plonky2/src/plonk_common.rs

243 lines
8.2 KiB
Rust
Raw Normal View History

use std::borrow::Borrow;
2021-03-30 20:16:20 -07:00
use crate::circuit_builder::CircuitBuilder;
use crate::circuit_data::CommonCircuitData;
use crate::field::extension_field::target::ExtensionTarget;
use crate::field::extension_field::Extendable;
use crate::field::field::Field;
2021-04-21 22:31:45 +02:00
use crate::gates::gate::GateRef;
use crate::polynomial::polynomial::PolynomialCoeffs;
use crate::target::Target;
use crate::vars::{EvaluationTargets, EvaluationVars, EvaluationVarsBase};
2021-04-02 19:15:39 -07:00
/// Evaluate the vanishing polynomial at `x`. In this context, the vanishing polynomial is a random
/// linear combination of gate constraints, plus some other terms relating to the permutation
/// argument. All such terms should vanish on `H`.
pub(crate) fn eval_vanishing_poly<F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
x: F::Extension,
vars: EvaluationVars<F, D>,
local_plonk_zs: &[F::Extension],
next_plonk_zs: &[F::Extension],
s_sigmas: &[F::Extension],
betas: &[F],
gammas: &[F],
alphas: &[F],
) -> Vec<F::Extension> {
let constraint_terms =
evaluate_gate_constraints(&common_data.gates, common_data.num_gate_constraints, vars);
// The L_1(x) (Z(x) - 1) vanishing terms.
let mut vanishing_z_1_terms = Vec::new();
// The Z(x) f'(x) - g'(x) Z(g x) terms.
let mut vanishing_v_shift_terms = Vec::new();
for i in 0..common_data.config.num_challenges {
let z_x = local_plonk_zs[i];
let z_gz = next_plonk_zs[i];
vanishing_z_1_terms.push(eval_l_1(common_data.degree(), x) * (z_x - F::Extension::ONE));
let mut f_prime = F::Extension::ONE;
let mut g_prime = F::Extension::ONE;
for j in 0..common_data.config.num_routed_wires {
let wire_value = vars.local_wires[j];
let k_i = common_data.k_is[j];
let s_id = x * k_i.into();
let s_sigma = s_sigmas[j];
f_prime *= wire_value + s_id * betas[i].into() + gammas[i].into();
g_prime *= wire_value + s_sigma * betas[i].into() + gammas[i].into();
}
vanishing_v_shift_terms.push(f_prime * z_x - g_prime * z_gz);
}
let vanishing_terms = [
vanishing_z_1_terms,
vanishing_v_shift_terms,
constraint_terms,
]
.concat();
let alphas = &alphas.iter().map(|&a| a.into()).collect::<Vec<_>>();
reduce_with_powers_multi(&vanishing_terms, alphas)
}
/// Like `eval_vanishing_poly`, but specialized for base field points.
pub(crate) fn eval_vanishing_poly_base<F: Extendable<D>, const D: usize>(
common_data: &CommonCircuitData<F, D>,
x: F,
vars: EvaluationVarsBase<F>,
local_plonk_zs: &[F],
next_plonk_zs: &[F],
s_sigmas: &[F],
betas: &[F],
gammas: &[F],
alphas: &[F],
) -> Vec<F> {
let constraint_terms =
evaluate_gate_constraints_base(&common_data.gates, common_data.num_gate_constraints, vars);
// The L_1(x) (Z(x) - 1) vanishing terms.
let mut vanishing_z_1_terms = Vec::new();
// The Z(x) f'(x) - g'(x) Z(g x) terms.
let mut vanishing_v_shift_terms = Vec::new();
for i in 0..common_data.config.num_challenges {
let z_x = local_plonk_zs[i];
let z_gz = next_plonk_zs[i];
vanishing_z_1_terms.push(eval_l_1(common_data.degree(), x) * (z_x - F::ONE));
let mut f_prime = F::ONE;
let mut g_prime = F::ONE;
for j in 0..common_data.config.num_routed_wires {
let wire_value = vars.local_wires[j];
let k_i = common_data.k_is[j];
let s_id = k_i * x;
let s_sigma = s_sigmas[j];
f_prime *= wire_value + betas[i] * s_id + gammas[i];
g_prime *= wire_value + betas[i] * s_sigma + gammas[i];
}
vanishing_v_shift_terms.push(f_prime * z_x - g_prime * z_gz);
}
let vanishing_terms = [
vanishing_z_1_terms,
vanishing_v_shift_terms,
constraint_terms,
]
.concat();
reduce_with_powers_multi(&vanishing_terms, alphas)
}
2021-04-02 20:58:19 -07:00
/// Evaluates all gate constraints.
