This commit is contained in:
wborgeaud 2021-06-23 11:30:57 +02:00
parent 70e980488c
commit 01053ab96a
2 changed files with 43 additions and 64 deletions

View File

@ -2,7 +2,7 @@ use anyhow::{ensure, Result};
use crate::field::extension_field::{flatten, Extendable, FieldExtension, Frobenius};
use crate::field::field::Field;
use crate::field::lagrange::{barycentric_weights, interpolant, interpolate};
use crate::field::interpolation::{barycentric_weights, interpolate, interpolate2};
use crate::fri::FriConfig;
use crate::hash::hash_n_to_1;
use crate::merkle_proofs::verify_merkle_proof;
@ -192,11 +192,14 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
.map(|&e| F::Extension::from_basefield(e));
let zs_composition_eval = alpha.clone().reduce(zs_evals);
let zeta_right = F::Extension::primitive_root_of_unity(degree_log) * zeta;
let zs_interpol = interpolant(&[
(zeta, alpha.clone().reduce(os.plonk_zs.iter())),
(zeta_right, alpha.reduce(os.plonk_zs_right.iter())),
]);
let zs_numerator = zs_composition_eval - zs_interpol.eval(subgroup_x);
let zs_interpol = interpolate2(
[
(zeta, alpha.clone().reduce(os.plonk_zs.iter())),
(zeta_right, alpha.reduce(os.plonk_zs_right.iter())),
],
subgroup_x,
);
let zs_numerator = zs_composition_eval - zs_interpol;
let zs_denominator = (subgroup_x - zeta) * (subgroup_x - zeta_right);
sum = alpha.shift(sum);
sum += zs_numerator / zs_denominator;
@ -208,18 +211,18 @@ fn fri_combine_initial<F: Field + Extendable<D>, const D: usize>(
.map(|&e| F::Extension::from_basefield(e));
let wire_composition_eval = alpha.clone().reduce(wire_evals);
let zeta_frob = zeta.frobenius();
let wire_eval = alpha.clone().reduce(os.wires.iter());
let mut alpha_frob = alpha.repeated_frobenius(D - 1);
let wire_eval = alpha.reduce(os.wires.iter());
// We want to compute `sum a^i*phi(w_i)`, where `phi` denotes the Frobenius automorphism.
// Since `phi^D=id` and `phi` is a field automorphism, we have the following equalities:
// `sum a^i*phi(w_i) = sum phi(phi^(D-1)(a^i)*w_i) = phi(sum phi^(D-1)(a)^i*w_i)`
// So we can compute the original sum using only one call to the `D-1`-repeated Frobenius of alpha,
// and one call at the end of the sum.
let mut alpha_frob = alpha.repeated_frobenius(D - 1);
let wire_eval_frob = alpha_frob.reduce(os.wires.iter()).frobenius();
let wire_interpol = interpolant(&[(zeta, wire_eval), (zeta_frob, wire_eval_frob)]);
let wire_numerator = wire_composition_eval - wire_interpol.eval(subgroup_x);
let wire_interpol = interpolate2([(zeta, wire_eval), (zeta_frob, wire_eval_frob)], subgroup_x);
let wire_numerator = wire_composition_eval - wire_interpol;
let wire_denominator = (subgroup_x - zeta) * (subgroup_x - zeta_frob);
sum = alpha_frob.shift(sum);
sum = alpha.shift(sum);
sum += wire_numerator / wire_denominator;
sum

