self.add_gate(gate.clone(), vec![]);
v.iter().enumerate().for_each(|(i, &val)| {
self.connect_extension(
val,
ExtensionTarget::from_range(gate_index, gate.wires_list_item(i)),
for i in 0..D {
self.random_access(
access_index,
claimed_element.0[i],
v.iter().map(|et| et.0[i]).collect(),
);
});
self.connect(
access_index,
Target::wire(gate_index, gate.wire_access_index()),
);
self.connect_extension(
claimed_element,
ExtensionTarget::from_range(gate_index, gate.wires_claimed_element()),
);
}
/// Like `random_access`, but first pads `v` to a given minimum length. This can help to avoid
/// having multiple `RandomAccessGate`s with different sizes.
pub fn random_access_padded(
&mut self,
access_index: Target,
claimed_element: ExtensionTarget<D>,
mut v: Vec<ExtensionTarget<D>>,
min_length: usize,
) {
debug_assert!(!v.is_empty());
if v.len() == 1 {
return self.connect_extension(claimed_element, v[0]);
}
let zero = self.zero_extension();
if v.len() < min_length {
v.resize(8, zero);
}
self.random_access(access_index, claimed_element, v);
}
}
@ -83,7 +107,7 @@ mod tests {
for i in 0..len {
let it = builder.constant(F::from_canonical_usize(i));
let elem = builder.constant_extension(vec[i]);
builder.random_access(it, elem, v.clone());
builder.random_access_extension(it, elem, v.clone());
}
let data = builder.build();

View File

@ -1,8 +1,7 @@
use std::marker::PhantomData;
use std::ops::Range;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::{Extendable, FieldExtension};
use crate::field::extension_field::Extendable;
use crate::field::field_types::{Field, RichField};
use crate::gates::gate::Gate;
use crate::iop::generator::{GeneratedValues, SimpleGenerator, WitnessGenerator};
@ -10,39 +9,57 @@ use crate::iop::target::Target;
use crate::iop::wire::Wire;
use crate::iop::witness::{PartitionWitness, Witness};
use crate::plonk::circuit_builder::CircuitBuilder;
use crate::plonk::circuit_data::CircuitConfig;
use crate::plonk::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
/// A gate for checking that a particular element of a list matches a given value.
#[derive(Clone, Debug)]
#[derive(Copy, Clone, Debug)]
pub(crate) struct RandomAccessGate<F: RichField + Extendable<D>, const D: usize> {
pub vec_size: usize,
pub num_copies: usize,
_phantom: PhantomData<F>,
}
impl<F: RichField + Extendable<D>, const D: usize> RandomAccessGate<F, D> {
pub fn new(vec_size: usize) -> Self {
pub fn new(num_copies: usize, vec_size: usize) -> Self {
Self {
vec_size,
num_copies,
_phantom: PhantomData,
}
}
pub fn wire_access_index(&self) -> usize {
0
pub fn new_from_config(config: &CircuitConfig, vec_size: usize) -> Self {
let num_copies = Self::max_num_copies(config.num_routed_wires, config.num_wires, vec_size);
Self::new(num_copies, vec_size)
}
pub fn wires_claimed_element(&self) -> Range<usize> {
1..D + 1
pub fn max_num_copies(num_routed_wires: usize, num_wires: usize, vec_size: usize) -> usize {
// Need `(2 + vec_size) * num_copies` routed wires
(num_routed_wires / (2 + vec_size)).min(
// Need `(2 + 3*vec_size) * num_copies` wires
num_wires / (2 + 3 * vec_size),
)
}
pub fn wires_list_item(&self, i: usize) -> Range<usize> {
pub fn wire_access_index(&self, copy: usize) -> usize {
debug_assert!(copy < self.num_copies);
(2 + self.vec_size) * copy
}
pub fn wire_claimed_element(&self, copy: usize) -> usize {
debug_assert!(copy < self.num_copies);
(2 + self.vec_size) * copy + 1
}
pub fn wire_list_item(&self, i: usize, copy: usize) -> usize {
debug_assert!(i < self.vec_size);
let start = (i + 1) * D + 1;
start..start + D
debug_assert!(copy < self.num_copies);
(2 + self.vec_size) * copy + 2 + i
}
fn start_of_intermediate_wires(&self) -> usize {
(self.vec_size + 1) * D + 1
(2 + self.vec_size) * self.num_copies
}
pub(crate) fn num_routed_wires(&self) -> usize {
@ -52,16 +69,21 @@ impl<F: RichField + Extendable<D>, const D: usize> RandomAccessGate<F, D> {
/// An intermediate wire for a dummy variable used to show equality.