///
/// `num_gate_constraints` is the largest number of constraints imposed by any gate. It is not
/// strictly necessary, but it helps performance by ensuring that we allocate a vector with exactly
/// the capacity that we need.
pub fn evaluate_gate_constraints<F: Extendable<D>, const D: usize>(
gates: &[GateRef<F, D>],
2021-04-02 19:15:39 -07:00
num_gate_constraints: usize,
vars: EvaluationVars<F, D>,
) -> Vec<F::Extension> {
let mut constraints = vec![F::Extension::ZERO; num_gate_constraints];
for gate in gates {
let gate_constraints = gate.0.eval_filtered(vars);
for (i, c) in gate_constraints.into_iter().enumerate() {
debug_assert!(
i < num_gate_constraints,
"num_constraints() gave too low of a number"
);
constraints[i] += c;
}
}
constraints
}
pub fn evaluate_gate_constraints_base<F: Extendable<D>, const D: usize>(
gates: &[GateRef<F, D>],
num_gate_constraints: usize,
vars: EvaluationVarsBase<F>,
2021-04-02 19:15:39 -07:00
) -> Vec<F> {
let mut constraints = vec![F::ZERO; num_gate_constraints];
for gate in gates {
let gate_constraints = gate.0.eval_filtered_base(vars);
2021-04-02 19:15:39 -07:00
for (i, c) in gate_constraints.into_iter().enumerate() {
2021-04-21 22:31:45 +02:00
debug_assert!(
i < num_gate_constraints,
"num_constraints() gave too low of a number"
);
2021-04-02 19:15:39 -07:00
constraints[i] += c;
}
}
constraints
}
pub fn evaluate_gate_constraints_recursively<F: Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
gates: &[GateRef<F, D>],
2021-04-02 19:15:39 -07:00
num_gate_constraints: usize,
vars: EvaluationTargets<D>,
) -> Vec<ExtensionTarget<D>> {
let mut constraints = vec![builder.zero_extension(); num_gate_constraints];
2021-04-02 19:15:39 -07:00
for gate in gates {
let gate_constraints = gate.0.eval_filtered_recursively(builder, vars);
for (i, c) in gate_constraints.into_iter().enumerate() {
constraints[i] = builder.add_extension(constraints[i], c);
2021-04-02 19:15:39 -07:00
}
}
constraints
}
2021-03-30 23:12:47 -07:00
/// Evaluate the polynomial which vanishes on any multiplicative subgroup of a given order `n`.
pub(crate) fn eval_zero_poly<F: Field>(n: usize, x: F) -> F {
// Z(x) = x^n - 1
x.exp(n as u64) - F::ONE
2021-03-30 23:12:47 -07:00
}
/// Evaluate the Lagrange basis `L_1` with `L_1(1) = 1`, and `L_1(x) = 0` for other members of an
/// order `n` multiplicative subgroup.
pub(crate) fn eval_l_1<F: Field>(n: usize, x: F) -> F {
if x.is_one() {
// The code below would divide by zero, since we have (x - 1) in both the numerator and
// denominator.
return F::ONE;
}
// L_1(x) = (x^n - 1) / (n * (x - 1))
// = Z(x) / (n * (x - 1))
eval_zero_poly(n, x) / (F::from_canonical_usize(n) * (x - F::ONE))
}
/// For each alpha in alphas, compute a reduction of the given terms using powers of alpha.
pub(crate) fn reduce_with_powers_multi<F: Field>(terms: &[F], alphas: &[F]) -> Vec<F> {
2021-04-21 22:31:45 +02:00
alphas
.iter()
.map(|&alpha| reduce_with_powers(terms, alpha))
.collect()
}
pub(crate) fn reduce_with_powers<F: Field>(terms: &[F], alpha: F) -> F {
let mut sum = F::ZERO;
for &term in terms.iter().rev() {
sum = sum * alpha + term;
}
sum
}
pub(crate) fn reduce_with_powers_recursive<F: Extendable<D>, const D: usize>(
builder: &mut CircuitBuilder<F, D>,
2021-06-04 15:40:54 +02:00
terms: &[ExtensionTarget<D>],
alpha: Target,
2021-06-04 15:40:54 +02:00
) -> ExtensionTarget<D> {
let mut sum = builder.zero_extension();
for &term in terms.iter().rev() {
sum = builder.scalar_mul_ext(alpha, sum);
sum = builder.add_extension(sum, term);
}
sum
}
2021-06-01 19:13:22 -07:00
/// Reduce a sequence of field elements by the given coefficients.
pub(crate) fn reduce_with_iter<F: Field>(
terms: impl IntoIterator<Item = impl Borrow<F>>,
coeffs: impl IntoIterator<Item = impl Borrow<F>>,
) -> F {
terms
.into_iter()
.zip(coeffs)
.map(|(t, c)| *t.borrow() * *c.borrow())
.sum()
}
/// Reduce a sequence of polynomials by the given coefficients.
pub(crate) fn reduce_polys_with_iter<F: Field>(
polys: impl IntoIterator<Item = impl Borrow<PolynomialCoeffs<F>>>,
coeffs: impl IntoIterator<Item = impl Borrow<F>>,
) -> PolynomialCoeffs<F> {
polys
.into_iter()
.zip(coeffs)
.map(|(p, c)| p.borrow() * *c.borrow())
.sum()
2021-06-01 19:13:22 -07:00
}