View File

@ -4,7 +4,7 @@ use rayon::prelude::*;
use crate::field::extension_field::Extendable;
use crate::field::extension_field::{FieldExtension, Frobenius};
use crate::field::field::Field;
use crate::field::lagrange::interpolant;
use crate::field::interpolation::interpolate2;
use crate::fri::{prover::fri_proof, verifier::verify_fri_proof, FriConfig};
use crate::merkle_tree::MerkleTree;
use crate::plonk_challenger::Challenger;
@ -125,17 +125,10 @@ impl<F: Field> ListPolynomialCommitment<F> {
.iter()
.flat_map(|&p| &commitments[p.index].polynomials)
.map(|p| p.to_extension());
let single_os = [&os.constants, &os.plonk_s_sigmas, &os.quotient_polys];
let single_evals = single_os.iter().flat_map(|v| v.iter());
let single_composition_poly = alpha.clone().reduce_polys(single_polys);
let single_composition_eval = alpha.reduce(single_evals);
let single_composition_poly = alpha.reduce_polys(single_polys);
let single_quotient = Self::compute_quotient(
&[zeta],
&[single_composition_eval],
&single_composition_poly,
);
final_poly = &final_poly + &single_quotient;
let single_quotient = Self::compute_quotient([zeta], single_composition_poly);
final_poly += single_quotient;
alpha.reset();
// Zs polynomials are opened at `zeta` and `g*zeta`.
@ -143,19 +136,11 @@ impl<F: Field> ListPolynomialCommitment<F> {
.polynomials
.iter()
.map(|p| p.to_extension());
let zs_composition_poly = alpha.clone().reduce_polys(zs_polys);
let zs_composition_evals = [
alpha.clone().reduce(os.plonk_zs.iter()),
alpha.reduce(os.plonk_zs_right.iter()),
];
let zs_composition_poly = alpha.reduce_polys(zs_polys);
let zs_quotient = Self::compute_quotient(
&[zeta, g * zeta],
&zs_composition_evals,
&zs_composition_poly,
);
let zs_quotient = Self::compute_quotient([zeta, g * zeta], zs_composition_poly);
final_poly = alpha.shift_poly(final_poly);
final_poly = &final_poly + &zs_quotient;
final_poly += zs_quotient;
// When working in an extension field, need to check that wires are in the base field.
// Check this by opening the wires polynomials at `zeta` and `zeta.frobenius()` and using the fact that
@ -164,20 +149,12 @@ impl<F: Field> ListPolynomialCommitment<F> {
.polynomials
.iter()
.map(|p| p.to_extension());
let wire_composition_poly = alpha.clone().reduce_polys(wire_polys);
let mut alpha_frob = alpha.repeated_frobenius(D - 1);
let wire_composition_evals = [
alpha.clone().reduce(os.wires.iter()),
alpha_frob.reduce(os.wires.iter()).frobenius(),
];
let wire_composition_poly = alpha.reduce_polys(wire_polys);
let wires_quotient = Self::compute_quotient(
&[zeta, zeta.frobenius()],
&wire_composition_evals,
&wire_composition_poly,
);
final_poly = alpha_frob.shift_poly(final_poly);
final_poly = &final_poly + &wires_quotient;
let wires_quotient =
Self::compute_quotient([zeta, zeta.frobenius()], wire_composition_poly);
final_poly = alpha.shift_poly(final_poly);
final_poly += wires_quotient;
let lde_final_poly = final_poly.lde(config.rate_bits);
let lde_final_values = lde_final_poly
@ -208,28 +185,27 @@ impl<F: Field> ListPolynomialCommitment<F> {
/// Given `points=(x_i)`, `evals=(y_i)` and `poly=P` with `P(x_i)=y_i`, computes the polynomial
/// `Q=(P-I)/Z` where `I` interpolates `(x_i, y_i)` and `Z` is the vanishing polynomial on `(x_i)`.
fn compute_quotient<const D: usize>(
points: &[F::Extension],
evals: &[F::Extension],
poly: &PolynomialCoeffs<F::Extension>,
fn compute_quotient<const D: usize, const N: usize>(
points: [F::Extension; N],
poly: PolynomialCoeffs<F::Extension>,
) -> PolynomialCoeffs<F::Extension>
where
F: Extendable<D>,
{
let pairs = points
.iter()
.zip(evals)
.map(|(&x, &e)| (x, e))
.collect::<Vec<_>>();
debug_assert!(pairs.iter().all(|&(x, e)| poly.eval(x) == e));
let interpolant = interpolant(&pairs);
let denominator = points.iter().fold(PolynomialCoeffs::one(), |acc, &x| {
&acc * &PolynomialCoeffs::new(vec![-x, F::Extension::ONE])
});
let numerator = poly - &interpolant;
let (quotient, rem) = numerator.div_rem(&denominator);
debug_assert!(rem.is_zero());
let quotient = if N == 1 {
poly.divide_by_linear(points[0]).0
} else if N == 2 {
// The denominator is `(X - p0)(X - p1) = p0 p1 - (p0 + p1) X + X^2`.
let denominator = vec![
points[0] * points[1],
-points[0] - points[1],
F::Extension::ONE,
]
.into();
poly.div_rem_long_division(&denominator).0 // Could also use `divide_by_linear` twice.
} else {
unreachable!("This shouldn't happen. Plonk should open polynomials at 1 or 2 points.")
};
quotient.padded(quotient.degree_plus_one().next_power_of_two())
}