/// The prover sets this to 1/(x-y) if x != y, or to an arbitrary value if
/// x == y.
pub fn wire_equality_dummy_for_index(&self, i: usize) -> usize {
pub fn wire_equality_dummy_for_index(&self, i: usize, copy: usize) -> usize {
debug_assert!(i < self.vec_size);
self.start_of_intermediate_wires() + i
debug_assert!(copy < self.num_copies);
self.start_of_intermediate_wires() + copy * self.vec_size + i
}
/// An intermediate wire for the "index_matches" variable (1 if the current index is the index at
/// which to compare, 0 otherwise).
pub fn wire_index_matches_for_index(&self, i: usize) -> usize {
pub fn wire_index_matches_for_index(&self, i: usize, copy: usize) -> usize {
debug_assert!(i < self.vec_size);
self.start_of_intermediate_wires() + self.vec_size + i
debug_assert!(copy < self.num_copies);
self.start_of_intermediate_wires()
+ self.vec_size * self.num_copies
+ self.vec_size * copy
+ i
}
}
@ -71,53 +93,54 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGa
}
fn eval_unfiltered(&self, vars: EvaluationVars<F, D>) -> Vec<F::Extension> {
let access_index = vars.local_wires[self.wire_access_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext_algebra(self.wires_list_item(i)))
.collect::<Vec<_>>();
let claimed_element = vars.get_local_ext_algebra(self.wires_claimed_element());
let mut constraints = Vec::with_capacity(self.num_constraints());
for i in 0..self.vec_size {
let cur_index = F::Extension::from_canonical_usize(i);
let difference = cur_index - access_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i)];
// The two index equality constraints.
constraints.push(difference * equality_dummy - (F::Extension::ONE - index_matches));
constraints.push(index_matches * difference);
// Value equality constraint.
constraints.extend(
((list_items[i] - claimed_element).scalar_mul(index_matches)).to_basefield_array(),
);
for copy in 0..self.num_copies {
let access_index = vars.local_wires[self.wire_access_index(copy)];
let list_items = (0..self.vec_size)
.map(|i| vars.local_wires[self.wire_list_item(i, copy)])
.collect::<Vec<_>>();
let claimed_element = vars.local_wires[self.wire_claimed_element(copy)];
for i in 0..self.vec_size {
let cur_index = F::Extension::from_canonical_usize(i);
let difference = cur_index - access_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i, copy)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i, copy)];
// The two index equality constraints.
constraints.push(difference * equality_dummy - (F::Extension::ONE - index_matches));
constraints.push(index_matches * difference);
// Value equality constraint.
constraints.push((list_items[i] - claimed_element) * index_matches);
}
}
constraints
}
fn eval_unfiltered_base(&self, vars: EvaluationVarsBase<F>) -> Vec<F> {
let access_index = vars.local_wires[self.wire_access_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext(self.wires_list_item(i)))
.collect::<Vec<_>>();
let claimed_element = vars.get_local_ext(self.wires_claimed_element());
let mut constraints = Vec::with_capacity(self.num_constraints());
for i in 0..self.vec_size {
let cur_index = F::from_canonical_usize(i);
let difference = cur_index - access_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i)];
// The two equality constraints.
constraints.push(difference * equality_dummy - (F::ONE - index_matches));
constraints.push(index_matches * difference);
for copy in 0..self.num_copies {
let access_index = vars.local_wires[self.wire_access_index(copy)];
let list_items = (0..self.vec_size)
.map(|i| vars.local_wires[self.wire_list_item(i, copy)])
.collect::<Vec<_>>();
let claimed_element = vars.local_wires[self.wire_claimed_element(copy)];
// Value equality constraint.
constraints.extend(
((list_items[i] - claimed_element).scalar_mul(index_matches)).to_basefield_array(),
);
for i in 0..self.vec_size {
let cur_index = F::from_canonical_usize(i);
let difference = cur_index - access_index;
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i, copy)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i, copy)];
// The two index equality constraints.
constraints.push(difference * equality_dummy - (F::ONE - index_matches));
constraints.push(index_matches * difference);
// Value equality constraint.
constraints.push((list_items[i] - claimed_element) * index_matches);
}
}
constraints
@ -128,35 +151,36 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGa
builder: &mut CircuitBuilder<F, D>,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let access_index = vars.local_wires[self.wire_access_index()];
let list_items = (0..self.vec_size)
.map(|i| vars.get_local_ext_algebra(self.wires_list_item(i)))
.collect::<Vec<_>>();
let claimed_element = vars.get_local_ext_algebra(self.wires_claimed_element());
let mut constraints = Vec::with_capacity(self.num_constraints());
for i in 0..self.vec_size {
let cur_index_ext = F::Extension::from_canonical_usize(i);
let cur_index = builder.constant_extension(cur_index_ext);
let difference = builder.sub_extension(cur_index, access_index);
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i)];
for copy in 0..self.num_copies {
let access_index = vars.local_wires[self.wire_access_index(copy)];
let list_items = (0..self.vec_size)
.map(|i| vars.local_wires[self.wire_list_item(i, copy)])
.collect::<Vec<_>>();
let claimed_element = vars.local_wires[self.wire_claimed_element(copy)];
// The two equality constraints.
let one = builder.one_extension();
let not_index_matches = builder.sub_extension(one, index_matches);
let first_equality_constraint =
builder.mul_sub_extension(difference, equality_dummy, not_index_matches);
constraints.push(first_equality_constraint);
for i in 0..self.vec_size {
let cur_index_ext = F::Extension::from_canonical_usize(i);
let cur_index = builder.constant_extension(cur_index_ext);
let difference = builder.sub_extension(cur_index, access_index);
let equality_dummy = vars.local_wires[self.wire_equality_dummy_for_index(i, copy)];
let index_matches = vars.local_wires[self.wire_index_matches_for_index(i, copy)];
let second_equality_constraint = builder.mul_extension(index_matches, difference);
constraints.push(second_equality_constraint);
let one = builder.one_extension();
let not_index_matches = builder.sub_extension(one, index_matches);
let first_equality_constraint =
builder.mul_sub_extension(difference, equality_dummy, not_index_matches);
constraints.push(first_equality_constraint);
// Output constraint.
let diff = builder.sub_ext_algebra(list_items[i], claimed_element);
let conditional_diff = builder.scalar_mul_ext_algebra(index_matches, diff);
constraints.extend(conditional_diff.to_ext_target_array());
let second_equality_constraint = builder.mul_extension(index_matches, difference);
constraints.push(second_equality_constraint);
// Output constraint.
let diff = builder.sub_extension(list_items[i], claimed_element);
let conditional_diff = builder.mul_extension(index_matches, diff);
constraints.push(conditional_diff);
}
}
constraints
@ -167,15 +191,23 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGa
gate_index: usize,
_local_constants: &[F],
) -> Vec<Box<dyn WitnessGenerator<F>>> {
let gen = RandomAccessGenerator::<F, D> {
gate_index,
gate: self.clone(),
};
vec![Box::new(gen.adapter())]
(0..self.num_copies)
.map(|copy| {
let g: Box<dyn WitnessGenerator<F>> = Box::new(
RandomAccessGenerator {
gate_index,
gate: *self,
copy,
}
.adapter(),
);
g
})
.collect::<Vec<_>>()
}
fn num_wires(&self) -> usize {
self.wire_index_matches_for_index(self.vec_size - 1) + 1
self.wire_index_matches_for_index(self.vec_size - 1, self.num_copies - 1) + 1
}
fn num_constants(&self) -> usize {
@ -187,7 +219,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGa
}
fn num_constraints(&self) -> usize {
self.vec_size * (2 + D)
3 * self.num_copies * self.vec_size
}
}
@ -195,6 +227,7 @@ impl<F: RichField + Extendable<D>, const D: usize> Gate<F, D> for RandomAccessGa
struct RandomAccessGenerator<F: RichField + Extendable<D>, const D: usize> {
gate_index: usize,
gate: RandomAccessGate<F, D>,
copy: usize,
}
impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
@ -203,13 +236,11 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
fn dependencies(&self) -> Vec<Target> {
let local_target = |input| Target::wire(self.gate_index, input);
let local_targets = |inputs: Range<usize>| inputs.map(local_target);
let mut deps = Vec::new();
deps.push(local_target(self.gate.wire_access_index()));
deps.extend(local_targets(self.gate.wires_claimed_element()));
deps.push(local_target(self.gate.wire_access_index(self.copy)));
deps.push(local_target(self.gate.wire_claimed_element(self.copy)));
for i in 0..self.gate.vec_size {
deps.extend(local_targets(self.gate.wires_list_item(i)));
deps.push(local_target(self.gate.wire_list_item(i, self.copy)));
}
deps
}
@ -224,7 +255,7 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
// Compute the new vector and the values for equality_dummy and index_matches
let vec_size = self.gate.vec_size;
let access_index_f = get_local_wire(self.gate.wire_access_index());
let access_index_f = get_local_wire(self.gate.wire_access_index(self.copy));
let access_index = access_index_f.to_canonical_u64() as usize;
debug_assert!(
@ -235,8 +266,10 @@ impl<F: RichField + Extendable<D>, const D: usize> SimpleGenerator<F>
);
for i in 0..vec_size {
let equality_dummy_wire = local_wire(self.gate.wire_equality_dummy_for_index(i));
let index_matches_wire = local_wire(self.gate.wire_index_matches_for_index(i));
let equality_dummy_wire =
local_wire(self.gate.wire_equality_dummy_for_index(i, self.copy));
let index_matches_wire =
local_wire(self.gate.wire_index_matches_for_index(i, self.copy));
if i == access_index {
out_buffer.set_wire(equality_dummy_wire, F::ONE);
@ -257,6 +290,7 @@ mod tests {
use std::marker::PhantomData;
use anyhow::Result;
use rand::{thread_rng, Rng};
use crate::field::crandall_field::CrandallField;
use crate::field::extension_field::quartic::QuarticExtension;
@ -267,31 +301,14 @@ mod tests {
use crate::hash::hash_types::HashOut;
use crate::plonk::vars::EvaluationVars;
#[test]
fn wire_indices() {
let gate = RandomAccessGate::<CrandallField, 4> {
vec_size: 3,
_phantom: PhantomData,
};
assert_eq!(gate.wire_access_index(), 0);
assert_eq!(gate.wires_claimed_element(), 1..5);
assert_eq!(gate.wires_list_item(0), 5..9);
assert_eq!(gate.wires_list_item(2), 13..17);
assert_eq!(gate.wire_equality_dummy_for_index(0), 17);
assert_eq!(gate.wire_equality_dummy_for_index(2), 19);
assert_eq!(gate.wire_index_matches_for_index(0), 20);
assert_eq!(gate.wire_index_matches_for_index(2), 22);
}
#[test]
fn low_degree() {
test_low_degree::<CrandallField, _, 4>(RandomAccessGate::new(4));
test_low_degree::<CrandallField, _, 4>(RandomAccessGate::new(4, 4));
}
#[test]
fn eval_fns() -> Result<()> {
test_eval_fns::<CrandallField, _, 4>(RandomAccessGate::new(4))
test_eval_fns::<CrandallField, _, 4>(RandomAccessGate::new(4, 4))
}
#[test]
@ -300,56 +317,74 @@ mod tests {
type FF = QuarticExtension<CrandallField>;
const D: usize = 4;
/// Returns the local wires for a random access gate given the vector, element to compare,
/// and index.
fn get_wires(list: Vec<FF>, access_index: usize, claimed_element: FF) -> Vec<FF> {
let vec_size = list.len();
/// Returns the local wires for a random access gate given the vectors, elements to compare,
/// and indices.
fn get_wires(
lists: Vec<Vec<F>>,
access_indices: Vec<usize>,
claimed_elements: Vec<F>,
) -> Vec<FF> {
let num_copies = lists.len();
let vec_size = lists[0].len();
let mut v = Vec::new();
v.push(F::from_canonical_usize(access_index));
v.extend(claimed_element.0);
for j in 0..vec_size {
v.extend(list[j].0);
}
let mut equality_dummy_vals = Vec::new();
let mut index_matches_vals = Vec::new();
for i in 0..vec_size {
if i == access_index {
equality_dummy_vals.push(F::ONE);
index_matches_vals.push(F::ONE);
} else {
equality_dummy_vals.push(
(F::from_canonical_usize(i) - F::from_canonical_usize(access_index))
.inverse(),
);
index_matches_vals.push(F::ZERO);
for copy in 0..num_copies {
let access_index = access_indices[copy];
v.push(F::from_canonical_usize(access_index));
v.push(claimed_elements[copy]);
for j in 0..vec_size {
v.push(lists[copy][j]);
}
for i in 0..vec_size {
if i == access_index {
equality_dummy_vals.push(F::ONE);
index_matches_vals.push(F::ONE);
} else {
equality_dummy_vals.push(
(F::from_canonical_usize(i) - F::from_canonical_usize(access_index))
.inverse(),
);
index_matches_vals.push(F::ZERO);
}
}
}
v.extend(equality_dummy_vals);
v.extend(index_matches_vals);
v.iter().map(|&x| x.into()).collect::<Vec<_>>()
}
let list = vec![FF::rand(); 3];
let access_index = 1;
let vec_size = 3;
let num_copies = 4;
let lists = (0..num_copies)
.map(|_| F::rand_vec(vec_size))
.collect::<Vec<_>>();
let access_indices = (0..num_copies)
.map(|_| thread_rng().gen_range(0..vec_size))
.collect::<Vec<_>>();
let gate = RandomAccessGate::<F, D> {
vec_size: 3,
vec_size,
num_copies,
_phantom: PhantomData,
};
let good_claimed_element = list[access_index];
let good_claimed_elements = lists
.iter()
.zip(&access_indices)
.map(|(l, &i)| l[i])
.collect();
let good_vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(list.clone(), access_index, good_claimed_element),
local_wires: &get_wires(lists.clone(), access_indices.clone(), good_claimed_elements),
public_inputs_hash: &HashOut::rand(),
};
let bad_claimed_element = FF::rand();
let bad_claimed_elements = F::rand_vec(4);
let bad_vars = EvaluationVars {
local_constants: &[],
local_wires: &get_wires(list, access_index, bad_claimed_element),
local_wires: &get_wires(lists, access_indices, bad_claimed_elements),
public_inputs_hash: &HashOut::rand(),
};
@ -359,7 +394,7 @@ mod tests {
);
assert!(
!gate.eval_unfiltered(bad_vars).iter().all(|x| x.is_zero()),
"Gate constraints are satisfied but shouold not be."
"Gate constraints are satisfied but should not be."
);
}
}

View File

@ -3,7 +3,6 @@ use std::convert::TryInto;
use anyhow::{ensure, Result};
use serde::{Deserialize, Serialize};
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field_types::{Field, RichField};
use crate::hash::hash_types::{HashOut, HashOutTarget, MerkleCapTarget};
@ -55,7 +54,6 @@ pub(crate) fn verify_merkle_proof<F: RichField>(
impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
/// Verifies that the given leaf data is present at the given index in the Merkle tree with the
/// given cap. The index is given by it's little-endian bits.
/// Note: Works only for D=4.
pub(crate) fn verify_merkle_proof(
&mut self,
leaf_data: Vec<Target>,
@ -75,21 +73,17 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
let index = self.le_sum(leaf_index_bits[proof.siblings.len()..].to_vec().into_iter());
let state_ext = state.elements[..].try_into().expect("requires D = 4");
let state_ext = ExtensionTarget(state_ext);
let cap_ext = merkle_cap
.0
.iter()
.map(|h| {
let tmp = h.elements[..].try_into().expect("requires D = 4");
ExtensionTarget(tmp)
})
.collect();
self.random_access(index, state_ext, cap_ext);
for i in 0..4 {
self.random_access(
index,
state.elements[i],
merkle_cap.0.iter().map(|h| h.elements[i]).collect(),
);
}
}
/// Same a `verify_merkle_proof` but with the final "cap index" as extra parameter.
/// Note: Works only for D=4.
/// Same as `verify_merkle_proof` but with the final "cap index" as extra parameter.
pub(crate) fn verify_merkle_proof_with_cap_index(
&mut self,
leaf_data: Vec<Target>,
@ -112,17 +106,13 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
};
}
let state_ext = state.elements[..].try_into().expect("requires D = 4");
let state_ext = ExtensionTarget(state_ext);
let cap_ext = merkle_cap
.0
.iter()
.map(|h| {
let tmp = h.elements[..].try_into().expect("requires D = 4");
ExtensionTarget(tmp)
})
.collect();
self.random_access(cap_index, state_ext, cap_ext);
for i in 0..4 {
self.random_access(
cap_index,
state.elements[i],
merkle_cap.0.iter().map(|h| h.elements[i]).collect(),
);
}
}
pub fn assert_hashes_equal(&mut self, x: HashOutTarget, y: HashOutTarget) {

View File

@ -18,6 +18,7 @@ use crate::gates::gate::{Gate, GateInstance, GateRef, PrefixedGate};
use crate::gates::gate_tree::Tree;
use crate::gates::noop::NoopGate;
use crate::gates::public_input::PublicInputGate;
use crate::gates::random_access::RandomAccessGate;
use crate::gates::switch::SwitchGate;
use crate::hash::hash_types::{HashOutTarget, MerkleCapTarget};
use crate::hash::hashing::hash_n_to_hash;
@ -73,6 +74,10 @@ pub struct CircuitBuilder<F: RichField + Extendable<D>, const D: usize> {
/// these constants with gate index `g` and already using `i` arithmetic operations.
pub(crate) free_arithmetic: HashMap<(F, F), (usize, usize)>,
/// A map `(c0, c1) -> (g, i)` from constants `vec_size` to an available arithmetic gate using
/// these constants with gate index `g` and already using `i` random accesses.
pub(crate) free_random_access: HashMap<usize, (usize, usize)>,
// `current_switch_gates[chunk_size - 1]` contains None if we have no switch gates with the value
// chunk_size, and contains `(g, i, c)`, if the gate `g`, at index `i`, already contains `c` copies
// of switches
@ -94,6 +99,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
constants_to_targets: HashMap::new(),
targets_to_constants: HashMap::new(),
free_arithmetic: HashMap::new(),
free_random_access: HashMap::new(),
current_switch_gates: Vec::new(),
}
}
@ -530,6 +536,22 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
}
}
/// Fill the remaining unused random access operations with zeros, so that all
/// `RandomAccessGenerator`s are run.
fn fill_random_access_gates(&mut self) {
let zero = self.zero();
for (vec_size, (_, i)) in self.free_random_access.clone() {
let max_copies = RandomAccessGate::<F, D>::max_num_copies(
self.config.num_routed_wires,
self.config.num_wires,
vec_size,
);
for _ in i..max_copies {
self.random_access(zero, zero, vec![zero; vec_size]);
}
}
}
/// Fill the remaining unused switch gates with dummy values, so that all
/// `SwitchGenerator` are run.
fn fill_switch_gates(&mut self) {
@ -569,6 +591,7 @@ impl<F: RichField + Extendable<D>, const D: usize> CircuitBuilder<F, D> {
let start = Instant::now();
self.fill_arithmetic_gates();
self.fill_random_access_gates();
self.fill_switch_gates();
// Hash the public inputs, and route them to a `PublicInputGate` which will enforce that

View File

@ -378,7 +378,7 @@ mod tests {
fn test_recursive_recursive_verifier() -> Result<()> {
init_logger();
type F = GoldilocksField;
const D: usize = 4;
const D: usize = 2;
let config = CircuitConfig::standard_recursion_config();
@ -398,7 +398,7 @@ mod tests {
fn test_size_optimized_recursion() -> Result<()> {
init_logger();
type F = GoldilocksField;
const D: usize = 4;
const D: usize = 2;
let normal_config = CircuitConfig::standard_recursion_config();
let final_config = CircuitConfig {